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1 Introduct'ion

In this paper we obtain a representation theorem for the supercritical (Dawson-Watanabe) su-
perprocess (X, lI4) over a (Borel right) Markov process ( with branching mechanism +(z) =

bz - cz2/2, where b, c > 0. We will show in §3 that X can be represented as the sum of
two independent components. If (X, it) is the superprocess over ( with branching mechanism
+(z) = -bz -cz2/2, then the first is a copy of X under IP". The second is produced by choosing
at random a finite number of particles via a Poisson random measure with intensity (2b/c)i,
letting these move like independent copies of ( and perform binary branching at rate b, each
particle constantly throwing off mass at rate c that continues to evolve according to the dynamics
under which mass evolves for X. In terms of the "particle picture", the particles throwing off
mass can be thought of as individuals with infinite lines of descent (cf. [15, 14]). The bulk of
the mass represents individuals without infinite lines of descent and, as we would thus expect
and indeed show in Proposition 3.1, evolves like X conditioned on extinction.

To prove our representation theorem we will apply a new result on the law of the "weighted
occupation time" for branching particle systems. This result describes the joint law of

jds(Z., gt-)
0

and Zt, for any branching particle system Z and collection of measurable functions {g, }. To be
more precise, denote by IH the law of Z started with initial state v (an integer-valued measure).
We will show in §2 that

t

HVexp-/ ds(Zs,gts) - (Zt, f) = exp-(v, Vtf),

where Vt-f is the unique solution to the integral equation
t

exp -Vtgf = Ptef + j dsPt-_4,,(exp -V,'f -g, exp-V., f];

here (Pt) is the transition semigroup of the underlying spatial motion and 7j is an operator
characterising the branching mechanism of the process. As far as we are aware, no such result
has appeared before in the literature. The case where Z is critical binary branching Brownian
motion in iRd and gt := 1A, for some bounded Borel A, was considered by Cox and Griffeath [3],
where various asymptotic results are obtained and a statement similar to ours concerning the
moments of the occupation time are justified heuristically. The analogous result for (a special
class of) superprocesses was first obtained by Iscoe [12], and later generalised by Fitzsimmons [10]
and Dynkin [5, 6].

The representation theorem was motivated by, and is in some sense a generalization of, the
so-called immortal particle representation for the critical (i.e. b - 0) superprocess conditioned on
non-extinction (in the sense of [9]). Evans [8] proves that this superprocess can be represented as
the sum of two independent components. The first is a copy of the unconditioned superprocess:
this is how the initial mass evolves. The second is produced by choosing at random an "immortal
particle" according to the normalized initial measure, letting this move like an independent copy
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of the underlying spatial motion and throw off pieces of mass that continue to evolve according
to the dynamics under which mass evolves for the unconditioned superprocess. The immortal
particle representation was predicted by heuristic arguments of Aldous [2] as part of his work
on continuum random trees, and by a Feynman-Kac type formula of Roelly-Coppoletta and
Rouault [17].

2 Welghted occupatlon times for branching particle sys-
tems

Let ( = (Q,FF,tF),Ot, ,PX) be a Borel right Markov process with Lusin state space (E, d,£)
and semigroup (Pt). We assume that (Pt) is conservative (i.e. Ptl = 1). Denote by N(E) the
class of finite integer-valued Borel measures on E, and by P1(E) the Borel u-algebra generated
by the weak* topology on N(E). We write bt (resp. p&, bpC) for the class of bounded (resp.
non-negative, bounded and non-negative) C-measurable real valued functions on E. Let p be
the probability generating function of a non-negative integer-valued random variable: p(z) =

pPiz' (O < z < 1) for some non-negative sequence pi, i = 0,1,2,... with E>pi = 1. We will
assume that

010) _sipi <00. (1)

This assumption allows us to extend p to the entire real line in such a way that the extended
function, which we denote by 0, has bounded and continuous first derivatives on IR and is
therefore uniformly Lipschitz continuous on R. We can (and will) also regard 0 as an operator
on bF (considered as a Banach space with sup norm) by defining [9(f)](x) :=-(f(x)), for f E b,
x E E. Then 3, considered as an operator on bE in this sense, is uniformly Lipschitz continuous
on bW.

