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Introduction.

The majority of theoretical work on realistic (i.e., non-infinite-range) spin glasses has

focused on the nearest-neighbor Edwards-Anderson (EA) model1'2, primarily due to the

relatively simple form of its Hamiltonian. A smaller body of work has studied models

with random long-range interactions which are square summable; the usual case is that

of power-law decay. These models are of interest for several reasons: the one-dimensional

case is partially tractable and is believed to display a phase transition for a certain range of

values of the power-law exponent;3 there is a significant body of rigorously provable results;4

and in three dimensions, models with a 1/r3 falloff approximate more closely than nearest-

neighbor models the RKKY interactions within an important class of laboratory spin glasses

(specifically, dilute magnetic alloys).2

It is useful to distinguish among four different classes of spin glass models (we confine

ourselves to Ising systems): 1) the infinite-range Sherrington-Kirkpatrick (SK) model;5 2)

the nearest-neighbor EA model (or other short-range models); 3) models with long-range

random interactions of the kind discussed above; and 4) randomly site-diluted models with

deterministic interactions of non-constant sign, such as RKKY. Of the above, only the first

is fairly well-understood (but mostly on a non-rigorous basis); whether its properties apply

to any of the other three is a subject of much debate. Of the latter three, (2) appears to be

the simplest; importantly, it is generally believed that its basic thermodynamic properties

(presence or absence of a phase transition, multiplicity of ground states) resemble those of

(3) and (4), as well as those of laboratory spin glasses (see for example, Ref. 6). However,

the extent to which all of these models resemble or differ from one another remains unclear.

In this paper we focus exclusively on models of class (3). We find, essentially through

judicious choices of coupling-dependent boundary conditions, that an uncountable number of

Gibbs states can be generated at any temperature. These Gibbs states and their associated
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ground states will have unusual properties to be discussed in the next section. Moreover, we

find an uncountable number of even more exotic ground state spin configurations, with the

following property - the flip of any subset of spins costs an infinite amount of energy. This

last property cannot extend to short-range models; neither can the property of having many

Gibbs states at high temperature. Nevertheless, these findings lead to important questions

which are relevant to short-range spin glasses.

To motivate the discussion in the next section, we consider here a one-dimensional model

with the following formal Hamiltonian:

1 EZ IxyIafcrY (1.1)
OY

where the Z2,(= Zyx) are independent, identically distributed random variables with mean

zero and variance one, 1/2 < a < 1, and the ax are ±1 valued Ising spins. If we confine our

attention to a finite system within a volume A with a boundary condition ab outside this

volume, the Hamiltonian becomes

1t X=YEA_; E ya Say_ a Ea
.

(1.2)

It is known7 that for any ab which does not depend on the Zxy's, the free energy per spin

exists and is a constant independent of {Zry} and of the boundary condition ab. It has

also been proved8 that for a > 1, there is "weak uniqueness" (see also Ref. 9) of the Gibbs

state for any nonzero temperature; i.e., for any ab as above, there is (with probability one)

a single infinite-volume limit Gibbs state for any sequence of volumes tending to Z, and

if b, is another coupling-independent boundary condition, then the same infinite-volume

Gibbs state results. Furthermore, this state is not a mixture of other Gibbs states. For the

range 1/2 < a < 1, weak uniqueness of Gibbs states is known to be valid for sufficiently

high temperature.10 Although non-rigorous arguments indicate that this model has a phase
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transition3, there are no rigorous results which extend to low temperatures; i.e., there is as

yet no proof that weak uniqueness breaks down at low temperatures.

We now give a simple argument to indicate that unusual things can happen when

coupling-dependent boundary conditions are allowed. For illustrative purposes, consider

a one-dimensional system with Hamiltonian (1.2) (but restricted to the right half-line), and

with A = [1, L]. Focus on a spin at site x, with 1 < jxI < L. The energy contribution of this

spin can be written as hax, where

zix ZXY b
hx2 S axtY+ -2Z _.(c

y(kx)<L
-

y>L Yl

s,z zxy +1 Z=yzxy b (1 3)

-~ >" Ix-.Ia"
.

l-lY+ 2 II X -yia Y('3y(#Ax).L y=x+nL L<y#x+nL
n=1,2,...,oo n=1,2,...,oo

Consider the three terms which combine to give hx. The first is of course finite. If the CTb's of

the third term are chosen independently of the Zxy's appearing in that term, then it follows

that (with probability one) the sum converges and hence the third term is also finite. (The

convergence of the sum for a > 1/2 will be discussed in Section 3.) But now consider what

happens when the remaining boundary spins which appear in the second term are chosen

in a certain coupling-dependent maanner. In particular, suppose we make the boundary-

dependent choice ab = sgn(Zxy) for each ab in the second term; then the resulting sum will

diverge for a < 1 and it would cost infinite energy to flip ox from +1 to -1. Similarly, by

choosing ab = -sgn(Zxy), it would cost infinite energy to flip crx from -1 to +1.

