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Abstract

In this paper we present an asymptotic estimator, obtained by observing a noisy
image, for the parameters of both a stationary Markov random field and an independent
Bernoulli noise.

We first estimate the parameter of the noise, by solving a polynomial equation of
moderate degree (about 6-7 in the one-dimensional Ising model, and about 10-15 in
the two-dimensional Ising model, for instance), and then apply the maximum pseudo-
likelihood method after removing the noise. Our method requires no extra simulation,
and is likely to be applicable to any Markov random field, in any dimension.

Here, we present the general theory and some examples in one dimension; more
interesting examples in two dimensions will be discussed at length in a companion
paper.

1. Introduction. In recent applications, images, as well as other processes, have been
modeled by a Markov random field, i.e., as a Gibbs state with a finite range interaction, some-
times degraded by noise (see Comets and Gidas (1992), and references contained therein).

We are interested here in statistical inference, that is the estimation of parameters, for
stationary Markov random fields. This section contains a brief discussion of the models
together with some previous results, and with our findings; a more formal presentation is
found in the rest of the paper.

We start with a single infinite black and white image, which is a specification of +1
(black) or -1(white) at each vertex (pixel) of an infinite lattice; the lattice we consider is Zd,
and typically d = 2. The statistical properties of the image are described by a stationary
Markov random field (with stationary interaction), which depends on some parameters 00
(0o(l),... , Oo(s)). A noisy image is obtained by independently flipping the sign (i.e., the
color) of the image at each pixel with probability co. The problem here is to estimate 00 and
co by observing part of the noisy image, typically a finite rectangular array, with the sole
a-priori knowledge that 00 belongs to some subset 0 C R" and that co is small - typically
CO < 1. (We also assume sufficient information to determine s exactly; for questions related
to the estimation of s in the case with no noise see Gi and Seymour (1991) and Denny and
Wright (1991).) More precisely, estimators 0(A) and c(A), A C Zd, are functions of the noisy
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image in A, such that if {An}~EN is an increasing sequence of arrays whose union equals Zd,
then t(A0) -Oo and (An) co with probability one (with respect to the joint distribution,
PeO,CO of the Markov random field and the noise).

Various estimators have been proposed, both for specific Markov random fields and for
more general models. Two of these are the Maximum Likelihood estimator (Dempster et al.
(1977), Geman and McClure (1985), Younes (1989)) and the Maximum Pseudo-Likelihood
estimator Chalmond (1987), Younes (1991)) both of which are based on the EM algorithm;
unfortunately, these estimators are obtained by iterative methods, requiring the simulation
of a Markov random field at each iteration and resulting in a complex process. Other
estimators are obtained by the methods of moments (Geman and McClure (1985) and Frigessi
and Piccioni (1990)); these methods do not require any extra simulation, and are based
on estimating various moments of the joint distribution PO,eo from the noisy image; some
combinations of these moments turn out to be functions of SO independent of cO, so they
can be used to estimate 0O provided they are invertible; unfortunately, inverse functions
cannot be easily produced even for the two-dimensional Ising model with zero external field,
for which Onsager's exact solution of the model is available (one such inverse function was
remarkably obtained in Frigessi and Piccioni (1990)), and seem out of reach, if they exist
at all, for all Markov random fields with no exact solution (i.e. most of them, see Baxter
(1982)).

Our paper presents a new estimator for cO, whose computation requires no extra sim-
ulations, no iterations, and which is (in principle) as easy and accurate as the solution of
a moderate degree polynomial equation; an estimator of 0O is then obtained by a method
analogous to the maximum pseudo-likelihood for the Markov random field alone (which is a
very effective method, see Besag (1977)). The advantages of our method lie in potentially
very simple estimations; it is possible that it may also lend itself to new proofs of the iden-
tifiability of parameters. This method, however, is not without its own difficulties. The
problem is now reduced to (i) producing the above mentioned polynomial equation (whose
form depends on the structure of the Markov random field, and on e) from the noisy image,
and (ii) determining a-priori which one of the roots of this equation is an estimator for cO.
In this paper, we describe how to produce suitable polynomial equations for any Markov
random field (sections 2 and 3). Determination of the correct root, however, is more diffi-
cult: we have made some progress in the general case, but have had enough ideas, patience
or computer power to complete this programme only in some limited cases (described in
section 4 and in the companion paper, Barsky and Gandolfi (1993)). We now briefly outline
the main ideas in the paper; a rigorous treatment starts afresh in section 2.