Let b E ]R+ and define the operator q on b£ by rq(f) := b[@(f)- f. Note that ,j uniquely
determines 'p and b, and is also uniformly Lipschitz continuous on b£.

Let Z = (W, , gt, et I Zt, 1H) be a branching particle system with ( as its underlying spatial
motion, 'p as the generating function of its offspring distribution, with branching rate b. Then Z
is a Borel right Markov branching process with (Lusin) state space (N(E), A1(E)) and Laplace
functionals given (see, for example, [6]) by

HI' exp -(Zt, f) = exp -(v, Vtf), (2)

for f E pC, where Vt := exp -Vtf satisfies the integral equation

Vtf = Pte1 + j dsP. ,'( tV-'s f). (3)

We refer to iq as the branching mechanism of Z, and to Z as a branching particle system over

with branching mechanism q. That Vtf is the unique solution to (3) follows from the following
uniqueness lemma, which we record also for later reference. It is a modification of (part of) a
well known theorem, originally due to Segal [19], a nice proof of which appears in [16, Theorem
6.1.2].
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Lemma 2.1 Let X be an arbitrary Banach space, and let f: [0, T] x X -+ X be continuous in
t on [0, T1 and uniformly Lipschitz continuous on X. Let (Tt) be a semigroup of bounded linear
operators on X, uniformly bounded on [0, T1. Suppose that, for uo E X, the integral equation

t

u(t) = Ttuo + J Tt-,f(s, u(s))ds

has a solution u: [0, T] -X X. Then it is unique.

The proof is a simple application of Gronwall's inequality (cf. [16]). (We state Lemma 2.1 in
sufficient generality to allow the reader to extend the results of this section to branching particle
systems with a more general time-dependent branching mechanism 7jt (z) = bt [(pt (z) - z], where bt
and 'pt depend continuously on t and 7t is uniformly Lipschitz on every bounded time interval.)

To apply the lemma to our case, note that (Pt) is a contraction semigroup on b£, and is
therefore bounded on intervals.

The main result of this section describes the joint law of the weighted occupation time

j ds(Zs, gt-s)
o

and Zt under IHIv.

Theorem 2.2 Let f E p£ and, for each s, 9g E bp£. Assume that the mapping (r, s) 9g(x)
is jointly measurable in (x, s). Then, in the above notation,

rt
H' exp - ds(Z8, gt - (Zt, f) = exp -(v, Vt9f), (4)

where V'f := exp -Vtf is the unique solution to the integral equation

Vtgf = Pte1f + j dsPt_..a[r7(V'gf)- gsVg.lf]* (5)

Before proving Theorem 2.2 we first need to introduce some notation and assemble the necessary
tools. For readers not familiar with the Ray-Knight compactification, good references are the
books of Getoor [11] and Sharpe [20]. Fitzsimmons [10] provides a useful summary in a similar
context to ours. Let XZ C bpe be a countable Ray cone for (, constructed as in [20, §17], and
denote by (E, p, £) the corresponding Ray-Knight compactification of (E, d, £). This induces a
new topology on E called the Ray topology. Denote by 6 the Prohorov metric on N(E). Since
(E, p) is a compact metric space, it is also separable, and so (N(E), 6) is a locally compact
separable metric space. Moreover, since by construction (E, p) is complete, (N(E), 6) is also
complete. In keeping with the nomenclature of Fitzsimmons [10] we refer to the relative topology
on N(E) as the weak Ray topology. Denote by A((E) the Borel o-algebra on N(E) generated
by its weak* topology. Now by [20, Theorem 18.1] we know that, considered as a process on
E with the Ray topology, it can be arranged (by removing a null set from Q2) that ( is a right
process with paths having left limits in E. Therefore, considered as a process on N(E) with the
weak Ray topology, we can also arrange that Z is a right process with paths having left limits in
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N(E). (This is easy to check because the Ray topologies on E and N(E) are "consistent" with
each other, in the obvious sense.) Denote by DN(E)[O,oo) the space of right continuous paths
on N(E) having left limits, endowed with the Skorohod topology, and let q be the usual metric
taken so that (DN(S)[O, oo), q) is complete and separable (see, for example, [7, Theorem 3.5.6]).
We can assume that W is the canonical path space DN(B)[O, oo), and in future we say that r E
is continuous if it is continuous with respect to the Skorohod topology on DN(B)[0, oo). Finally
we remark that since E is Lusinian and (Pt) is Borel, E E £ and the Borel o--algebra on E
generated by the Ray topology, which we denote by,6r, iS identical to the original u-algebra E.

