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Abstract

Polynomial splines are used to estimate the log-hazard function based on possi-
bly censored, positive data. Two additional log terms are incorporated into the fitted
model for the log-hazard function to allow for greater flexibility in the extreme tails.
A fully automatic procedure involving the maximum likelihood method, stepwise knot
addition, stepwise knot deletion and BIC is used to select the final model. A user
interface based on S is described for obtaining estimates of the hazard function, den-
sity function, distribution function and quantile function and for generating a random
sample from the estimated distribution.
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1 Introduction

Consider positive data that may be (right-) censored. We think of the original, uncensored
data as having arisen as a random sample from a distribution having an unknown positive
density function on (0, oo). In this investigation, polynomial splines are used to estimate
the logarithm of the unknown hazard function. In order to allow for greater flexibility in
the extreme tails, two additional log terms are incorporated into the fitted model for the
log-hazard function. The maximum likelihood method is used to estimate the unknown
parameters of the model. We describe a fully automatic method for selecting the final
model, which involves.stepwise knot addition, stepwise knot deletion and BIC, and we also
describe a user interface that makes the entire procedure conveniently available within the
S environment (see Becker, Chambers and Wilks, 1988). In order to evaluate the procedure
in its present form, we apply it to a number of simulated and real data sets. Finally, the
technical issues involved in the numerical implementation of the procedure are discussed.

The discussion section in Abrahamowicz, Ciampi and Ramsay (1992) contains a good
review of many of the papers on the use of splines to estimate density functions or hazard
functions in the presence of censored data. These papers typically fall into two groups:
those using smoothing splines or similar procedures, including Anderson and Senthilselvan
(1980), Whittemore and Keller (1986), Senthilselvan (1987) and O'Sullivan (1988); those us-
ing polynomial splines, including Etezadi-Amoli and Campi (1987), Abrahamowicz, Ciampi
and Ramsay (1992) and Kooperberg and Stone (1992). Among these papers, O'Sullivan
(1988) is the only one that directly models the log-hazard function. Gu (1991) contains an
asymptotic analysis of the hazard estimate in O'Sullivan (1988) that is different from the
analysis of Cox and O'Sullivan (1990). Kooperberg and Stone (1992) model the log-density
function. Most of the other papers model either the density function or the hazard function
itself.

There are other methods for estimating the hazard function or the density function in
the presence of right-censored data. In particular, Tanner and Wong (1983, 1984) and Mar-
ron and Padgett (1987) use kernel estimation, and Efron (1988) uses logistic regression to
estimate the hazard function. In survival analysis, the classical approach to hazard estima-
tion has typically been to use a parametric model for the hazard function (see, for example,
Cox and Oakes (1984) and Miller (1981)). For further discussion, see Section IV.2 and the
corresponding bibliographic remarks in Andersen, Borgan, Gill, and Keiding (1993).

2 Flexible Linear Models for the Log-Hazard Func-
tion

Let f be a positive density function on (0, oo), let So = log f denote the corresponding log-
density function, let F denote the distribution function, let h = f/(1 - F) denote the hazard
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function, let A = log h denote the log-hazard function, and let Q = F-1 denote the quantile
function (so that Q(F(t)) = t for t > 0 and F(Q(p)) = p for 0 < p < 1). Then

1 - F(t) = exp ( h(u)du) = exp (- exp(A(u))du), t > 0.

Since F(t) < 1 for 0 < t < oo and limt OO F(t) 1, we conclude that foT exp(A(u))du <
oo for 0 < t < oo, and fo' exp(A(t))dt oc. Observe that h = expA and that f(t) -
exp(A(t)) exp(-fgoT exp(A(u))du) and 9(t) = A(t) - foTexp(A(u))du for t > 0.

Given the integer K > 3 and the sequence tl,..., tK with 0 < t, < ... < tK < cc,
let Go be the (K - 2)-dimensional space of twice-continuously differentiable functions s on
[0, oo) such that s is constant on [0, t1] and on [tK, oo) and the restriction of s to each of the
intervals [t1, t2], ., [tK-1, tK] is a cubic polynomial. The functions in Go are cubic splines
having (simple) knots at tl.... , tK. Let B1,... , BK-2 be a basis of this space such that
BK-2 = 1 on [0, oo) and B1,.. ., BK-3 equal zero on [tK, oo). (If K = 3, then Go is the space
of constant functions on [0, oo) and B1 = 1 on [0, oo).)

Given a positive number c (which will be defined in Section 3 in terms of the observed
data in a simple manner), set

B1 (t) = log t and Bo(t) = log(t + c) t > 0.

Also, set p = K -2. Then B-1, Bo, B1,..., Bp is a basis of the linear space spanned by
GoU {Bh1, Bo}.