We have not presented a detailed version of this argument because our purpose in this

introduction is only to motivate the assertion that we can always choose boundary conditions

to force any particular spin ax with x E A to point either up or down in the ground state,

such that a flip would cost infinite energy. Furthermore, it is clear that we can repeat the

same procedure for all of the spins in A. The only potential problem is the third term, but

that will remain finite because of the independence of the ZxI's. That is, a cb which depends4 y
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on a particular Zxy is still independent of the other couplings.

A similar line of reasoning implies that boundary conditions can be chosen to make a spin

configuration as "stiff" as desired; for each x in A, we can choose the boundary conditions

to create a large (but finite) field h. of any desired sign and above any desired magnitude by

cutting off the choice ab = sgn(Zxy) after a sufficiently large number of terms. That is, one

can arrange the boundary spin configuration to force a (finite volume) ground state with the

property that overturning any spin will cost a finite but large (of any magnitude desired)

energy.

These rather crude arguments provide some idea of the kinds of situations which can

arise when coupling-dependent boundary conditions are employed. They do not comprise

a satisfactory picture because they don't provide a procedure for generating infinite-volume

Gibbs states (or ground state spin configurations) with these exotic properties. Do such

states actually exist? We will prove in the following sections that not only is the answer yes,

but an uncountable number exist, and this is the case at all temperatures.

A natural question which follows is what effect, if any, these states have on "observable"

properties. Since states generated by coupling-dependent boundary conditions are often

regarded as a priori unphysical9 one interpretation of this question" is whether these states

show up at low temperature in the decomposition of, say, free boundary condition states into

extremal Gibbs states. A second question is, does any of this shed light on nearest-neighbor

models? Because we only have speculations to offer at this point, we defer a treatment of

these issues to the future. (However, some discussion of related issues appears in Ref. 12.)

The rest of the paper is organized as follows: Section 2 contains a statement of four

theorems, along with some discussion, that assert the existence of exotic Gibbs states and

delineate their properties. Sections 3, 4, and 5 contain the proofs of Theorems 2.1, 2.2, and

2.4, respectively. The proof of Theorem 2.3 is straightforward and is discussed in Section 2.
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2. Main Results

We consider a formal Hamiltonian, X, for Ising spin configurations on Zd:

=
1 jXY'JY (2.1)

where the sum is over all pairs of sites in Zd, the spins ax, take values +1 or -1, and each

Jy is a real number (with Jxy= Jy and Jx = 0). To define infinite volume ground states

(or, later on, Gibbs states) when, for fixed x, Ey IJxyl diverges, we must specify an order of

summation to take advantage of possible conditional convergence of various series. Thus we

will fix, once and for all, (for any choice of Jxy's) an increasing sequence An of finite subsets

of Zd tending to all of Zd as n --+ oo. For simplicity, we choose

An={xe Zd Ixi<n}={-n,-n+l,... , n}d (2.2)

where lxi = supl<i<d lxii-

An infinite-volume ground state is a configuration of spins on Zd with the property that

the flip of any finite subset of spins raises the energy. More precisely, an infinite-volume

ground state will be defined as any spin configuration a (mapping each x in Zd to ax = +1

or -1) such that for every finite subset A of Zd,

A\HA(af) =lim ( E 3 JzYoxcY) > 0 * (2.3)
zEA yEAn\A

This definition requires the above limit to exist for each finite A, but we allow the limit

to be +oo. (When A is the empty set, AH1A is defined to be zero.) The limit represents

the energy cost of flipping the spins in A while leaving all others fixed. The relation of this

definition to that of finite and infinite volume Gibbs states will be discussed below, where

we will also consider the "stiffness" of ground states based on the magnitude of the AHA's.

But first, we focus on the stiffest possible ground state, which we call a rigid ground state.
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This is one for which A(A = +00 for every nonempty finite A. Equivalently, it suffices to

require that for each x in Zd,

A7xi(a)- lim > JxyOcTOTy=+oo . (2.4)

Clearly, EY IJ4yl must diverge for each x in order that rigid ground states might exist.

When the couplings are all positive, then the identically +1 and identically -1 configurations

are both rigid. Sometimes these are the only rigid ground states. Consider, for example,

the case when d = 1 and JxyI= ly- xl-a with a < 1. (This example is rather artificial in

that the free energy per site is infinite in the thermodynamic limit even with free boundary

conditions, but we use it simply as an illustration.) For any a > 0,

Z jy - xiIa-t SE y - =Z2a 0(1) (2.5)
YEAs -ioa yEAn Y-X20a
yi6xi Y:AX2

which implies that in a rigid ground state, ax,=-r x2 for every xl, x2. If one multiplies

this d = 1 coupling by the deterministic sign eTy = (-1)I1-YI, then one obtains a model

equivalent to the ferromagnetic one (under the gauge transformation of flipping all au's with

x odd) so there are still exactly two rigid ground states. However, if one instead uses the

sign ezy = (-1)Ix-YI+1, then the model is equivalent to a fully antiferromagnetic one which,

by again using Eq. (2.5), can easily be seen to have no rigid ground states.