Our approach begins with the construction of the polynomial equations. We list the
probabilities of all possible specifications of colors in some fixed finite array - as given by
the Markov random field alone. This listing uses a great number of parameters: 0O and
many other probabilities whose functional dependences on SO are known only from the exact
solution of the model, rarely available and in any case not used in this paper. Then we
describe how these probabilities are transformed under the noise, introducing the parameter
co. Next, we invert this transformation (which amounts to the inversion of a large matrix),
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and apply the inverse transformation (parameterized by a new variable, C) to a corresponding
list of probabilities of patterns of colors in the noisy image. (An analogous matrix can be
found in Meloche and Ruben (1992).) If e = co, the inversion procedure described above
returns us to the original list of probabilities; but for other values of e the process only gives
a list of functions of C (and co and GO). Using the structure of the Markov random field, we
can indicate some necessary conditions, in the form of polynomial relations, which must be
satisfied in order for such a list of functions to be the list of probabilities for a Markov random
field. (Some similar notions can be found in Newman (1987).) Each of these necessary
conditions provides a polynomial equation in e, and e = co is always a root. The idea is,
therefore, to estimate from the data (i.e., the noisy image) the list of probabilities already
transformed by the noise, apply the inverse transformation with the parameter C to this
observed list of empirical probabilities, and then solve one (or more) polynomial relations to
determine for which value(s) of C the inverse-transformed list satisfies some of the necessary
condition(s) for being the list of probabilities for a Markov random field. Having found
an estimator for cO, it is easy to "remove" the noise and use a maximum pseudo-likelihood
method to estimate 9o.

It is regrettable that we do not yet have a general method to indicate which real root of
these polynomial equations is an estimator for C. Some of the polynomial equations might
even be identically zero, for some or for all 0 eE). Such equations are called null-relations,
and we shall discard them; however, the null-relations depend on the specific models, and
need to be identified on a case by case basis. The non null-relations, or effective relations,
on the other hand, will generally have other roots besides C = co, and a-priori identification
of the root estimating Co again is done case by case. Some restrictions on co are demanded:
for example, if the Markov random field has a global spin-flip symmetry, then Co cannot
be distinguished by 1 - co (which is reflected in the polynomial equations being invariant
under the exchange C - 1- c). Additionally, co = cannot generally be identified (which is
reflected in the above-mentioned matrix being singular when C = 2); but even if cO E [0, 2),
some polynomial equations have multiple real roots.

One possible solution to the problem of multiple roots is the simultaneous use of two or
more equations, looking for common roots. However, when estimated from empirical data,
such a set of equations would typically not have any common roots, and, at present, we
have no good estimates on how far the roots of equations from the data can stray from
their theoretical values. Additionally, it seems difficult to give a set of equations whose only
common root is CO for all SO E e.

In a different attempt to deal with the problem of multiple roots, we explicitly study our
equations for the one-dimensional Ising models (i.e., Markov chains) in section 4, and for the
two-dimensional Ising model in a companion paper, Barsky and Gandolfi (1993). There we
find that for several of these equations (i) -=co is a single root, and (ii) it is the smallest real
root. It might be the case for every Markov random fields that there always are equations
for which (i) and (ii) both occur, so we have formulated a theorem of consistency for the
estimation in the context of this case, hoping that this will be the only consistency result
required by the present theory.
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The reader can now either turn directly to section 4 for a treatment (which we tried to
make self-contained) of simple one-dimensional models, or else first read sections 2 and 3 for
the abstract theory.

2. Definitions and the main result. Let Zd be the d-dimensional integer lattice,
and let A C Zd be any box of the form nd= [in in + jn] n Ze, for some (il,... ,id) E 7Ld
and (il,..,jid) E Z+. In the present paper our interest is focused on the observed images
YAEf{-1, 1}A which are the final result of some stochastic process. Our set of definitions is
basically the description of this process.

Depending on the context, we indicate the configuration space {-1, }7d by X, Y or Z;
also, Xs, Ys and Zs will all indicate {-1, 1}S, for S C Zd. We suppose that we are dealing
with an original image x E X, which has been corrupted by a noise z E Z, resulting in an
observable image y E Y given by yi = xi - zi for all i E Zd. Elements i E Zd are called pixels,
and for any given pixel i E Zd, xi (respectively yi) is called the original (resp. observable)
coloring of i. The observed image, YA, is the restriction of y to the box A. Apart from
the distinction between observable and observed image, in the following we will often regard
configurations in {-1,1}S1 as the restrictions of configurations in {-1, l}S2, if Si C S2 C 7/.

The original image, the noise, and the observable image are described by some elements
of the sets Px, Pz, and Py of the probability measures on the Borel a-algebra of X, Z, and
Y, respectively.

The original image. Let C be a locally finite (i.e., I{C E C : i E C}j < oo for all
i E ZLd, where IAI denotes the cardinality of A) and translation invariant (i.e., ri(C) E C if
C E C, where r, indicates the translation by the vector i E Zd) collection of sets C C Zd
called cliques. Note that the local finiteness and translation invariance of C together imply
that each clique is finite. An interaction 0 based on C is a translation invariant real-valued
function defined on UCECXC. Let 0 indicate the origin of Zd, then the local interactions of q
are the entries of the vector {q(r0)}nExc,0EcEc. We use these interactions to define Markov
random fields. Later on we shall see that these models can be reparametrized using fewer
parameters than the total number of local interactions; it will then be advantageous to use
a different, but equivalent, notation.