Set

A(.; 6)0_B_++ B+ B + 6 = (01, °o, 1, . ..,2)T E Rp+2,

and

0= {6 ERp+2 J exp(A(u; 0))du < oo for 0 < t < oo and f exp(A(t; 0))dt = oo}

{ (010001,... 0T ERP+2 a-1 > -1 and Oo > -1}

We use A(.; 6), 6 E 0, to model the log-hazard function. Given 6 E E, the corresponding
hazard function, density function and log-density function are given by h(.; 6) exp(A(-; 6)),

f(t;6) = exp(A(t; 6)) exp (-j exp(A(u;6))du), t > 0,

and (T
fo(t; 0) = log f(t; 0) =A(t; 0) - exp(A(u; 60))du, t > 0.
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Observe that f(-; 0) is a positive density function on (0, oo). The corresponding distribution
function and quantile function are given, respectively, by F(t; 6) = fg f(u; 6)du for t > 0
and Q(.; 6) = F-1(.; 6). Set p(., 1; 6) = 0(.; 6) and p(., 0; 6) = 1 - F(.; 6). Then

'.(y, 6; 6) = 6A(y; 0) - j exp(A(u; 6))du, y > 0 and 6 E {O, 1},

, (y, 6; 6) = &Bj(y) - Bj(u) exp(A(u; 0))du, -1 < j < p, y > 0 and 6 E {0, 1},06,

and

a2 =Pjk(Y, 6; 0) fY Bj(u)Bk(u) exp(A(u; 0))du, -1 < j,k < p, y > 0 and 6 E {0, 1}.
9309

It follows from the last result that p(y, 6;.) is a concave function on 0 for y > 0 and
SE {0,1}.

The two log terms in the model for the log-hazard function are easily motivated. Consider
a positive density function f on (0, oo), and let F, h and A denote, respectively, the associated
distribution function, hazard function and log-hazard function. Suppose first that f(t) at?
for t 00, where a > 0 and -y > -1. Then logf(t) - -ylogt for t 00. Since 1 - F(t) - 1
for t 00, we conclude that A(t) 7y log t for t 00. This motivates the inclusion of the term
061B-1(t) with 0-1 > -1 in the model for the log-hazard function.

Suppose next that f(t) ~aexp(-bfb) for t > 1, where a > 0, b > 0 and a > 0. Then

a
1 - F(t) exp(-bt), t > 1,

so
h(t) b7yt-P t > 1,

and hence A(t) ( - 1) log t for t > 1. This motivates the inclusion of the term OoBo(t)
with 00 > -1 in the model for the log-hazard function.

Suppose instead that f(t) at-b-1 for t > 1, where a, b > 0. Then 1 - F(t) 0 ab-lt-b
for t > 1, so h(t) - bt-1 for t > 1 and hence A(t) - (-1) logt for t > 1. This motivates
allowing the possibility that 00 = -1 in the model for the log-hazard function.

Suppose now that K 3. Then p = 1 and B1 = 1, so

t
A(t;0) =0-1log + +Oolog(t+c) +01, t >0.

This three-parameter model includes Weibull and Pareto distributions as special cases.

Consider first the Weibull density function f given by

f(t) = b7yt1- exp(-btW), t > 0,
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where b > 0 and 7y > 0, whose distribution function is given by

F(t) = 1 - exp(-btt), t > 0. (1)

The corresponding log-hazard function is given by A(t) = (-y - 1) log t + log bty for t > 0.
Thus A(.) = A(.; 0), where O-1 = 0 =So - 1 and 01 = log bt. (Alternatively, we can get the
Weibull model by setting c = 0, 0-1 = 0, 0O = - - 1 and 01 = log b7y.)

Consider next the Pareto density function f given by

bcb
f(t) = (t + C)b+l 9 t > 09

where b > 0 and c > 0, whose distribution function is given by

F(t) (t=I c t > O. (2)

The correspoinding log-hazard function is given by A(t) = log b - log(t + c) for t > 0. Thus
A(.) = A(-; 9), where 0-1 -O,S0 -1 and 01 = log b. (Here we have assumed that the
parameter c of the three-parameter model coincides with the parameter c of the Pareto
distribution; otherwise, the three-parameter model only provides an approximation to the
Pareto distribution.)

3 Maximum Likelihood Estimation

Let T1, . . . , T,, be a random sample of size n from the distribution on (0, oo) having density
function f, and let Cl,... ,C E (O, oo] be censoring times. It is assumed that T1,... ,T71
(C,,..., C,,) are independent. For 1 <i < n, set Yi = min(Ti, Cj) and &i = ind(Ti < Ci); the
observation Yi is said to be uncensored or censored according as -= 1 or 6- = 0. We refer
to (YV, 6i), 1 < i < n, as the observed data. As the default we chose the shift parameter c to
be the upper quartile of the uncensored data; that is, of Yi, 1 < i < n, with Si= 1.

The log-likelihood function corresponding to the observed data and the (p+ 2)-parameter
model for the log-hazard function is given by

I(6) =Z(Yi, Si; 6), 6 E 0. (3)

As noted by O'Sullivan (1988), the log-likelihood function is concave. Moreover,

%l(0) =ZEa (Yi,Si;6), -1 <jp and 6 eO,

anid
0a2 02

r909jak
I() E 00ajOk -1(Yi, 6i; 0) I

< j, k < p and 6 e (.
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The maximum likelihood estimate 6 is given as usual by 1(6) = max6E. 1(6) and the
log-likelihood of the model is given by I = 1(6). The corresponding maximum likelihood
estimates of A, h, f, F, Q are given by A(t) = A(t;0), h(t) = h(t;0) and so forth.