When the signs of the couplings are chosen at random, the existence and number of rigid

ground states is a priori unclear. The next theorem shows that if the couplings of the above

d = 1 example are multiplied by random signs and if a < ca < 1, then there are uncountably

many rigid ground states (for almost every choice of the random signs).

Theorem 2.1. For pairs {x, y} of distinct sites in Zd, let Zxy(= Zy.) be independent

identically distributed random variables whose common distribution has zero mean and

variance equal to one. Let cy be a (nonrandom) sequence of real numbers indexed by y in
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Zd (with co = 0) such that

S Icyl =oo and 5 IcyI2 < 0 , (2.6)
yEZd yEZd

and let Jxy = cy_XZxy in the Hamiltonian (2.1). Let S be any subset of Zd with the property

that

for each x in Zd, 5 C- I <0 . (2.7)
yES

(An infinite such S always exists.) Then, with probability one, for every choice of a spin

configuration cr on S there is a rigid ground state a* which agrees with 'a on all of S; i.e.,

cw ==cw for each w in S . (2.8)

The proof of Theorem 2.1 will be given below in Section 3 of the paper. It is based on

decomposing Zd into a disjoint union of directed trees, one starting from each w in S. Within

each tree the spin values are defined inductively, starting from the prescribed &,w on the root

w of the tree, so that the spin a* equals sgn(Jxy)
-
c*, where x is the immediate predecessor of

y on the tree. Rigid ground states are obtained by constructing suitable trees with infinitely

many branches coming out of each x. The terms in the Hamiltonian corresponding to these

different branches (from a single x) add coherently, while other terms from within a given

tree or between trees add incoherently. A modification of this construction (which we give in

Section 4), in which a large but finite number of branches come from each x leads to ground

states in which AHA may be made arbitrarily large (but finite) for each nonempty A.

Let us then define a pliable ground state as one in which A7-(A < oo for each finite

A. (We denote henceforth by A the set of all finite subsets A of Zd.) Further, given any

sequence 0 = (OA: A E A) of non-negative numbers indexed by A, we will call a ground

state a, 0-stiff if

A/A'(a) > OA for every A E A . (2.9)
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Theorem 2.2. Let = (A : A E A) be any non-negative sequence indexed by A E A

(with 9 of the empty set equal to zero) and assume the same hypotheses as in Theorem 2.1.

Then, with probability one, for every choice of a spin configuration a on S, there is a pliable,

0-stiff ground state a which agrees with a on all of S.

In order to explore the consequences of Theorem 2.2 for the nature of Gibbs states, we

need to define finite and infinite volume Gibbs states at inverse temperature d < oo. First

we define a spin configuration a (on all of Zd) to be allowed (as a boundary condition for

every finite region A E Zd) if for every x in Zd

hT(a)j1 lim E Jxy exists and is finite. (2.10)
yEAn

(Note that a pliable ground state is always allowed.) Then, we can define for any finite

A E zd, the interaction energy between a spin configuration aA on A and the allowed

boundary condition a as

?jA(aA; a)=_-- lim E E JZyaTac
xEA yEAn\A

+2 Jxya2Aay _ hxh(o-) A (2.11)
x,yEA xEA

and the "total" energy of aA, for the boundary condition a as

lH(A(aA; a) 1 S JxyAaA + A(CA; a) . (2.12)
x,yEA

A finite volume Gibbs state in the region A at inverse temperature ,B E [0, oo) with (allowed)

boundary condition a is the probability measure paon configurations aA with

PpA ({aA})= (ZAe 1 exp (-,HA(aA; a)) (2.13)

where

7A 5exp (- /3iHA(oaA; a)) . (2.14)
urA
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Note that this, of course, depends only on the ay's for y 0 A.

A probability measure p on configurations a' (on all of Zd) will be called an infinite

volume Gibbs state at inverse temperature j6 E [0, oo) if

p({allowed c's}) = 1 (2.15)

and for every finite A C Zd, the conditional probability that a' = oA for each x E A, given

(the a-field generated by) Jay: y ¢ A} is

P(aAI f{ay: y 0 A}) = PA,A({A}) (2.16)

for p-almost all 's.