For now, let a set of cliques, C, and an interaction, 0, be fixed. For each finite S C Zd,
the energy function U XS -+ XR is defined by

Us(x) = 6(xc). (2.1)
cEc

CnS nonempty

Note that the energy function can be thought of as a linear combination, with integer coef-
ficients, of the local interactions.

For A C Zd and x E X, a finite volume Markov random field for C and q in A with
boundary condition x is the probability measure

P^A,k(XA) Z= . eUA(xAVx) (2.2)
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where
ZA,. = e-U'o(XAV ).

XAEXA

Here XAV.x E X is the configuration which agrees with XA in A and with x in Zd\A. A Markov
random field for C and q is any convex combination yL0 of weak limits of YLA,g as A T Zd, i.e.,
as A ranges over an increasing sequence of boxes which eventually covers the whole of zd (see
Ruelle (1978), chapter 1). Phase transition occurs if there is more than one Markov random
field for the given C and q. In this paper, we only consider translation invariant Markov
random fields; the set M0 of all such Markov random fields for the interaction q is always
nonempty (Ruelle (1978), Theorem 3.7). Since our estimation scheme begins with a single
infinite (noisy) image, we may assume that yo is ergodic for the group of translations of Zd
- as any original image is a typical configuration for some ergodic component of FO.

Markov random fields p satisfy the Markov property. for any finite S C Zd there exists
a T D S such that i,0,(xsIx) = 9,0(XSlxT\s) for xs E Xs and x E X. In particular, for
S = {O} one may take T =Uc:OEcECC: we denote this particular set by No, and we call
it the complete neighborhood of the origin 0. Configurations I E XNO are called complete
local patterns. For i E Zd, Ni will be the translation ri(No) of No by the vector i. The
neighborhood of i is N-= Ni\{i}. It follows from the translation invariance of C that i E No
if and only if -i E No; thus INol is even. Local patterns are configurations g E XNO, and
each such configuration gives rise to a pair of local characteristics

7r(xo10) = p(xoI'4) = Z6,eUoov4) (2.3)

(Our notation, here and elsewhere, in writing UO' (and Zo,t) is that when S is the singleton,
{O}, we write S = 0 as an abbreviation.)

Note that local characteristics are functions of the Zc:oEcEc 21Cj local interactions. More-
over, the local characteristics are functions of q independent of the specific ps E MO. Also,
since the local characteristics are always strictly positive, the Markov property implies that
/,0(xs) > 0 for all xs E Xs, for every finite S C Zd.

The noise and the observable image. For some e E [0, 1], the statistical properties of
the configurations z E Z are described by the Bernoulli probability measure v, = lliEZdVe,i,
defined on the Borel a-algebra of Z, where v =,i(zi 1) = = 1 ,i(zi = -1). The action of
the noise is given by setting yi xi= zi; this amounts to flipping each pixel with probability
c, independently of the other pixels and of x. For any given interaction 4 and noise level e,
the joint probability measure PO, = yX - ve, defined on the Borel a-algebra of Y, describes
the statistical properties of the observable image. Eventually, the interactions 0 will be
parameterized by a vector 8 - then we will write Pe,, for the joint measure.

Estimation of parameters.. Suppose now that the single infinite black and white
observable image y E Y is fixed, and we observe YA as A T Zd. The statistical properties
of y are described by PRO,,0 for a known C, but with both eo and q5O unknown. We want to
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estimate c0 and Oo, but this is only feasible if both are identifiable. The restriction of Ec to
[0, 2) is sufficient for identification of eo, but q0 can only be identified modulo the following
equivalence relation (see also Gidas (1987), Appendix, for a related discussion).

Two interactions q1 and q2 are equivalent, q1 ; 02, if M,01 = M2 (or, equivalently, if
Mqs1 and M,k2 have nonempty intersection; see Gidas (1991)). In our setting, the equivalence
relation is better described by the following lemma. Note that, by translation invariance, an
interaction qS is identified by the

r E 21c
C:OECEC

local interactions, so it can be treated as a vector in JRT. The energies corresponding to the
choice of any s interactions +1,... , q5 E JRi can be written as a function Uo - (U1, . .. , Ug/)
defined on XVO and taking values in JR.