Let S(6) denote the score at 6 (that is, the (p+2)-dimensional column vector with entries
al(O)/aOj), and let H(6) denote the Hessian at 6 (that is, the (p + 2) x (p + 2) matrix with
enitries &21(0)/aOjOk). The Newton-Raphson method for computing 6 is to start with an
initial guess 0(o) and iteratively determine 0(m+1) from O(m) according to the formula

O(m+i) = 0(m) - [H(6(m))]-lS(6(m)).

Here we employ the Newton-Raphson method with step-halving, in which 09(m+1) is deter-
mined from @(m) according to the formula

w(m+') = @(m) 2-v[H(6(m))]-lS(6(m)),
where v is the smallest nonnegative integer such that

1(6(m)
- 2-v[H(6(m))]-1S(6(m))) . 1(6(m) - 2vi[I(6(m))]lS(6(m)))

We stop the iterations when l(6(m+1)) - 1(4(m)) .0, where e_ 106.

4 Knot Selection

Initially, we place knot at the quartiles of the uncensored data. Since K 3, this corresponds
to the three-parameter model discussed in Section 2. Then we successively add knots, at each
step choosing a new knot by an heuristic search (described in Section 9.3) that is designed
approximately to miaximize the Rao statistic.

Given a model with K - 1 knots and a potential additional knot, let 0o be the maximum
likelihood estimate of 6 based on the model with K knots subject to the constraint that the
jump of the third derivative at the potential knot equals zero. Then the corresponding Rao
statistic ((6e.3.6) of Rao, 1973) equals [S(60)]T[I(6o)]-1S(6o), where I(Oo) = -H(0o) with
S(t) and H(.) corresponding to the model with K knots.

Upon stopping the stepwise knot addition (according to a rule that is described in Sec-
tion 9.3), we proceed to stepwise knot deletion. Here we successively remove the least
statistically significant among the K remaining knots until only three knots remain. The
statistical significance of a remaining knot is measured by the absolute value of its Wald
statistic W = '/SE('). Here '

= cT6 is the jump of the third derivative of Oj93Bj at the
corresponding knot, where the Bjs are defined in terms of the K remaining knots. Also,

() C[ 1
,
wh I )SE() = cT[I(0)]lc, where 1(6)-H(6) with H(.) corresponding to the model with K

knots.
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During the combination of stepwise knot addition and stepwise knot deletion, we get a
sequence of models indexed by v, with the vth model having pv parameters. Let 4, denote
the log-likelihood of the vth model, and let AIC,, = -21, + ap, be the Akaike Information
Criterion with penalty parameter a for this model. We select the model corresponding
to the value iJ of v that minimizes AIC,V. In light of Kooperberg and Stone (1992) and
our experience in the present investigation, we recommend choosing a = log(n) as in the
Bayesian information criterion (BIC) due to Schwarz (1978).

5 User Interface

A program for implementing hazard estimation with flexible tails (HEFT) as described in
this paper has been written in C (see Section 9), and an interface based on S (see Becker,
Chambers and Wilks, 1988, and Chambers and Hastie, 1992) has also been developed1.
The interface consists of nine S functions: dheft, hheft, pheft, qheft, rheft, heft. fit,
heft. summary, and heft.plot. (Detailed documentation of each of these functions is in-
cluded in the Appendix to this paper.) The functions dheft, pheft, qheft, rheft are
analogous to the S functions dnorm, pnorm, qnorm and rnorm, respectively, and to simi-
lar four-tuples of S functioins for t distributions, F distributions, gamma distributions, and
so forth. Thus dheft gives the (estimated) density function, pheft gives the distribution
function, qheft gives the quantile function, and rheft gives a random sample from the
distribution. The function hheft gives the hazard function, heft .f it performs the model
fitting and model selection tasks and supplies the modest output that is used as input to
dheft, hheft and so forth. The function heft. summary, uses the output of heft .fit to
provide summary information about the fit and about the other fits that could be obtained
by using alternative values of the penalty parameter. Finally, heft. plot uses the output of
heft . fit directly to produce a plot of the density, distribution, survival or hazard function.

6 Simulated Examples

In Section 2 we discussed how Pareto and Weibull distributions can be modeled using HEFT.
To illustrate how HEFT can be used to approximate these distributions based on sample
data, we generated a sample of size 200 from a Pareto distribution with parameters b = 4 and
c = 1 (2). In the left side of Figure 1, we show the true density function (solid) corresponding
to this distribution together with various estimates of the densty function based on the
sample. The line with long dashes corresponds to the estimated densty function that was
obtained from HEFT using the default parameters. As we noted in Section 2, HEFT can
exactly fit a Pareto distribution if the shift parameter c in HEFT equals the parameter c in

1HEFT software is available from statlib. Send an email with the body send heft from S to
statlib@stat.cmu.edu
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the Pareto distribution. The default value for c in HEFT is the 75th percentile of the data,
which was 0.4 for this sample. To examine the influence of the shift parameter, we also used
heft .f it with the option shift=1, to make it possible for HEFT to fit the exact Pareto
distribution. The third curve in the left side of Figure 1 that is based on HEFT uses the
value for the shift parameter c that minimizes BIC. We determined that this was 2.7. The
last curve is the logspline estimate of the densty function (Kooperberg and Stone (1992));
in this and all other logspline estimates in the present paper we used the option lbound=0.