In general, if one takes a boundary condition &- to be a pliable ground state, then the

limit (or limits), as A -* Zd, of PAa will be supported on infinite volume spin configurations

ca which differ from -a at infinitely many sites (as in, e.g., the standard nearest neighbor Ising

ferromagnet). However, if & is sufficiently stiff, in particular if

Z e-fAHA(f) <o0 (2.17)

AEA
the situation will be quite different: the limit will be the infinite-volume Gibbs state described

in the next proposition, which is supported entirely on 's which differ from -a at only finitely

many sites. The relevance of this fact is that, by Theorem 2.2, we can construct uncountably

many a's such that (2.17) is valid for all p.9> 0. To see this, simply order the subsets of A

as A1, A2, ... and choose Ok/ln(k) -+ Mo k oo.

We leave the proof of the next theorem to the reader; it is basically just a matter of

disentangling definitions.

Theorem 2.3. Suppose & is a pliable ground state such that (2.17) is valid for some

E (0, oo). Define a probability measure p on infinite volume spin configurations by

P,( }) = e AHA(fi/ S e-/HA(ai A e A (2.18)
AEA
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where &A denotes the configuration obtained from - by flipping all the sites in A. Then p"

is an infinite-volume Gibbs distribution at inverse temperature ,3.

The final topic we consider in this section is the use of a spin configuration a& on Zd

as a boundary condition when, for each x, the limit in (2.10) exists but is infinite (ei-

ther +oo or -oo). We will say (for reasons that will be clarified below) that such a spin

configuration a' is forcing. One type of example is when a' is a rigid ground state, in which

case the sign of infinity for hx(a') is just a' itself, for each x. Such a configuration is not an

allowed boundary condition (according to our definition) but nevertheless one may construct

a finite volume measure on configurations aA by first replacing Zd by An (i.e., by taking a'

as boundary condition in An\A and free boundary conditions on Zd\An), considering the

resulting Gibbs state PA a , and then taking the limit as n - oo.

If a' is a rigid ground state, then it is clear that for any 3> 0, the resulting measure,

which we denote (as in the allowed case) pA a is simply a Dirac measure on the single

configuration LA with aA = a' for each x in A. For a general forcing a', the measure p a'
is supported on the single configuration with oA = sgn(hx(&')) for each x in A. The limit as

A -+ Zd of p is of course simply the Dirac measure on
a

with oz = sgn(h2,(a)) for each

x in Zd; naturally, we will say that c' forces a.

Since a rigid ground state a* forces itself, it is possible to regard the Dirac measure

on o* as a kind of (degenerate version of) an infinite volume Gibbs state (for any inverse

temperature 6> 0). This is certainly not so for a Dirac measure on a configuration a which

is not a rigid ground state. Thus if for some a which is not a rigid ground state, there exists

a aJ which forces a, then we see that coupling dependent boundary conditions (since the

construction of such a a will depend on the JTy's) can yield infinite volume limits which

are degenerate and not Gibbs states (even in the degenerate sense). This leads us- to ask

whether there are any (or many) configurations a, other than rigid ground states, which can

be forced by some a'. The next theorem gives the rather striking answer. Its proof (which
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is a bit simpler than those of the other theorems) is given in Section 5.

Theorem 2.4. Let Jxy be given as in Theorem 2.1. Then with probability one, for every

spin configuration a on Zd, there is some configuration a' on Zd which forces a.

Remark. In fact, the above result is easily strengthened to show that (with probability

one) there are, for every a, uncountably many configurations &' which force a. To see that,

choose any infinite S satisfying Eq. (2.7). Then it is easy to see that (with probability

one) for every x in Zd, EYCS IJxyI < x. It follows that each forcing pair (at, a) yields an

uncountable equivalence class of forcing pairs in which &' is changed arbitrarily on S, while

a remains the same.

3. Proof of Theorem 2.1.

The general strategy will be to choose (in a manner described below) for each x E Zd

an infinite subset Ux of Zd such that the Ux's are pairwise disjoint with

Icy-XI = o, for all x E Zd. (3.1)
yEU

Consider the directed graph with vertex set Zd and a directed edge from x to y whenever

y E Ux. This will be a union of disjoint trees. We will require each tree to have a root (a site

not in any U.) and the set of roots to coincide exactly with the set S given in the theorem.

For w e S, let TW denote the tree with root w. Once we have chosen the spin value of each

root according to Eq. (2.8), all other spins will be uniquely determined as

=* a*, for all y E Tw (3.2)

where 71y is defined inductively, by setting 7iw = +1 for each w E S and requiring:

for each x e Zd, 7y = sgn (Jxy77x) for every y E Ux. (3.3)

(Here sgn(O) may be taken to be +1.)
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In addition to Eq. (3.1), a crucial property of our partition of Zd into the disjoint tree

set {Tw: w E S} will be that

S [ E Ic(I 12]/ < 00 for all x E Zd. (3.4)
wES yETw

The construction of the UX's and the decomposition of Zd into the trees, Tw, satisfying

Eqs. (3.1) and (3.4) will be given below. We proceed to complete the proof of Theorem (2.1)

given such a decomposition.