We record here a crucial lemma.

Lemma 2.3

(i) If h E bA(E) and s P-+ h(Z.) is lI -almost surely right continuous, then so is s

]1HZsh(Zt), Vt.

(ii) For any bounded F E g, s E,. Hz{p,O o et_.,} is H6IS-almost surely right continuous.

(iii) For each s > 0, En -- O+ and bounded, continuous F E g we have

W6-{ lim iEZ-+t-r = iEZSp} = 1.
n-_oo

Proof. (i) This is clear from the proof of Sharpe's [20] Theorem 7.4(v), where, although Sharpe
assumes h to be uniformly continuous, only the fact that s '-* h(Z5) is almost surely right
continuous is used.

(ii) By [20, Theorem 7.4(viii)], we know that that for each t and for each h E bP/(E),
s lHJZzh(Zt-8) is IHI6x-almost surely right continuous. But note that for any bounded r E g,

IHJZ {Ir o at-a } = Hz{izt r}, (6)

Ix6x-almost surely, and we conclude that s HZ.{Hs o e)t,} is 1H6--almost surely right contin-
uous, as required.

(iii) It suffices to prove that, ]H6x-almost surely, the finite dimensional distributions of HZS+tR
converge weakly to those of Hz" and the sequence of laws HZ"+-I is tight.

For 0 < t1 < t2 < ... < tk, f E C(N(E)) and g E C(N(E)k-l), we have by (i), (ii) and the
Markov property that as n -- oo,

)ZS+enf(Ztl)g(Zt2., .Z) = HZ+ft {f(Zt)EIZt19(Zt2-t1l X * Ztk-tl )}

jE {ff(Ztl )jjtL(Zti2-tl1 X*Ztk-t 1)} (7)

lH[6-almost surely. But since (N(E), 6) is complete and separable we know that functions of the
form f(z/l)g(V2, ... ,vk), where fE C(N(E)) and g EC(N(E)k1), are convergence determining
on N(E)k (see, for example, [7, Proposition 3.4.6]). We have thus established convergence of
finite dimensional distributions.

To check tightness we appeal to a criterion obtained by Aldous [1, Theorem 1]. Let mn be a

uniformly bounded sequence of stopping times for Z, and suppose 0 < an -) 0. All we have to

show is that as n -* oo,
[Z+e%n 6(Zrn+n?, Zn) X

0 (8)
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HL6x-almost surely; or equivalently,

HEjx 6(z3+Cn+nO(*+Cn+ Zn+)°e++Tnoe+tn) 0. ()

But this follows from the fact that 6 is bounded and Z has cadlag paths, so we are done.

0

Next we state a monotone class theorem that is tailor-made for our use and will allow us to
weaken the hypotheses of Theorem 2.2. It is essentially a combination of a standard monotone
class theorem (see, for example, [20, (A0.8)]) and ideas used by Dynkin in [5].

Theorem 2.4 Let Q be a collection of bounded, non-negative, real-valued functions such that

(i) 1 E Q;

(ii) if f,gE Q and A,p >0, then fAgE Q and Af +pg E Q; and

(iii) if f, g E Q and f > g, then f-g E Q.

Let XH be a collection of functions closed under bounded (pointwise) convergence. If H D Q,
then iH contains all bounded non-negative functions which are measurable relative to the a-algebra
generated by Q.