Lemma 1. a. Two interactions +1 and q2 are equivalent iff
Ug1 (xo V () - Ug'(-xo V T)= Ug2(xo V T)- Ug2(_xo V () (2.4)

for all ( E XNO. The two interactions are also equivalent iff

UT(xo V %)-U0(-xo V 0)= (2.5)
for all ( E XNO, with = 1- 02 In both (2.4) and (2.5), xo can be taken to be either +1
or -1.
b. Define XV = {q E Rr : q satisfies (2.5) for all ( E XNO}, and let .1...., O. E JRr be a basis
of some linear space S which is linearly independent of jA. If 0 = (O1, . . . , 0,), and 0 * Uo is
the standard inner product of 0 and Uo in JR, then

Uo =-U (2.6)
a 0 [Uo(xo V )-Uo(-xo V C)] =0 for all C E XNO iff 0 =0 (2.7)

and
S < min{21N01,r}. (2.8)

Proof: Two interactions q1 and 02 are equivalent iff all of the finite volume Markov random
fields for q1 and 02 coincide, and this holds iff all ratios

-U'0(zAV.)e A (2.9)
e-UO( vtv)AA(A)

are the same for q1 and q2, whenever A C Zd, X E XZd\A, and XA, YA E XA. It may further
be assumed in (2.9) that XA and YA differ in exactly one pixel. Now all ratios (2.9) are of
the form
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for some ( E XNO and xo = ±1, so 01 ; 02 iff (2.4) holds for all ( E XNO. Note that UOX
is linear in / E RR, so that (2.5) holds (with g = - 02) whenever (2.4) is satisfied. This
linearity also yields (2.6), as 8 - Uo = Oi8U' - u=i= . Moreover, 8 [Uo(xo V ()
Uo(-xoV()] = 0 for all 6 E XNO iff U(E "')(xo V -U( 9i)(-xo = 0 for all g E XNO
iff El OAqS, 0 (the interaction which is identically zero) iff 8 = 0 (the zero vector in R8),
which proves (2.7). Finally, the nontrivial part of (2.8) (that s < 2INOt) follows from the
facts that the dimension of S cannot exceed the number of linearly independent equations
of type (2.5), and that there are only 21NO linear relations of this type - before checking
for linear independence. U

Later on we show that actually a strict inequality holds in (2.8). It is now convenient to
fix a basis +1, ... , qS8 of a maximal linear space, S C ]R', which is independent of A", and to
replace the energy in (2.1) - (2.3) by 8 * UA(XA V 4), with 8 E IRs and UA = (UA1 * , Ut8)
The parameters 8 E R89 are now identifiable, and they will replace q in our various notations:
, and PO,e become yo and Pe,,, respectively. We may also assume, for simplicity, that each

Xi has integer entries.
Fix e C ]R8, O E e and eO E [0, 2) We want to define functions E(A)(Y) and @(^)(y) such

that
E(A)Y)6- 0 as A T Z (2.10)

and
(A)(y) -800 as At id (2.11)

for Po,,,,-almost all y E Y.
The reason for not necessarily taking 0 = ]R8 is that the extra information provided by

the knowledge of 0 can make the estimation of c0 easier, as will be seen in the Consistency
Theorem.

The main quantity which we will be estimating from the data is most conveniently in-
troduced as a function of the empirical process generated by an original (resp., observable)
image, or more generally, as a function of probability measures in Px (resp., Py). For each
box A C Zd and image x E X (resp., y E Y), define x(A) E X (resp., y(A) E Y) to be the
periodic extension of the restricted image XA (resp., YA). The empirical process RA,T E lPx
is defined by

RA,X (f) = Ef (r(i))

for all continuous functions f: X -4 R; the empirical process RA,Y is similarly defined. For
P E Px (resp., P E Py), let Mp be the vector whose 21'Nol entries, indexed by the complete
local patterns 1 E XNO (resp., 1 E YNO), are given by

Mp(6) =Ep(1[XNOx=
where EP indicates the expectation with respect to P, and 1 is the indicator function of
the event in the brackets. The components of M are thus the probabilities of the various

7



local patterns; in the case of the empirical processes, the components are just the relative
frequencies in some portion of the image. For simplicity we use the notation

MA,X = MRAZ,

MA,y = MRA,3, (2.12)
and

Me = MP,7 (2.13)
where in (2.13), go is some Markov random field for the interaction 0 - we suppress the
dependence of Me on ieo as we shall eventually work (see Lemma 3 below) with properties
of the vector which are independent of the particular choice of the measure go E Ms.
Additionally,

MCC = Mp." = MiAe,
where the second equality makes reference to the 21NO1 x 21NoI matrix A, defined in (2.14)
below.

We comment here on our vector notation. We generally do not distinguish between row
vectors and column vectors, and use whichever notation seems to be most natural for the
purpose at hand, as it will usually be clear from the context which is meant. For example,
in writing MoA, above, we are using the usual probabilistic notation and regarding Me as
a row vector. Later, in section 4, part (I), it will be equally evident that the vectors q and
U(q) are column vectors and that we are using the usual linear-algebraic notation in writing
U(O) = U0.

The entries of A, are indexed by 1(') E XqO, t(2) E YNO and given by

Ae(1(1) 41(2)) = ED(1 _ E)(INOIf-1D) (2.14)

where D = D(i(E), _(2)) - ZtENo 1'1)_(2)I is the Hamming distance between t(l) and ((2)*
As shown below in Lemma 5, A, is invertible for e # 2X and its inverse At-' has components

A-l (g(1),(2)) (2E l)-IRotED(F_ 1)(IoI-D).