In the right side of Figure 1 we show the results of a similar set of computations. The data
for this figure is a random sample of size 1000 from a Pareto distribution with parameters
b = 1 and c = 1 (2). Again we show the estimate based on HEFT with the default choice
for shift (which was 2.9), the theoretical optimal choice for shift (c= 1) and the value
for shift that minimizes BIC (c = 0.8). As for the left hand side, the remaining curves are

the densty function corresponding to the logspline estimate and the true densty function.

true 0)

\- HEFT, shift=0.4 o
C8 - \ - - - - HEFT, shift=1

HEFT, shift=2.7

I----- logspline Cg

o)

o a\tooO o

C)

c- ~~~~~c
~~~~~~~~~~~~~~~) 0)

C

Co %T-1

N~~~~~~~~~~~~~~C
C)~~~~~~

6)

o)
oC0

I~~~~~~~~~~C

0.0 0.5 1.0 1.5 2.0 2.5 3.0 C' 0 50 100 150 200

Fig. 1. Estimated density functions for Pareto distributions;
left side: n=200, b=4, c=1; right side: n=1 000, b=1, c=1.

From both of these examples (and from many more that we examined) we find that HEFT
approximates Pareto distributions extremely well for sample sizes of 500 and larger, especially
if shift is optimized but even with the default choice. It should be noted, though, that the
HEFT estimate frequently does not coincide with the three parameter model described in
Section 2. Often a few knots, close to the origin, remain. If the sample size is smaller,
the HEFT estimate of the Pareto distribution typically has the form of the three parameter
model in Section 2. Nevertheless, for these smaller sample sizes the HEFT estimate typically
is not better than the logspline estimate.

8

true
HEFT, shift=2.9
HEFT, shift=1

- -- HEFT, shift=0.8
---------- logspline



Figure 2 is similar to Figure 1, but the underlying distributions for this figure are Weibull.
The data for the left side of Figure 2 is a sample of size 200 from a Weibull distribution
with parameters b = 1 and y = 0.25 (1). In the figure we show the true density function
corresponding to this Weibull distribution together with the estimate for this density function
based upon HEFT using the default parameters and the estimate based upon the logspline
density estimate for this data. In the right side of the Figure we show the results of similar
calculations, based upon a sample of size 1000 from a Weibull distribution with parameters
b = 1 and 7y = 4 (1).

The HEFT fits to the Weibull distribution that are illustrated in Figure 2 turn out to
be the three parameter model described in Section 2. The parameters 0-1, 00 and 01 for the
HEFT fit in the left side of Figure 2 are -0.755, -0.819 and -1.232 respectively while their
theoretical values are -0.75, -0.75 and -1.386. Similarly the parameters for the HEFT fit
in the right side of Figure 2 are 3.444, 2.383 and 2.182, while their theoretical values are 3,
3 and 1.386.

o/
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o C 0
C
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'C)
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o - 1 0inSection 2. The results are summarized in Table 1 belo
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WeCaridotasalsmlto td odtriehwcoeteeprmtr yial

ar Cotertertclvle.Oehnrdtie egnrtdsmlso ie20adsz
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TABLE 1. Coefficient estimates for HEFT fits of samples from Weibull distributions.
parameters b = 1, y = 0.25 b = 1, a = 4.00
sample size 200 200
% of 3 parameter models 82% 89%
coefficients 0-1 0S 01 0-1 0S 1
theoretical -0.750 -0.750 -1.386 3.000 3.000 1.386
average -0.735 -0.705 -1.327 2.951 3.194 1.213
standard deviation 0.060 0.156 0.716 1.426 2.369 2.701
parameters b 1, -Y = 0.25 b = 1, a = 4.00
sample size 1000 1000
% of 3 parameter models 76% 92%_
coefficients 0-1 0S 01 0-1 00 01
theoretical -0.750 -0.750 -1.386 3.000 3.000 1.386
average -0.737 -0.746 -1.286 3.033 3.028 1.405
standard deviation 0.060 0.043 0.645 0.733 1.011 1.274
The averages and standard deviations for the coefficient estimates are based
on all 100 samples.

generated a sample Ti = exp(Zi), 1 < i < 1000, where Zi has a standard normal distribution,
and an independent sample Ci, 1 < i < 1000, from the same distribution. We then set
Yi= min(Ti, Ci) and &i = ind(Ti < Ci). This setup yields about 50% right-censoring. In the
left side of Figure 3 we show the true lognormal density function (solid) together with the
estimates obtained using HEFT (dashed) and logspline (dotted). In the right hand side of
the figure we show the corresponding hazard estimates. As this figure illustrates, the HEFT
estimate of the hazard function typically is more accurate than the logspline estimate in the
right tail; otherwise the two estimates are comparable.
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Fig. 3. Estimated density (left) and hazard (right) functions for lognormal distribution;
n=1 000, 50% right censored; solid = truth, dashed = HEFT, dotted = logspline.

In Section 6 of Kooperberg and Stone (1992) the logspline method is applied to samples
from various distributions, a number of them which involve censoring. We compared the
performance of logspline and HEFT on the examples in Figures 3 to 6 of the logspliine
paper, which involve only positive data, and found HEFT and logspline comparable in these
examples. However, there are several circumstances in which HEFT has an advantage over
logspline. In particular, the log-likelihood function (3) is concave for HEFT even when there