Proof. By Zorn's lemma, there exists a maximal element J of the class of all collections L
satisfying (i), (ii) and (iii) such that Q C L C X. Note that . is closed under bounded
pointwise convergence, as the bounded pointwise closure of any collection of functions satisifying
(i), (ii) and (iii) will also satisfy (i), (ii) and (iii). We have that 3-3 is a vector space containing
1 and, because of (iii), the collection of non-negative elements of 3-3 is just the collection 3.
Moreover, it is clear that if {f,,} C J-J with 0 < fi < f2 < ... < fn t f and f bounded, then
f E 3. Now we can apply a lattice monotone class theorem (see, for example, [20, (A0.8)]) to
get that 3 - 3 contains all bounded functions which are measurable relative to the a-algebra
generated by Q. Recall that the non-negative functions of 3-3J are in 3, so that 3, and hence
X, must contain all of the bounded non-negative functions which are measurable relative to the
a-algebra generated by Q.

0

Finally, we record the following easy analytic fact that will be used repeatedly throughout
the proof.

Lemma 2.5 Let u, un be a uniformly bounded sequence of measurable functions on [0, t] such
that for all w E [0, t], and some an -° 0,

un(rwn/tl1 + an) -- u(w).

Then

t E Un(-+ an) ( ;u(w)dw.
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Proof. Let P be uniform on [0, t] and construct a sequence of random variables T. (w) =

[wn/tl-+ a,, and T(w) = w on the probability space ([O, t], P). Then un(Tn) -- u(T), P-almost
surely, so by bounded convergence Eun(Tn) -- Eu(T) (where E denotes expectation with respect
to P).

0

Proof of Theorem 2.2. Without loss of generality we can assume that g, is independent of
time: g, = g, say, Vs. To extend the argument to time dependent g,, just set g(x, s) = g,(x)1,<t
and consider the branching particle system with the same branching mechanism , but over the
space-time process associated with (, and with initial measure v x 6o. The hypothesis ensures

that g E bp£*, where C* is the Borel o-algebra on E x R+.
Denote by Q the collection of bounded non-negative Ray continuous functions h on E, and

observe that Q satisfies the conditions of Theorem 2.4. The a-algebra generated by Q is &r (cf.
[5, 1.7.B]) which, as we remarked earlier, is the sarme as £. For each f E pC, denote by 7lf the
class of functions g E bp& for which the statement of the theorem holds. Clearly 7tf is closed
under bounded convergence, so by Theorem 2.4 it is sufficient to prove that Q C 7tf. In other
words we can, without loss of generality, assume that g E Q. By repeated application, we can

also assume that e1f E Q.
Note that if e-h E Q, then s .-* (Z., h) is H['-almost surely right continuous.
It follows from the branching property of Z that, for each t > 0, there exists Vtgf E p& such

that
IHIexp- ds(Z.,g)-(Zt, f) = exp-(v,Vtgf). (10)

To show that Vt9f is the unique solution to (5) it is sufficient to prove that it satisfies (5): the
uniqueness follows from Lemma 2.1. (Note that since i1 is uniformly Lipschitz continuous on b,
the mapping f 1 7(f) - fg is also uniformly Lipschitz continuous on bW.) The first step is to

obtain a product formula for Vt9.
Since g E Q, s + (Z,, g) is H'-almost surely bounded and right continuous, so by Lemma 2.5

for mn(n)t/n s,
m(n) t

lim L (Zt1 !g9) = dr(Zr,g), (11)

]H-almost surely. For t > 0, define St on pe by Sth = h+tg. Then by (11), bounded convergence
and the Markov property,

H'Ivexp - ds(Z,,g)-(Zt,f) = El' exp-(Z t;ng) (Ztf)

n-I
= lim H' exp- (Zt,-!g) -(Zt St/nf)

n-I
= lim H exp - Z(Zi t, -g) -(Zn-tt/nSt/n f)

n--+oo n n
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n-2 t
1imHE[^exp-j(Zi')t-g)-(Zn-l1t St/nVt/nSt/nf)