(Properties of related matrices appear in Barsky (1993) and Meloche and Ruben (1992).)
The estimator e(^) in (2.10) is one of the roots of a polynomial equation in e constructed

by relating the entries of MA,yA7' to the probabilities of complete local patterns in POO.
After this, c(A) is used to remove the noise from the data so that an estimator 0(A) satisfying
(2.11) can be determined.

Before we can give the exact form of the polynomial equations, it is necessary to study
Markov random fields in greater detail.

Structure of Markov random fields. We shall eventually see (in Lemma 3 below), that
it is possible to produce 21NoI- s polynomial equations (although several of these may be
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null). To be certain that we have any equations at all we must first show that the upper
bound for s given in (2.8) can be improved.

Lemma 2. Let C be a locally finite, translation invariant set of cliques, not all of size one.
Then ifS is as in Lemma 1,

s = dim(S) < E C1 (21cl - 1) < 21No1. (2.15)
C:OECEC,ICI>2 101

Proof: From (2.8) we have that s < r = C:OECEC 21cl, but s is in fact smaller for three
reasons. We present these reasons as linear conditions which can (actually, the first condition
must) be satisfied by the vectors of S, thereby giving successive upper bounds to s.

In the first place, interactions are translation invariant. If ri stands both for the transla-
tion by the vector E Zd and for the map induced by this translation on the configurations of
X, then interactions satisfy q(ri77c) = q(71c), for all qc E Xc and C E C. Roughly speaking,
the translation invariance implies that a clique C and all of its translates can contribute at
most 21cl parameters to the sum which is the dimension of S. More formally,

S.<±21C1.
C:OECEC ICI

In the second place, for each C E C and for any interaction 4 based on C, we may assume
that q(?) = 0 for at least one ij E Xc. In fact, for any fixed ij E Xc (with C E C), we can
define

-(1) = ({7)(-q(i) for77EXc
00(t)

-

00for 77 E Xcl, C' #& C.
Then ¢ : by (2.4), which shows that

s ' (21cl - 1).
C:OECEC 101

Finally, we can also assume that q(r7) = 0 for all r E Xc whenever ICI = 1. Indeed, we
have just shown above that if ICI= 1, then it may be assumed that (acting on the color at
that single pixel) q(-1) = 0. Assuming that q(+1) 5# 0, and that there is a clique C E C
with ICI > 2, define

00+(7) + 0(+l)lfi e C: 77i-=+1}111CI forq7e Xc

+(n) 0 if 7 E Xc, 10=1
1 +(v) otherwise.

By (2.4), 0 ; X, which concludes the proof of the first inequality in (2.15).
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We next prove the second inequality in (2.15) for d = 1; afterwards we will show how
to reduce higher dimensional cases to this setting. Given C and its associated complete
neighborhood of 0, No = No(C) = {i iN,+ ,...,ijQ}, define b : No -+ N =

2 2 +1 2

{<No X 2 + 1,..., 2} by Ob(in) = n. In particular, note that 0b(io) = 0 since io = 0.
Now define C' = {k + +b(C) : k E Z, 0 E C E C}. It is readily seen that C' is a locally finite,
translation invariant set of cliques and that ,b induces a cardinality-preserving bijection
between {C E C: 0 E C} and {C' E C': 0 E C'}. Therefore,

E C- (21c_l- )= EC(21ci' -1).
C:OECEC,ICI>2 1 C':OEC'EC',IC'1I2 l l

Since No(C') = N, it now suffices to prove that the second inequality in (2.15) holds for all
C with No(C) = N. For such a C, observe that the subset of those cliques containing 0 can
be partitioned into equivalence classes by declaring a pair of cliques to be equivalent if they
are translates of one another. Each equivalence class has a "least" representative: a clique
for which the origin is the maximal pixel. Let V denote the set of least representatives for
the equivalence classes of those cliques C having 0 E C and ICI > 2. Then

C:ECEIC 1i(21C1 - 1) = (21Cl- 1).
C:OECEC,ICI>2 1ICED

The number of least representatives in V having cardinality n cannot exceed (IN11o2) since

any such representative must contain the origin and exactly n-1 pixels in { , 2+
1, . ..,-1}. Thus

N01/2+1/ ITNo1
Z(2ICI-1) E (I °II2j(2n - 1)
CED n=2 n 1

22* 31NO1/2- 2No0/2_1
< 21NOI,

for INoI = 2,4,....
For the higher dimensional cases, we construct a map ?, : Zd Z which induces a

cardinality-preserving bijection between {C E C : 0 E C} and {C' E C' : 0 E C'}, where C' is
some locally finite, translation invariant collection of cliques in 2. Given C, we note that it is
always possible to choose integers nl, . . . , nd so that i,(il,... ,id) = d nri, is injective on
NoA(C). The collection C' {k + ?,b(C) : k E Z,0 E C E C} is a translation invariant, locally
finite set of cliques in 2 with No(C') = 4(No(C)), and hence INo(C')j = INo(C)I. Therefore,

E ICg(21CI-1) < E 1,(21C,I- 1)
C:OECEC,ICI>2 ICI C':OEC'EC',Ic'1>2 IC'I

< 21NO(C)
- 21No(c)l
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as desired.