is right censoring. This is not true for logspline, so that convergence to a global maximum
cannot be guaranteed. (And indeed, we have seen cases with a large amount of right censoring
for which HEFT converges to an acceptable solution, while the present implemelntation of
logspline does not converge.) Another advantage of HEFT is that it is more flexible near
the origin. In particular, it can deal without further adjustments with estimates for which
f(O) = 0 and for which f(O0+) = oo, while this is not possible in logspline. A final advantage
of HEFT over the present implementation of logspline is. that HEFT employs knot addition
and knot deletion, while logspline only employs knot deletion. Potentially this means that
HEFT estimates are more flexible. Somewhat surprisingly, in spite of all these arguments,
logspline is generally comparable to HEFT. We should mention that logspline has some
advantages over HEFT too: it can deal with negative, left-censored and interval-censored
data and density functions that are non-zero only on a known bounded interval. Finally,
logspline often takes less cpu time than HEFT.
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7 Real Examples

7.1 HEFT for Density Estimation

The data for Figure 4 consists of a random sample of size 7125 of annual net incomes in
the United Kingdom (Family Expenditure Survey, 1968-1983)2, which have been rescaled to
have mean one. This data has also been used in Wand, Marron and Ruppert (1991) and in
Kooperberg and Stone (1991, 1992). In the left side of Figure 4 we show the estimate of the
density function that was obtained using HEFT together with the rather similar estimate
obtained by using the logspline method (Kooperberg and Stone (1992)). In Kooperberg and
Stone (1992) it was argued that the peak near 0.2 should have approximately the indicated
height.

The logspline fit in Figure 4 uses 9 knots, while the HEFT fit uses 7 knots. Actually,
7 of the logspline knots are extremely close to the HEFT knots. The two extra logspline
knots are at 2.03 and 11.46. Conceivably HEFT does not 'need' these knots because of the
term log(t + 1.28) that is included in the model. (Note that 1.28 is the 75th percentile of
the data.) The coefficient of this basis function was estimated by HEFT to be -1.00, the
smallest value that yields a valid HEFT model. The coefficient of the other basis function

log t involving a log-term turned out to be -0.14, with a standard error of 0.16. This
t -j 1.28

led us to rerun HEFT but now using the options leftlog=0 and rightlog=-1, which forces

the coefficient of log t to be 0 and the coefficient of log(t + 1.28) to be -1. As noted
t+1.28

in Section 2, if the coefficient of the basis function log(t + c) is 0 and the coefficient of the

basis function log t is -1, the tail of the density is like that of a Pareto density. (Pareto
distributions have been used to model the upper tail of income distributions.)

It is not surprising that the kniots for the logspline and HEFT fits are fairly close in
location. Since this dataset is fairly large, both logspline (which starts out with a large
number of knots and then employs stepwise knot deletion) and HEFT (which uses knot
addition and knot deletion) try a large number of knots, essentially covering the whole range
of the data quite well.

In the right side of Figure 4 we show the same density estimate using HEFT that was
shown in the left side of Figure 4 together with the HEFT estimate with options that force
a "Pareto tail," as described above. It is hard to distinguish the two curves. Since one less
parameter is estimated for the estimate with the Pareto tail, we prefer that estimate.

2The calculations were made in collaboration with the Wirtschaftstheoretische Abteilung IL, University
of Bonn, Bonn, Germany
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Fig. 4. Estimated density functions for the income data;
left side: solid = HEFT using defaults, dotted = logspline;

right side: solid = HEFT using defaults, dashed = HEFT forcing a Pareto tail.

7.2 HEFT as Pre-Processor for HARE

Even when there is a substantial percentage of right censoring, HEFT yields a reasonable
estimate for the hazard function, as can be seen from Figures a-b in Section 6. As such,
HEFT is a useful preprocessor for HARE (Kooperberg, Stone and Truong (1993)).

Hazard Regression (HARE) is a methodology for estimating the conditional log-hazard
function based on possibly censored, positive response data and one or more covariates that
has concurrently been developed. For HARE a MARS-like methodology (Friedman (1991)) is
used to obtain a model for the conditional hazard function having the form h(tlXl, ... , Xp)-
exp (Ej ,Qjgj(t, Xl, . . ., Xp)); each gj involves at most two of the variables t, Xi, . . ., Xp and
has the form of a linear spline or tensor product of two linear splines with the linear splines
in t being constant in the right tail and the knots selected by stepwise addition-deletion and
BIC. Before applying HARE, HEFT can be used to transform time so that the transformed
unconditional hazard function is approximately equal to one.

In particular, let T be the survival time, C the censoring time and x the vector of
covariates for a randomly selected individual. It is assumed that T and C are conditionally
independent and that T has conditional density function f(.x) given x. Set Y = min(T, C)
and 6 = ind(T < C); the random variable Y is said to be uncensored or censored according