Let us first show that for any single choice of a, the resulting a* (given by Eqs. (3.2) -

(3.3)) is a rigid ground state with probability one. To do this we must show that for each

x E Zd,

A\Hx(c) =- lim Jya**= 00 (3.5)
yEAn

with probability one. We express AHx(a*) as the sum of two terms V and V'. In V' we

restrict y to be either in Ux or (if x ¢ S) to include the (unique) yo with x E UYO. In

V we take all other y's (both those in the same tree as x and those in different trees);

V =limnoo V(n) where in V(n), y is further restricted to be in An.

First we note that for the y's of VI,

J£YX Y jxJyZX17Y = JXY sgn (JXY) IJXYI , (3.6)

so that (with probability one) V' = oo because

5 IJXYI = ICY-X-I IZXYI = oo (3-7)
yEUs yEUr

The divergence of Eq. (3.7) follows from Eq. (3.1) because the lZxyl's are i.i.d. (and not

identically zero) non-negative random variables. (This follows, for example, from the Kol-

mogorov three-series theorem; see, e.g., Chung.13) Next we note that for the y's of V,

Jxya4a* = cx-yZxyacr*, with the random variables {ca*} independent of the random vari-

ables {Zxy} because the signs a*ao are defined only in terms of other Zytp's. Since the Zxy's
13



are independent, mean zero and since E(V(,) 2) is uniformly bounded by EYjj cX-y2 < 00,

the existence and finiteness (with probability one) of the limit defining V follows by a mar-

tingale convergence theorem (see, e.g., Hall and Heyde,14 Corollary 2.2). This proves that

for any single choice of a, Eq. (3.5) is valid with probability one.

To complete the proof, we must show (for each x E Zd) that, with probability one,

Eq. (3.5) is (simultaneously) valid for all choices of a. By Eq. (3.6), V' does not depend on

af and is still +oo as before, but V V(a) must be shown (with probability one) to be finite

for all choices of a. To do this we write V as a sum, where each term only includes y's from

a single tree, Tw. Denoting by w(x) the root of the tree containing x, we have

V = lim a * (3.8)
wES

For w w(x),

VW(=) > cxZyZ7171xy , (3.9)
yET.(W)nAn

where Tw(x) is TW(x), except for the y's included in V'. For w w(x),

= C>-yZxy3 * (3.10)
yETw(:f)nAn

To prove convergence of (3.8) to a finite limit for all choices of a, it suffices, by the dominated

convergence theorem, to show that (with probability one), each Mn) has a limit as n -+ oo

and that

E supIV(n) <00 (3.11)
wES n>O

The limit for each M(n) follows by the same martingale convergence argument as given

above for the limit defining V (for a single a). To obtain Eq. (3.11), it suffices if

E3E(sup IV n)1) < ° . (3.12)
wES n>O
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But then,

E sup I |), lim E(sup IV(,) |)

< lim [E(sup IV'I 2)

< lim V[E(V(
<v'[ >3 IcY_2]x12 (3.13)

YET.

where the first inequality is Cauchy-Schwarz and the second is Doob's inequality for martin-

gales (see Hall and Heyde,14 Theorem 2.2). Combining Eq. (3.13) with (3.4) yields (3.12) as

desired. The proof of Theorem 2.1 is now complete except for the construction of the Ux's

needed to decompose Zd into the rooted directed trees, Tw, for w E S.

Tree decomposition of Zd. We are given {cy y E Zd} satisfying Eq. (2.6) and a

nonempty subset S of Zd satisfying Eq. (2.7). The object is to construct Ux's for x in

Zd, which partition Zd\S and hence construct the rooted directed trees Tw, for w in S

which partition Zd in such a way that Eqs. (3.1) and (3.4) are valid. Before doing this in

general, let us consider a simpler context in which Zd is replaced by the natural numbers

N = {1,2,3,...} and in which cy =IyI- (cO=O)with 1/2 < a < 1.

The construction in this simple context will serve both as an illustration and as a tool

for the general context. We express S as {wo, wl, w2,.. .} with Wj < wj+l and note that in

our simple context, Eq. (2.7) reduces to

oo

(wj)-a< . (3.14)
j=O
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Our construction will be based on successive halving. We begin by defining successively

halved subsets of N:

Go ={1,3,5,7,...}. {2n-1: n EN}

Gi=1{2,6,10,...} = {4n-2: nEN}

Gk {2+ln-2k: n E N} . (3.15)

For k > 1, Twk\{wk} will be a subset of Gk, but because of Eq. (3.4) we will want it to

include only fairly large integers, i.e., ones at least as large as Lk, defined by

Lk =min {n E N: [ Iy- 2a] /2ck-2 for allx < k}
y=n

oo

= min {n > k: 5(y - k)-2a < k4} . (3.16)
y=n

(We remark that k-2 in the intermediate expression of Eq. (3.16) can be replaced by any

summable sequence.) We define

Fi-=Gin{n: n>Li} fori>1,

Fo=N\(U=1Fi) ; (3.17)

for each i > 0 Twi\{wi} will be exactly Fi\S. For each i, we must define Ux for each x in

T,i. Put the integers of Fi\S in increasing order, x < < ..,and set xo= wi. Then

define the Ux's by successive halving:

uwi= U(i) = {X ) j E Go} = {xf,x3,x5 ,..