= lim exp-( , (VtnSt/n)-nf)
n-+oo~~~

= exp- lim (V, (VtnSt/n1)nf).
Since this is true for all v E N(E), and in particular for all point masses, we have by (10) that
for all x E E,

Vt9f(x) = lim (VtnSt/nS)nf(x). (12)
We will use (12) to show that Vt9f satisfies the integral equation

Qtgf - pg9e-f + dsPt9 ,q(V,rf), (13)

where (Pt9) is the semigroup on b£ defined by

Pt-h(x) P=P(exp-| dsg((J,))h((t). (14)

Then we will establish the equivalence of (13) and (5) to complete the proof.
Define a new semigroup Rt on b£ by Rth = e-t9h. Iterating (3), we see that

n

exp-(Vt/nSt/n)nf = (Pt/nRt/n)n,-f E(Pt/nRt/n)n-i (15)
i=1

x{(exp -(Vt/nStn)f) -Pt/n exp-Stln(Vt/nSt/n) f)}.

By the Markov property, we get by iteration that for h E b£,
n-i

(Pt/nRt/n)n h(x) = P (exp -n g(&1t))h(..it). (16)

In particular, using Lemma 2.5 and bounded convergence, we have that as n - oo,

(PtRt/ )nh(x) = P(exp-n Eg(it))h( t)

PC(exp - g(&.)ds)h((t)
- Ptgh(x). (17)

Set
'r=inf{s>0: (Z,,1)>(Zo,1)}. (18)

Note that r is optional relative to (t). Under EH6', r has an exponential rate b distribution and
until time r there is only one particle around. Note that for r E g,

(p,e6or)(x) = PHI6tor -H6{IroeI r > S}. (19)

8



Thus, by (16) and (19) we have

[(PtjnRtjn)n-i exp -(Vt1nSt1n)'A(x)
t 6 n-i t

= PX{(exp-- g(&1))H -n exp -(Zit n9) - (Zt f)}

na t n-i
- H[-f6{exp- Z(Zit± -- 9)-(Zt f)I r>- t}, (20)

j=1 nn

and

[(Pt/nRt/n)n Pt/n exp -St/n(Vt/nSt/n)ilf](x)
n-i+1 S4

= P {(exp-n E g(jt.))H nt {exp-E(Zjt±,!g - (ZV,tf)l r > -)}
n
P( l£ n9) (=1t,f n n} (21)

- {'-exp-E,(Zit,-g)-ZJ I> + (21)
j=1

nn n

Set
n

rn = exp- E(Zit -9) -(Zt, f)* (22)
j=1

For 0 < s' < t, put in = LS'n/tJ and define events

n - i
An,s' = {r> t} (23)

n

Bn,s' = {T> t+ (24)
n n

Note that lBg,,, = lA , I,-lA,,I\B,.I, and recall that under 1H6x, r has an exponential rate b
distribution. Now we have by (20) and (21) that as n --. oo,

n (Pt/nRt/n)n-it{(exp-(Vt/nSt/n)inf) - Pt/n exp -St/n(Vt/nSt/n)i'nf)}
= 1H6x{rnnI An,s.}- 6s {FrnI Bn,si}t t

= j _{JrnI An,s,} _ f{rnlA,,, (H- Bn,') }+ H' rnlA, \Bn(HxBn,I)-l}
= [1 -(I[-(6An,s )(]BIxBn,gs) lIE6 {rnI An,s)t

+
n

H6 An,as- Bn, '](JH1W Bn,.o 1) fld {rn An,,s\Bn,u }

- -bHl6{rnl An,s} + bH6{rnI An,sa\Bn,si}. (25)

By (11) and bounded convergence,

IH16x{rnI An,$/} - 1H[{frn1AR,,,}(IHAn,sI)-l
HlHlz{(exp-j ds(Zs,g) - (Zt,f))1(i > s')}H6x16{ > s'}