It is clear that dim(S) might even be smaller than proven in Lemma 2. For instance,
the first inequality in (2.15) yields s < 3 for the one-dimensional nearest-neighbor Ising
model; but it is easy to verify that actually s = 2, with the two parameters corresponding
to the two parameters of the 2 x 2 stochastic matrix defining the one-dimensional two state
Markov chain. Also, the choice of the parameters made in this proof might not be the most
convenient for a physical description of the model; in the Ising model, for example, one often
uses the external field, h = 1(q(+1) + q(- 1)), as a parameter.

We now fix C and e), and turn to the issue of showing that the probabilities of the
local patterns in a Markov random field satisfy certain polynomial equations. A polynomial
relation for the vector M = (M(j))fCxR is any homogeneous polynomial Q = Q(M) of the

21o entries of M. Some particularly relevant polynomial relations are of the form

Qo(M) = fl [M(+1V.)]a+(,)[M(-1 V.)]-a-(t)- II [M(-1V0)]a+(0)[M(+1V0)]-f-(
tEXN0 tEXN0

(2.16)
where a = (a(&))(EXNO is a vector with integer entries, a+(() = max{ca(g), O}, and a-(() =
min{a((), 0). We are especially interested in polynomial relations for the vector Me defined
in (2.13); some of these are described in the next lemma.

Lemma 3. Given C and e, there exist linearly independent integer vectors t(n) E Z2 °
n = 1,...,21N° I -s, each with entries indexed by E XNO, such that

Qoe(n)(MO) 0 (2.17)

for all 0 E e, and for all Markov random fields Ge E Ma.

Proof: A simple computation using (2.16), (2.13) and (2.3) shows that for any 0 E R.' (and
any po E Me), Qo,(Me) = 0 iff

Ecz ) log MO(+1V) -0
tEXN0 O_

iff
>i a(()[UO(+1 V O) - Uo(-1 V 0)]= 0. (2.18)

tEXNO

Asking that (2.18) be satisfied for all 0 E R' is the same as seeking solutions to

aU= 0

11
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where U is the 2I1'O x s matrix having entries

U(d,i) = U'(+1 v) U0"i(-1 v() (2.19)
for g E XNO and i E {l,.. . ,s}. By the assumption that +1X,. . .,XS,Jis a basis for a subspace
of RL'2 which is linearly independent of Ar, we know that the columns of U must be linearly
independent. Since rank(U) = s, we have that the nullity of the mapping a i--* aU is
21NOj s > 1, where the inequality follows from Lemma 2. Finally, as the entries of U are
all integers, it is possible to find a basis {a(n)}2J

N

for the nullspace of this mapping with
each ax(n) having only integer entries. U

Definition of an estimator. In the estimation of co, we will use some polynomial equa-
tions of the form Q(M) = 0 - provided they satisfy some suitable conditions. To better
understand these conditions, let us consider the application of the relations found in Lemma
3 to the vector

M,e,e=AMA,,e,A1 =- MeAe,A-A. (2.20)
The case when e' = co is of special interest; also setting e co shows that Me,0o is just a
scalar multiple of Me, and hence C = co is a solution of

Q(Me,e,e) = 0 (2.21)
when C' = co.

As already mentioned in the introduction, for any c'- o E [0, 2), there will typically
be several values of C satisfying (2.21). The examples presented in section 4 suggest that
perhaps it is always possible to find equations (2.21) for which C0 is the smallest real root in
C when c' = cO. Motivated by these examples, we will take our "suitable conditions" on the
relations (2.17) to be some variant of requiring that co is the smallest real root in e of (2.21)
when C' = cO. Actually, it will turn out to be sufficient to require that 0 is a single root in C,
and the only root in (-oo, 0], of (2.21) when c'= 0. We mention here, primarily to establish
terminology which will be used in the treatment of the examples (see section 4), that one
way for a relation Q to fail to satisfy this condition is for Q(Me,lo0,) to be identically zero in
e for some 0 E e and co E [0, 2); whenever this occurs, we say that Q is a null-relation.

If we already knew the interaction 00, then we could further specialize (2.21) to the
polynomial equation Q(Meo,',,f) = 0 for c' =c0 (or 0). However, it is because we suppose
ourselves to be initially ignorant of the choice of Oo E e that we use the relations of Lemma
3 which are valid for all 0 E 0. Actually, an examination of the proof of Lemma 3 shows
that the relations (2.17) are satisfied for all 0 E Ri - the reason for keeping track of e is
that it is simpler to verify the above-mentioned suitable conditions if we are allowed to use
the a-priori knowledge that the interaction belongs to the region 0 in the interaction-space
W'. In fact, when we subsequently turn to the estimation of 0O, we will often make that
estimation in the context of the larger space, ]R.