U(s) x(i): j 2G1} = {x(j),*)x() ..}

(i)

U(i)= {x ): jE Gk}O (3.18)
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In our simple context Eq. (3.1) reduces to E yU = oo. To see that this is valid, first

note that ZyEGk y-" = oo for each k and hence ZyEF. y-a = 00 (since Fo D Go and for

i > 1, Fi and Gi differ by only finitely many elements.) By Eq. (3.14), also ZyEFA\SYa =

oo. Finally, by the monotonicity of y-', the construction (3.18) implies that for k > 0O
oo

_( 2i)a + y-a < y-a < -a (3.19)
yEU(.) l=k+1 yEU (i) yEU(W)xk x k

(where x2k) is the first element of U (i)) which implies that

Z y- =o00 for each k > 0, (3.20)
yEU (j)

k

as desired.

The condition (3.4) reduces to

Z [Wk2a + ljY-yrl2a]/ < 00 . (3.21)
k=O yEFk\S

Using vra-2 < lal + Ibl, we bound the LHS of Eq. (3.21) by
00 ~ Lx-1 21201/2
Zwak [ZIY xr2a] + [ IY 2aJ (3.22)
k=O k=O y#x k=Lx yEFk\S

The first term is finite by Eq. (3.14), the second because a > 1/2, and the third is bounded

(see Eq. (3.16)) by

Z [ Z I _ r-2a]</2 Z k-2 <00Q (3.23)
k=Lxjy>Lx k=Lx

Thus Eq. (3.4) is verified in the simple context.

We proceed to the general context. The main complication is the absence of any mono-

tonicity for the coefficients {cy : y E Zd}. Roughly speaki-ng, we will circumvent this by

grouping sites of Zd\S together in shells,

B1 AM1\S

Bk = (AMk\AMk_l)\S for k > 2 (3.24)
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where the Mk's are defined sequentially as

Ml=min{n: E Icl>1}
YEAn\S

Mk+l = min{n > Mk: Z IC-zI> 1 for all x E AMk} (3.25)
YE(An\AMk)\S

Each Ux will be a union of shells, Bk; the Bk's will be chosen much like the individual sites

were chosen in our simpler context. Gi and Fi for i > 0 are defined exactly as before, by
Eqs. (3.15) and (3.17), except that the definition (3.16) for Lk is replaced by

Lk = min {n > k: [ E c 2f1/2 < k-2 for all x E AMk}
1/¢AMn_1

= min {n > k: max Z Icy-x12 < k4} . (3.26)
xEAmk

At this stage, we need some orderings. For each i > 0, put the integers of Fi in increasing

order, f(i) < f ... . Choose any ordering for S so that S = {wO, wl, w2, ... .}; Twi\{wi}
will be exactly UjEFiBj. To construct the U.,'s, we choose a "spiral" ordering of Zd so that

for every n, all sites x E An come before all sites x ¢ An. We then use this fixed ordering

on Zd to order, for each i, the sites in

UjEFiBj {x(4) ), 4 ), *...} (3.27)

and we set x(=) wi. The construction (3.18) is now replaced by

uwi U (=)UjEGOB=(i) = Bf(i) U Bf(i) U Bf(i) U ...

Uz(= UjEGkBf(i) (3.28)

We have now defined all the Ux's and hence all the Tw's. To verify Eq. (3.1), observe

that Ux is a union of infinitely many Bk's. It follows from Eqs. (3.24) - (3.25) that for any
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given x, EyEBk IcyX > 1 for all large k, and hence Eq. (3.1) is valid. The verification

of Eq. (3.4) is essentially the same as the analogous verification of Eq. (3.21) done in the

simpler context. The construction of our tree decomposition, and the proof of Theorem 2.1,

is now completed.

4. Proof of Theorem 2.2.

We begin by noting that to prove that the event defined at the end of the theorem has

probability one, it of course suffices to show that for any e > 0, its probability is at least

1 - e. Henceforth, letting e > 0 be fixed, we will construct our configuration o = a(a) in an

c-dependent way and will show that

P(for all a, &(&f) is a pliable, 0-stiff ground state) > 1 - . (4.1)

Next we relate 9-stiffness (and pliability) of a to the values of A'h1A(a) for A a singleton

set {x}, i.e., to the Alx(a)'s defined in Eq. (2.4). For any finite A,

1A(A) = Z A'z(aG) - E Jxyuzay > E A7Z(a) - Z IJZYI ' (4.2)
xEA z,yEA xEA x,yEA

ZFrom this we observe two things. First & will be pliable if each AH7-(T() exists and is finite.