as 6 = 1 or 6 = 0. Consider n such individuals. For 1 < i < n let Ti be the survival time,
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C(i the censoring time and xi the vector of covariates for the ith such individual, and set
Yi = min(Ti, Ci) and &i = ind(Ti < Ci).

The HEFT methodology is now applied to (Yi, Si), 1 < i < n, to yield an estimate ho of
the unconditional hazard function. The HARE methodology is then applied to (qo(Yi), Si, xi),
yielding an estimate h1 of the conditional hazard function for the transformed data and the
estimate h(tlx) = ho(t)h1(o(t), x) of the conditional hazard function for the untransformed
data; hereqo --log(1 - Fo) with Fo being the distribution function corresponding to
ho. It is easily seen that the unconditional hazard function of the transformed time is now
approximately constant.

One of the examples that is used in Kooperberg, Stone and Truong (1993) involves data
from a Veteran's Administration lung cancer trial (see Kalbfleisch and Prentice (1980)). The
response is survival time, there are six predictors, and there are 137 cases of which 9 are
censored. When HEFT is applied with the default options, the estimate for the hazard rate
is the dotted line in the left side of Figure 5. The corresponding transformation qo is shown
in the right side of Figure 5. The estimated hazard function has no knots remaining and the

coefficient of log t is 0.0075, with a standard error of 0.1280, while the coefficient
t + 145.75 I

of log(t + 145.75) is -0.597 with a standard error of 0.321; the estimate of the intercept is
-1.55. The BIC value for this model is 1508.73.

This leads us to use heft.f it with the option leftlog=O, forcing the coefficient of

log t to be 0. As expected, this hazard estimate again had no knots remaining.
t + 145.75

The coefficient for log(t + 145.75) is now -0.583 with a standard error of 0.211, and the
intercept is -1.643, so that this model corresponds to

h(t) -1-643(t + 145075)0.583

The BIC value for this model is 1503.82 which is considerably smaller than the BIC value
for the previous model since this model has one less parameter. The estimate for the uncon-
ditional hazard function and the corresponding transformation are the solid curves in Figure
5. These curves are hard to distinguish from the dotted ones corresponding to the previous
fit.

Finally we applied heft .f it with the options leftlog=O and rightlog=O, forcing the
coefficients of both log-based basis functions to be 0. This HEFT estimate has the form of
a two parameter model involving four knots, and its BIC value is 1504.65. The estimate for
the unconditional hazard function and the corresponding transformation for this fit are the
dashed curves in Figure 5. Observe that this estimate differs considerably from the other two
estimates. All in all, we like the solid curve corresponding to (4) best and use the resulting
transformation in Kooperberg, Stone and Truong (1993).
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Fig. 6. Estimates of the unconditional hazard funtion and the corresponding
transformation of time using HEFT for the breast cancer data.

8 Conclud'ing Remnarks

Hazard Estimation with Flexible Tails, as described in this paper, combines various features
of the present implementation of logspline with several new innovations. In particular,
HEFT combines automatic addition and deletion of knots; it has two extra log terms, which
are specifically tailored to fit the tails of the underlying distribution; and, since the log-
lhazard function is directly modeled instead of the log-density function, the corresponding log-
likelihood function is concave, guaranteeing convergence of the Newton-Raphson algorithm
to the maximum likelihood estimate even in the presence of right-censored data.

An important improvement of HEFT over existing methodology is that it estimates the
right tail of a distribution well even when there is a substantial amount of right-censoring
while being just as good as other density estimates elsewhere. Moreover, it is an ideal
pre-processor for HARE (Kooperberg, Stone and Truong (1993)).

The methodology in this paper is easily extended to handle random survival times hav-
ing the form T = min(Ti,..., TM), where T1,... , TM, C are independent, positive random
variables and Tm has log-hazard function Am for 1 < m < M. Here we set Y = min(T, C),
6 = 0 if C < T and S-j E {l,-.. , M} if Y _ Tj. Then the log-likelihood function has the
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form 1(6) = Ztp(Yi, i; ), where

p(y,O;6) =-ES exp(Am(u;6))du
m=l

and
M y

(y,j; 0) = Aj(y; 6) - 5 exp(Am(u; t))du, 1 j < M.
m=l

On the other hand, it is not clear how to extend this methodology to handle multivariate
survival distributions as treated in Section X.3 of Andersen, Borgan, Gill, and Keiding
(1993).

Presumably, a large sample theory along the lines of Stone (1990) could be developed in
the context of the present paper, but this has yet to be done.

9 Numerical Implementation

9.1 Starting Values

As the starting value for the maximum likelihood estimate of the log-hazard function in the
liinear space corresponding to the three-parameter model, we use the maximum likelihood
constant estimate A = log(Zi &-/ Ei Yi) of this function. In the context of stepwise additioin,
the starting value for the next step is the exact maximum likelihood estimate from the