- H6{exp- ds(Zs,g)-(Zt; f)I r > s (26)
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To handle the second term in (25), fix s' for the moment, and construct on a separate probability
space (S, S,M) a sequence of random variables (Un) such that for each n, Un is supported on
the interval [s'- s'n/tjt/n, s'- (Ls'n/tj - 1)t/n] with density Pn(U) proportional to e)
Denote by M x H60 the product measure on S x W. Set In = l(Un > t/n). Now we can write

n -in+In

HI6{'rn An,1\BA = M xIH6w{(exp- (Zit 'n9)) (27)
j=1

in z t
xp(It-8J +Un {exp- 3 ( -nt-Un g) - (ZAt-Un f)})j T> t - S' + Un}.

j=l+In

For any sequence en -- O+ (with 0 < en < 2t/n, Vn) we have by Lemma 2.3(iii) that with HI_-
probability one, the law of Z under Hzt-s'+-n converges weakly to the law of Z under E1zt-S
(which we write as HZ'--'+-n =JJffffzt-s'). Fix an w E W such that HZt-1+1tn(W) => J[Zt--'(W).
Now since DN(2)[O , 0) is separable, we can apply Skorohod's representation theorem (see, for
example, [7, Theorem 3.1.8]) to get that there exists a sequence of DN(2)[O, oo)-valued random
variables Zn, Z° on a common probability space (W, 5, ]B[)w such that for each n, Zn under IH,,
has the same law as Z under HIfZt_s+-n(W); ZOO under 1I]J,f, has the same law as Z under H-Zt -'(W);
and Zn - Z°O, 1HLw-almost surely as n oo. In particular we have that for 0 < r < s' and

in = rrn/tI ,

=tn g) > (Z° g) (28)

]B1w-almost surely. Therefore, by (11) and bounded convergence,

lfjfZt-.s+en(W){exp - (Zj n9) - *t I)}
j=l+dn

in .z t
= Ew {exp- (z -9g) - (Z41 ,f)

j=1+dn

LIw{expj- dr(Z°°,g)-(Z.Y,f)}

- ]l[Zt-*1(w){exp-j dr(Zr,g) - (Z iIf)}, (29)

as n - oo, where dn 1(en > t/n).
Now since Un -* 0+, M-almost surely, we have by (11), (27), (29) and bounded convergence

that as n -* oo,

H6-{rn | Ansi \Bn,s1} (30)
t-B'

fl6 {(exp - ds(Z,, g))tp(1H[ztI' {exp ] ds(Z,, g) - (Z,s,f)}) r>t- s'}.

Finally, we note that

Pt'-,q(V.1f)(T) = bH-6 {(exp - dr(Zr, g))
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xp(HzZt '{exp j dr(Zr,g) - (Zs,f)}) > t-s}

-blM={exp- dr(ZrIg)-(Zt,f)I r > t-s}. (31)

Now we can let n -+ oo in (15) to get by (12), (17), (25), (26), (30), (31) and Lemma 2.5 that

(13) holds.
We are almost there now: it only remains to rewrite (13) in terms of Pt. To do this we use

the following version of the Feynman-Kac formula (cf. [21, III.39]).

Lemma 2.6 [Feynman-Kac]

PtPt9f = Ptf - dsPs(gPt9Of).
Proof. By the Markov property,

J dsPs(gPt4f) = J dsP[gP(exp - j g(r)dr)f(tt-.s)]

- j dsP'g(.,)Pi [(exp - j g(r)dr)f((t-s)]

= P$ dsg(ts)(exp - g(tr)dr)f(Gt)
o

t

= Pxf((t), d(exp - g(t,)dr)
= Ptf - Pt'f.

0

Now (13) becomes

t

Vt9f = Pt9e + dsP.9 f

= Pt9e1f + j ds{Ps7(Vt_,f) - drPr[gP9_rt)(Vt, f)]}
t t t

= Ptoe1f + j dsPsq(Vt' jf) - drP,[g j dsP9_ri(V-t.J)]

= Pte-f + j dsP,-q(Vrt!...f) - drPr[(Vtr,.f - Pt9 e-f )g]

= Pte-f + dsPt-[vq(V'f)-gV'f],
andt

and the theorem is proved.