Second, let us order the sites of Zd (e.g., by the "spiral" ordering discussed near the end of

Section 3) as x1,x2,x3,... and define for k > 1,

Ok max{0A:xk EA but xj A for j > k} ; (4.3)

then a is 0-stiff if (recall that OA > 0 for each A)
k-1

AXZk(0f)-2 IJxjxkI > Ok for all k > 1 . (4.4)
j=1

Let bk, k > 1 be some fixed numbers such that kk > 0, Yk = 1 (e.g., qk =2k).
Then to obtain Eq. (4.1), it suffices to show that for all k > 1,

k-1
P(for all a, o> i.Hzk (&(a)) > 2 IJz,zI + Ok) . 1-e'Pk * (4.5)

j=1
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It should be understood that the event in Eq. (4.5) includes the existence of the limit defining

AHXk.- WVe will obtain Eq. (4.5) by choosing constants Ak (with A1 = 0) and showing that

k-1
P(2 IJ,ZxkI> Ak). fqk/2 , (4.6)

j=l

p(for all 'a,I X> AHxk (cT(cT)) > Ak + k) > 1 - Ek/2 * (4.7)

By Chebyshev's inequality (and the Cauchy-Schwarz inequality which gives E(IZxyI) <

[E(IZxyj2)]l/2 = 1), the LHS of Eq. (4.6) is bounded by
k-1 k-1

E (2Z lJjXk I)/Ak < 2 ICXk-xjl - E(IZXkXjI)/Ak < 2Ck-1/Ak , (4.8)
j=l j=l

where Ck denotes the sum of the k largest jcjl's. Thus we obtain Eq. (4.6) by choosing, for

k > 2,

Ak = 44k-1/14k - (4-9)

It remains to construct a(&) so that Eq. (4.7) is valid for each k > 1 with our given and

chosen Ak, Ok, and kk. To simplify the notation a bit, let us define px and ex for each x in

Zd by setting px = Ak + Ok and e = eqS/2 with k chosen so that xk = x. Let us also write

Ai\9(6f) for A7-(c(()). Then Eq. (4.7) becomes

P(for all &, oo >AHT(O) > p)> -ex * (4.10)

We will show that, for any given pT's and any positive ET's, we can construct a(5) so that

Eq. (4.10) is valid for each x in Zd.

We use the same general strategy as in the proof of Theorem 2.1. Namely we decompose

Zd as a disjoint union of directed rooted trees, Tu, one for each w E S with w the root of

Tw, and then define ay = &wvqy for each w and each y E Tw (as in Eqs. (3.2) - (3.3)). In fact,

the set of sites in each Tw will be precisely the same as that used for the proof of Theorem

2.1. Namely

Twi = {wi} U (UjEFiBj) (4.11)
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with {wo, wl,.. .} any ordering of S, with the shells Bk defined by Eqs. (3.24) - (3.25), and

with the Fi's (Gi's and Li's) defined by (3.17) ((3.15) and (3.26)). The difference comes in

the construction of the Ux's (Ux is the set of "children" of x in our tree structure). Once

again each Ux will be a union of the shells Bk, but this time it will be a finite union (chosen

below).

The proof of Theorem 2.1 shows (see especially (3.6) - (3.10))

=z(a)vl + E ¢W(ZzA (o) (4.12)
wES

where w(x) is the root whose tree contains x,

Vt=E I I + {0o if x E S (4.13)vlK = IJXYA + {IJY,x I (where x E Uy,0), otherwise }(.3

and

(o)= lim E cX.yZz y7lX71y (4.14)
yETwfnAn

where TW = Tw for w : w(x) and Tw(x) is Tw(x)\{y's and yo of (4.13)}. The existence and

finiteness (with probability one) of W(°) and of the sum in Eq. (4.12) follow from the proof

of Theorem 2.1 (see (3.11) - (3.13)) and since Ux is now finite, we have AHx((f) existinig

and finite with probability one.

For a lower bound, we have

ztii(& .>3 w- E tv4°i * (4.15)
yEU. wES

Since the RHS does not depend on a, we will obtain Eq. (4.10) by choosing the Ux's so that

the RHS is at least px with probability at least 1- eX. First, we note that (by the martingale

convergence theorem used in the proof of Theorem 2.1), the limit in Eq. (4.14) is both a.s.

and in L2 so that (compare Eq. (3.13))

E[IVa()I2j = IIx,wI Icz_yI < E Icx_y12 . (4.16)
yET< yETw
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Thus for any i. > 0,

PfE Ez(X) > Hx < (yx)-1 E x -V(wl H)1. E[Iz,lw
wES wES wES

< (I) _1[ Icy-] 1/2 ' (4.17)
wES yET,

where the last expression is finite by Eq. (3.4). Let us choose

Z= (2) Z [ Icy_x2]1/ ; (4.18)
wES yETw

then by Eq. (4.15), we will obtain Eq. (4.10) if we choose the Ux's so that for every x in Zd

P( Jxyl < Px + .x< f/2 . (4.19)
yEU.