12



Consistency Theorem. Let C and e be given, let eO E [0, 2) and 0o E e, and let Q be a
polynomial relation. Suppose that Q(M) =0 for all 0 E e), and define

I=,MeAeiA1.

Further suppose that, for all 0 E 0), the equation

Q(Me,o,) = 0 (2.22)

admits e = 0 as a single root and has no real roots in (-oo, 0). Then for any a > 0,
(I) the smallest real root in [--y, 1], e(A)(y) say, of

Q (MAgY,e = 0, (2.23)
where

M,,,e= MA,yA-1
is such that

lim c(A)(y) =-e
Atzd

and (II) the vector (^)(y) which maximizes (in R8)

GMPL(0, A, y) = II [7e(xokj)]MA,v,,'A)(y)(zoV4) (2.24)
(xove)EXRo

converges pointwise to 0o (i.e., limATZd @(A)(y)(v) = so(v) for all 7 E Xc and for all C E C)
with Pe0,O-probability one.

3. Consistency. The Consistency Theorem is proven in this section after three intro-
ductory lemmas concerning the matrix A,; the first of these lemmas indicates that the noise
transformation is well described by A, We choose a collection of cliques, C, and a set of
interaction parameters, 0 C ]R, which are fixed throughout this section.

For x E X, z E Z and A c zd, define the matrix

A (E(1) 1(2)) - J [L A,W(!(())], 1 ZiEA 1[X(A) = ,(X. Z)(A) (2)] if MA('(1)) # 0A,S.Z,z '#j | 0 if MA,S('(1)) 0.
(3.1)

Note that if y = x - z then
MA, = MA,=* AA.z.Z- (3.2)

Lemma 4. For all 0o e 0, co E [0, 1] and go E M6,s

lim AA,, = Afo (3.3)
ATZd
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with Peo,,,-probability one.

Proof: Let x E X, e(') E XgBo and define S (1(1)) = {i E ZZd xs =X (1)}. As vlo is a
Bernoulli measure and po(o(l)) > 0, for any e(3) E Zvo, we have

uir IS,(!(')) Al 1 [zNi = -(3) eo((3) (3.4)Atzd iESx(zM))nA

with vo-probability one. Since we assumed that poe is ergodic,

lir |A|I-1S((()) nfl = limd MA,x(j(')) - MeoG(('))
ATZd ATZd

with goo-probability one. Therefore, writing 1(2) = e(l) * 1(3) and letting y(%A) = (x. z)() for
some z E Z, we have

lim - .j[xN. - ,yN. = = lim L 1[ZN -
ATZd JAI iEA~ 'v ATzd tAt iE2(('))nlA

= / 0((3))M'0(4(')) (3.5)

with Poo,,O-probability one. It then follows that limATZd AA,.,,(~(1),((2)) = vco(1(3)), again
with Po,0o-probability one, and this concludes the proof since v,(((3)) - ED(8 )'8 ))(1-
6) I-olI-D(&l) 82))

Lemma 4 was formulated for co E [0, 1]; however, A, is defined for any e E IR and we now
proceed to describe properties of A, for generic values of c.

Lemma 5. For a, b E IR, let Aa,b be the matrix defined by

Aa,b(((1), e(2)) - aD(fl),82))bINO I-D(&1),2))
for any e(l), 1(2) E XNO. Then

Ae,_= Ae; (3.6)

AO,1 = I (the identity matrix), (3.7)

Aab * Acd Aad+bc,ac+bd, (3.8)

and
A-'1 = Ac _ = A c e-. = (2e- 1)-1ROAC,.1j, for e # 2. (3.9)- c,1 ~2C-1 '2e-1 2

14



Proof: Properties (3.6) and (3.7) are immediate, and (3.9) follows from (3.8) and the
homogeneity of A.,b in (a, b). Writing Di, as shorthand for D(1(0), 1(i)), we verify property
(3.8) as follows:

E: Aab(1(1 1(3 )Acd(&-3 1(2) = aD1,3bINo I-DL,3CD3,2dlVO I-D3,2
1(3)EX-Vo t_3)EXRo

IN E i (Nol - * (ac)t(bd)OID12,t z (D1,2) (ad)m(bc)D1,2mn

(ac + bd)IROI-Dj,2 (ad + bc)Dl2 - Aad+bc,ac+bd(j(1t, 1(2)

The next lemma describes how to use the condition on the roots of (2.22) to obtain a
related condition on the roots of (2.21) when C= .