0
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3 The representation theorem

Let ( be a Borel right Markov process with Lusin state space (E, £) and conservative semigroup
(Pt). Denote by M(E) the class of finite Borel measures on E. Let X = (W, g, gt, et, Xt, IP')
and X = (W, g, 5t,I, Xt,1Pt1*) be superprocesses over ( with respective branching mechanisms
+(z) = bz -cz2/2 and +(z) = -bz - cz2/2, and denote their respective transition semigroups
by (Qt) and (Qt). (For details concerning the existence and regularity of superprocesses in this
context, see [10].) Denote by (Ut) and (Ut) the cumulant semigroups associated with X and
X respectively. Thus, for each f E bpS, Utf and Utf are the unique solutions to the integral
equations

Utf = Ptf + dsP,s(Ut,f) (32)

and

Utf = Ptf + j dsP,q(Ut.-.sf) (33)

respectively. The Laplace functionals of X and X are given by

V'> exp-(Xt, f) = exp -(it, Utf), (34)

and
E> exp-(Xt, f) = exp -(p, Ut!f). (35)

The relationship between X and X is given by the following proposition.

Proposition 3.1 The superprocess X conditioned on extinction has the same law as X.

Proof. Set
T=inf{t > 0: (Xt,1) = 0}.

By the Markov property,

P1'{exp-(XtXf)jT< oo} = IP"'{T<oo} 1P"{exp-(Xt,f)1(T< oo)}
= IP"{T < oo c{)).exp-(Xtf)xt(T<o)} (36)

To calculate P"{T < oo}, let f be a constant, A say, and solve (32) for UtA. Now plug this into
(34), let A -- oo and then t -+ oo to get

PI' {T < oo = exp -(p, 2b/c). (37)

Therefore, by (37), (36) and (34),

P,'{exp-(Xt,f)IT <co} = (exp(p,2b/c))lP{exp-(Xt,f+ 2b/c)}
= exp -(p, Ut(f + 2b/c) - 2b/c).

It is easy to check that Ut(f + 2b/c) - 2b/c satisfies (33), so by uniqueness it must equal Utf, as

required.
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We now construct an M(E) x N(E)-valued branching process (W, Y, QPV') as follows. First,
let (Y, QC2,i/) be a branching particle system over ( with branching mechanism X(z) = bz(z-1) and
initial measure v. Note that for this branching particle system the condition (1) is satisfied. Then,
conditional on {Yt, t > 0}, let (W, QP,V) be a superprocess over ( with branching mechanism X
initial measure p, and with immigration; where the immigration at time t is according to the
measure cYt. (Superprocesses with immigratio.n were introduced by Dawson [4]; see also [17].)
To write down the Laplace functionals of this process, first note that

(Q1, lexp-(Wt, f) -(Yt, h)lJYt, t > 0} = exp-(p, Utf) - ds(cY., UJt_f) -(Yt, h). (38)

Now take expectations under QA,P to get

Q1) exp- (Wt, f) - (Yt, h) = [exp-(p,Utf)]Q exp-j ds(Y,,cUt_f) - (Yt, h). (39)

We denote the transition semigroup of (W, Y) by (Rt). Denote by Np the law of the Poisson ran-
dom measure on E with intensity (2b/c)p. The Laplace functionals of N, (see, for exainple, [13])
are given by

[ NN,(dv) exp -(v, h) = exp -(-, 1-eh). (40)
N(E) C

We are now ready to state the theorem.

Theorem 3.2 The law ofW under Q6si xNo is the same as the law ofX under P.

Our strategy for proving Theorem 3.2 will be first to show that the one-dimensional distributions
coincide; then we show that W under Q60I xNo is a Markov process, and the result follows. To do
this we will need the following criterion for a function of a Markov process to be also Markov,
due to Rogers and Pitman [18, Theorem 2]. We state the result as it appears in [8].

Lemma 3.3 Consider two mneasurable spaces F and G and a Markov process Z with state space
F and transition semigroup (St). Let r be the Markov kernelfrom F to G induced by a measurable
function -: F -- G, and let A be a Markov kernel from G to F. Suppose that:

(i) the kernel Ar is the identity kernel on G;

(ii) for each t > 0 the Markov kernel Tt := AStr from G to G satisfies the identity ASt = TtA;

(iii) the process Z has initial distribution A(y,.) for some y E G.