Let VZ denote the random variable appearing in Eq. (4.19). We use the inequalities and

identities,

P(Vx < E[Vx/2]) < P(iVz - E[Vx]I > E[Vz/2]) < Var (Vx)/(E[Vx/2])2 , (4.20)

E[Vx] ( z c_-yl)E[IzI] , (4.21)
yEU.

where Z has the same distribution as the ZxY's, and

Var (Vx) = Z Var (IJxyI) = Z Icx-yI2Var (IZ) . E lcx-yI2E[IZI2] - Z IcyI
yEU. yEU: yEZd yEZd

(4.22)

to conclude that Eq. (4.19) will be valid if both of the following inequalities are valid:
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z Icy-xI) E[IZI] > px , (4.23)

( Cyl12[( ICYIc-) * E IZI] < cx12 (4.24)
yEZd yEU.

Thus we simply need to choose each U: so that

E _cy_z> v 2- max (px + LX I[(2/Ex) E IcyI2]/) . (4.25)
yEU. E[IZI] yEZd

This condition is the replacement of Eq. (3.1).

As mentioned above, Ux will be a finite union of the shells Bk, with indices from Fi when

x e Twi (see Eq. (4.11)). To choose the indices, put the integers of each Fi in increasing

order, f( <f(i < ... and then (as in Eq. (3.27)) use the "spiral" ordering on Zd to order

the sites in each

Ti { x(i) = ui,x(i) (i). }. (4.26)0 wx1 ,x2

Recalling that (as explained following Eq. (3.28) above) for any x, ZyeBk Icy-X I > 1 for all

large k, we see that for any x, EyEU Ic-x can be made larger than any given vx simply

by taking Ux to be a union of sufficiently many Bk's. To see concretely how we can thus

satisfy Eq. (4.25), define for each i > 0 and k > 0,

U(i)UjRU +) Bf(I) (4.27)

where for each i > 0, the Rk )'s are defined inductively by R(i) = 0 and

R
R(9)= min{R: R > R() and c (i) >VX} (4.28)

j-Rk ) +1 yEB(,j) k

This completes the proof of Theorem 2.2.
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5. Proof of Theorem 2.4.

Once again the proof is based on a tree structure. This time there will be a single tree.

Its root will be xl, the first site in the "spiral" ordering of Zd, and again Uz will denote the

immediate children of x on the tree. Given a, a1 will be defined by the requirement that

for all x, =l o' sgn (Jxy) for all y E Ux . (5.1)

This defines a4 except on the root; there it can be taken as +1. The two crucial properties

we need of our tree are Eq. (3.1) and (as a replacement for Eq. (3.4))

S [ > Ic _12I/_<2 ° for all x E Zd (5.2)
XIEZd yEUxt

Let us show that these two properties imply that (with probability one) for every con-

figuration c, u'(o), defined by Eq. (5.1), forces a. Equivalently, we must show that for each

x E Zd,

P(azxhx(cT(cT)) = +oo for all a) * (5.3)

But

zhx(a'(r))= a 5 lJxyl + zo,xJzxz + 1 S 'zyf [ 5 Jxysgn (Jx'y)]
yEU. x,$X yEU.,t
5E|IJxYI - Jz 11-aI | E Jxysgn (Jx'y)
yEUc-- x'#x yEUi,

+oo (with probability one) , (5.4)

where the existence, finiteness or infiniteness of the various expressions follows from Eqs. (3. 1)

and (5.2) by essentially the same arguments which, in the proof of Theorem 2.1, yielded

A7H((*) = +oo for all a' (with probability one) as a consequence of Eqs. (3.1) and (3.4). It

remains to construct our tree.

24



Each Ux will be a union of shells, B1, which (because there is no S to delete) are defined

a little differently than the Bk's of Eq. (3.24). Namely,

B1=AMI\{x1} ,

Bk = Ai\AMI for k > 2 1 (5.5)

where

MI=min {n: Z Icy-x, I > 1}}
yEAs,

Mk'+l =min In > Mk:E. l-x I > 1
Y/EAn\AM/

k

for all x E AMi}

We then define Lk by Eq. (3.26) except that Mn-1 and Mk are replaced by M4'1 and

Mk. Gi and Fi are then defined by Eqs. (3.15) and (3.17). We now simply define for i > 0

(recall that Zd={x= ,X2,x3,...}),

UXi =UjEFi (5.7)

The verification that this construction satisfies Eqs. (3.1) and (5.2) is similar to the analogous

argument in the proof of Theorem 2.1; we leave it as an exercise for any reader who is still

hanging on.
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