previous step, which is possible since the new linear space contains the previous one as a
proper subspace.

In the context of stepwise deletion, let 0&1B1i + 0oBo + 01B1 + OPBP be the maximum
likelihood estimate of the log-hazard function corresponding to a model with K = p knots,
and let B1, Bo0, B1l... IBp_1 be the basis corresponding to the deletion of one of the K
knots. Also, for 1 j < p, let EPI1 ajkBk be the orthogonal projection of Bj onto the span
of B1,...,B3p_ relative to the inner product (hi, h2) = Zihi(Yi)h2(Yi). As the starting
value for the maximum likelihood estimate of the log-hazard function correspondiing to the
model with K -1 knots, we use

0_1B._1 + 0oBoLo+EL (, ak'k)=k 1B + 0Bo+o E(E aikO) Bk.
j=l k=1 k=1 j=1

9.2 Computation of the Log-Likelihood Function, Score Func-
tion and Hessian

The main numerical task of the algorithm is the computation of the log-likelihood 1(6), the
score S(6) and the Hessian H(6) for various models and values of 6. The time consuming

17



aspect of this computation involves the numerical approximation of

SfE b(u)du | fN(u)0'(u)du, N(u) = #V({ : Yi > u}),

for many functions 4, each of which is twice continuously differentiable on (0, oc) and three
times continuously differentiable on each of the intervals

(Oi tl]) [tli t2]i ..* [tK-1, tK], [tK, 00)-

Note that the function N(.) is piecewise constant, has jumps at the observations Y1,....,
and equals zero to the right of the maximum observation Y(n).

Let J1, . . . , JM be a partition of (0, Y(n)] into disjoint intervals whose endpoints contain
all of the initial knots. Then

f N(u)o(u)du = L N(u)4'(u)du.

Thus the time consuming aspect of the computation involves the computation of

L N(u)/(u)du,
where J is a bounded interval and 4 is a three times continuously differentiable function on
a bounded interval Jo containing J. Let bl, b2, b3 and b4 be distinct points in Jo, and let P

be the cubic polynomial that interpolates the values of 4' at these points. We approximate
fj N(u)o(u)du by fJ N(u)P(u)du. According to the Lagrange interpolation formula, P(u)=
SZi4(b)Pi(u), where Pi(u) = Hlml(u- bm)/Hml(bl- bin). Observe that

f N(u)P(u)du = L N(u) >3 4(bj)Pi(u) = > (b1) L N(u)Pi(u)du,

where the quantities fj N(u)P,(U)du (which can be evaluated analytically) need only be
obtained once, right after the partition J1,... , JM and the four interpolation points corre-
sponding to each of these intervals is determined.

Suppose one or more of the uncensored observations equals zero. If the coefficient 0-1 of
the basis function B.1 is negative, then the log-likelihood function is infinite at zero. In order
to avoid this difficulty, we omit the basis function B-1 and let Go be the (K - 1)-dimensional
space of twice-continuously differentiable functions s on [0, oo) such that s is linear on [0, tl]
and constant on [tK, oo) and the restriction of s to each of the intervals [tl, t2],..., [tK-l, tK]
is a cubic polynomial.
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9.3 Stepwise Knot Addition

Let t1 < t2 < ... < tK be the knots presently in the model, to which we want to add one
more knot, and let T(i), T, T) be those observations Yi, 1 < i < n and Si 1, written in
nondecreasing order. Define li and ui by

li = 6 + arg max T(j) < ti, i=1, ..., k, (5)

vi = -6+arg mmn T(j)>ti+l, =O ... ,k-, (6)

lo = l and
Uk = 7lu

For those i 0=,... ,IK for which ui > li we compute r-, the Rao statistic as described in
Section 4, for the model with knots at t1,t2,...,tk and a potential knot at T(mi), where
=i [(li + ui)/2]. Because of the 6 and -6 in (5) and (6) it is possible that ui < li for some

i; if so, then no knot can be added between ti and ti+,. This forces knots in a model to be
at least 6 order statistics apart, which improves the numerical stability. If there is noI i for
which ui > li no knots can be added to the model.

We place the new knot in the interval [T(jI*, T(ui*)], where i* = argmaxri. We proceed
by computing the Rao statistic rl for the model with knots at t1, t2,... ,tk and a potential
knot at T(i), where I = [(4I* + mi*)/2], and ru for the model with knots at tl, t2,... , tk and
a potential knot at T(u), where u = [(mi* + ui*)/2]. If ri* > r, and ri* > ru we place the
new knot at T(Mli); if ri* < r1 and rl > ru we continue searching for a knot location in the
interval [T(l2*), T(m.*)]; if ri* < ru and ri < ru we continue searching for a knot locationl on
the interval [T(m,*), T(u*)].

Note that for each candidate for the new knot only one column of H(.) and one element
of S(.) have to be computed, all other elements having already been computed during the
most recent set of iterations.

We stop knot addition when one of the following three conditions is satisfied:

* the number of knots K is equal to Kma,, where Kmax = min(4n 2, n/4, 30);

* IK - lk < 2(K - k) - 0.5 for any 3 < k < K - 3, where Ik is the log-likelihood for the
model with k knots;

* the search algorithm, as described above, yields no possible position for a new knot.
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Appendix: Documentation of S Functions

Heft Hazard Estimation with Flexible Tails Heft

dheft(q, fit)
hheft(q, fit)
pheft(q, fit)
qheft(p, fit)
rheft(n, fit)

ARGUMENTS
q: vector of quantiles. Missing values (NAs) are allowed.
p: vector of probabilities. Missing values (NAs) are allowed.
n: sample size. If length(n) is larger than 1, then length(n) random values are

returned.