Then y o Z is a Markov process with initial state y and transition semigroup (TO).
Proof of Theorem 3.2. First we show that for f E bp,

Q64 XNDN exp-(Wt, f) = PP exp-(Xt, f) (41)
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By (39), this can be rewritten as

Q6 XN; exp-j ds(Y,, cUtt_f) = exp-(p, Utf -Utf). (42)

Now to apply Theorem 2.2, set gt = cUtf and write Vtl for Vtg. The measurability of gt follows
from [10, Proposition 2.3(a)]. Therefore, by Theorem 2.2 and (40),

Q6PxNp exp- ds(Y,,cUt_f) = Eexp-(N,,Vtl(O))
= exp-((2b/c)p, 1-exp-Vt1(O))X

and so it is sufficient to show that

exp -Vt1(0) = 1-2b (Utf -Utf). (43)

It follows from (5) that Vt1(0) exp -Vt(0) is the unique solution to the integral equation

Vt'(0)= 1 + dsPd[x(Vtl,U(0)) - c(Vt'U(0))(Ut ,f)], (44)

and from (32) and (33) that the right hand side of (43) also satisfies (44), as required.
We have thus proved that the one-dimensional distributions coincide, and all that remains

to be shown is that W under Q6P xNF is Markov. To do this we apply Lemma 3.3. Denote by
r the Markov kernel induced by the projection from M(E) x N(E) onto M(E) and by A the
Markov kernel from M(E) to M(E) x N(E) given by A(p,-) = b,, x N,. Clearly, Ar is the
identity kernel on M(E). It follows from (41) that Qt = ARt1L, so by Lemma 3.3 all we need to
show is that ARt = QtA. This would follow if for all h E bpg,

Q¢6LxN# {exp.-(YtI, h)I Wt} = exp-(2bWt, 1-e h), (45)
C

Q6# XN,.-almost surely; or equivalently, if for all h, f E bp&,

Q ^XFexp(-Wt 1-~ ( t) f) = Q', XNA exp-(Yt, h) -(Wt f (46)

By (39), (40) and Theorem 2.2 the right hand side of (46) is equal to

exp -(p, Utf)-(-,1-exp-Vt'h) (47)

where Vtlh: exp -Vt1h is the unique solution to the integral equation

Vt'h = Pte-h + j dsP,[X(Vrt,h) -c(VUt h)(Ut.f)]. (48)

Similarly, the left hand side of (46) is equal to

exp-(p,Ut(2(1 -e')+f)) - (-p, 1 -exp-Vt2h), (49)

14



where V,2h := exp -V 2h is the unique solution to the integral equation

ft - 2b
Vt 2h = Pte + dsP [x(Vt.,h) -c(Vt ,h)(UtCt (-(1 - h) +e )[ (50)

Finally, it is easy to check using (48), (50), (33) and Lemma 2.1 that

Utf-2bVt1h = Ut(tf 2be h) (51)
C C

and
Ut(f + -(1- e-h)) - t h =Ut (f -2beh) (52)

It follows that (46) holds, and the theorem is proved.

0

In particular, Theorem 3.2 gives us a representation for the total mass process Mt (Xt, 1),
a diffusion with infiilitesimal generator

Af = 2xdf +bdf f E CcI(R+).

Let (w, ¢, QW,z) be the process with generator

Bg(w, z) = CW 2(W_ z) + (cz-bw)5 _(, z) + bz[g(w, z + 1)- g(w, z)],w2(9w z)+ c

g E C'(IR2). It is easy to check that the process ((W., 1), (Y., 1)) under QV,V has the same law
as (w, ¢) under Q(P1)(P 1). If Hz is Poisson with rate 2bx/c, then by Theorem 3.2 the process
(wt,It> 0) under QxI8 has the same law as the process (Mt,t > 0) started at x. For an
independent proof of this fact, relying only on the theory of diffusion processes, see [14].
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