fit: a list like the output from heft.fit.
VALUE

densities (dheft), hazard rates (hheft), probabilities (pheft), quantiles (qheft),
or a random sample (rheft) from a fit obtained by heft.fit.

heft.fit Hazard Estimation with Flexible Tails heft.fit
heft.fit(data, delta, penalty, knots, leftlin=F, shift, leftlog, rightlog, maxknots,
silent=T)

ARGUMENTS
data: vector of observations. Observations may or may not be right censored. All

observations should be nonnegative.
delta: binary vector with the same length as data. Elements of data for which the

corresponding element of delta is 0 are assumed to be right censored, elements
of data for which the corresponding element of delta is 1 are assumed to be
uncensored. If delta is missing, all observations are assumed to be uncensored.

penalty: the parameter to be used in the AIC criterion. The method chooses the
number of knots that minimizes -2*loglikelihood+penalty*(dimension). The
default is to use penalty=log(sample size) as in BIC. The effect of this param-
eter is summarized in heft.summary().

knots: ordered vector of values, which forces the method to start with these knots.
If knots is not specified, a default knot-placement rule is employed.

leftlin: if leftlin is T an extra basis-function, which is linear to the left of the first
knot, is included in the basis. If any of the data is exactly 0, the default of
leftlin is T.

shift: parameter for the log terms. Default is quantile(data,.75).

22



leftlog: coefficient of log(x/(x+shift)), which must be greater than -1. (In particular,
if leftlog equals zero no log(x/(x+shift)) term is included.) If leftlog is missing
its maximum likelihood estimate is used. If any of the data is exactly zero,
leftlog is set to zero.

rightlog: coefficient of log(x+shift), which must be greater than or equal to -1. (In
particular, if rightlog equals zero no log(x+shift) term is included.) If rightlog
is missing its maximum likelihood estimate is used.

maxknots: maximum number of knots allowed in the model (default is 4*length(data)° 2).
silent: suppresses the printing of diagnostic output about basis functions added or

deleted, Rao-statistics, Wald-statistics and log-likelihoods.
VALUE

The output is organized to serve as input for heft.plot, heft.summary, dheft,
hheft, pheft, qheft and rheft.
The function returns a list with the following members:

knots: vector of the locations of the knots in the logspline model.
logl: the k-th element is the log-likelihood of the fit with k knots.
thetak: coefficients of the knot part of the spline. The k-th coefficient is the coefficient

of (x - t(k))3. If a coefficient is zero the corresponding knot was deleted from
the model.

thetap: coefficients of the polynomial part of the spline. The first element is the
constant term and the second element is the linear term.

thetal: coefficients of the logarithmic terms. The first element equals leftlog aild the
second element equals rightlog.

penalty: the penalty that was used.
shift: parameter used in the definition of the log terms.
sample: the sample size that was used.
logse: the standard errors of thetal.
max: the maximum elemelnt of data.
ad: vector indicating whether a model of this dimension was not fitted (2), was

fitted during the addition stage (0) or during the deletion stage (1).
logl: matrix with two columns. The i-th element of the first column is the loglikeli-

hood of the model of dimension i. The second column indicates whether this
model was fitted during the addition stage (1) or during the deletion stage
(0).

sample: sample size.
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heft.plot Hazard Estimation with Flexible Tails heft.plot

heft. plot (f it, n = 100, what = "d", add = F, ...)
ARGUMENTS
f it: a list like the output from heft.fit.
n:.the number of equally spaced points at which to plot the fit.
what: what should be plotted: d (density), p (distribution function), s (survival

function) or h (hazard function).
add: should the plot be added to an existing plot?

all regular plotting options as desired.
This function produces a plot of a heft fit at n equally spaced points roughly
covering the support of the density. (Use xlim=c(from,to) to change the range
of these points.)

EXAMPLES
fit <- heft.fit(time, delta, covs)
heft . plot (f it)

heft.summary Hazard Estimation with Flexible Tails heft.summary

heft . summary (f it)
ARGUMENTS
f it: a list like the output from heft.fit.

VALUE
This function produces only printed output. The main body is a table with
six columns:
the first column is a possible number of knots for the fitted model;
the second column is 0 if the model was fitted during the addition stage and
1 if the model was fitted during the deletion stage;
the third column is the log-likelihood for the fit;
the fourth column is -2*loglikelihood + penalty*(number of knots-i), which
is the AIC criterion - heft.fit selected the model with the minimum value of
AIC;
the fifth and sixth columns give the endpoints of the interval of values of
penalty that would yield the model with the indicated number of knots. (NAs
imply that the model is not optimal for any choice of penalty.)
At the bottom of the table the number of knots corresponding to the selected
model is reported, as are the value of penalty that was used and the coefficients
of the log-based terms in the fitted model and their standard errors.
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