Lemma 6. Let co E [0, 1) and let Q be a polynomial relation satisfying Q(Me) = 0. Suppose
that, for all 9 E e, the equation Q(Me,o,,) = 0 admits e = 0 as a single root and has no real
roots in (-oo,0). Then, for all 0 E e, the equation

Q(Mele,,c) = 0 (3.10)
admits e = Eo as a single root and has no real roots in (-oo, c0).

Proof: Fix any 0 E 0. It follows from Lemma 5 that

Me,o,et = (2fo -)-l°lMeA,1_1.
Similarly,

MsOACO'Ct= (2co- 1)-NROAMeAett_o0,'+fO,. = -AMeAel.-o elf- 1'
1-2o ' 1-26o

where the last step uses the homogeneity of Aa,b in (a, b). Since Q is a homogeneous poly-
nomial, Q(Me,o,,#) has a root of order n at c' = e iff Q(MeB,OA,C) has a root of order n at
"= (1 - 2co)f + co. The hypotheses of the lemma now guarantee that (3.10) has a single

root at e = co, and it cannot have any roots in (-oo, co). U

We conclude this theoretical part of the paper with the proof of the consistency of the
estimators.

Proof (of the Consistency Theorem). For e E IR, x E X, z E Z and A C Zd, let MA,x=,z,-
MA,ZAA,x,zA1', and for , a, b > 0, let Ry,a,b = {t E C : -y < Re(t) < a, IIm(t)I < b}. For
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any y, b > O, a E (soj2), and e E XNO, we claim that

liM sup IMA,x,z,e() - MO,,eo,c() = 0 (3.11)
AtZd ERy,a,b

with Poo,,O-probability one. In fact, for any eEXO
SUp jMA,',Z,Z(6)-MOooe

fETh,a,b

< 21'OI max JMAxz((())-MoO(jM)) @ sup jA-1(jM,e)j
-(')EXRO

< 2 1OI I max IAA, ,Z(e(2), (1)) -Ao ((2), (1)

~~(2)EXRO~(l)Xr+ max IM,(0~ SUP jA-(2))j} )j
i()EXIo CER.1,a,b

so that (3.11) follows from the ergodic theorem, Lemma 4 and the continuity of the mapping
ic A2-1.
For all co E [0, 1), it follows from the assumptions about the roots of (2.22) and from

Lemma 6 that e =co is a single root of Q(Meo,,,,O) = 0 and that this equation has no other
real root in (-oo, so). Since Q(Moeo0,,) is a polynomial in C, for every sufficiently small 6 > 0

sgn[Q(MO,,e.,eO6)]= -sgn[Q(MJO,VeO,F,+6)], (3.12)
and there exists c = c(6) > 0 such that

PQ(MsOOCoI-0)l 1Q(MOOeo"e+6)1 > c (3.13)
and

inf |Q(MsOOC,) > c. (3. 14)
cERyPo -6, c

It follows from (3.11) and the continuity of Q in its arguments that, with Pe90,O-probability
one, there is a A large enough that Q(MA,,,z,,) satisfies (3.12)-(3.14) with c replaced by c/2 in
(3.13) and (3.14). As Q(MA,X,Z,C) also is a polynomial in E, this implies that Q(MA,v,z,,) = 0
has at least one root in [EO -6, O + 6], and no other roots in R,o Therefore, (A)(Y)
can be taken to be the smallest (real) root in [-'y, EO + 6] of Q(MA,y,C) = 0, and letting S 4 0
shows that

)(y) --+ co as A T Zd, (3.15)
with P00,f0-probability one. This estimator for co allows us to "clean," i.e. reconstruct, the
probabilities of complete local patterns in gso: for all ( eXE o

M,y,,e(A)(y)(( m@oo(
<21OI{l max lA1AY)y(e(),()-A-1(,)-)j
+ max IMA,y(e(1))-MOA,eO(~('))I max JA e(1),()j}
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so that
-+M6e0 (.16)MA WE(A)(y) 'MO(3.6

with Peo,,O-probability one, by the continuity of the mapping e - A-', (3.15), and (3.11).
We now will use a maximum pseudo-likelihood method to estimate 0O. In the case of no

noise (Besag (1977)), the method uses the function

MPL(8, A, x) = H7r(xi x(,)) -
SE N

which converges to
MPL(O, o) = II

(xOVt)EXR0o

II
(XOVt)EXR0o

7re(xo 1)Me0 (OV")

with pie0-probability one, as A T Ld. Our method uses (2.24) instead of (3.17). We first
prove the convergence of GMPL(O, A, y) to MPL(O, Go) when 0 belongs to some compact
set O), C 1R8; note that here 0 is not restricted to 19. The functions '-+ ire(xoI() are

continuous and strictly positive; therefore,

sup I log GMPL(O, A, y) -log MPL(O,Oo)
eEec

< 21"O1 sup IMA,,A)(y)(() - MMo(()I sup log(7re(xoI ))I
jEXRO (&oVEec

(XOVC)EXR0o

< K(Ec) sup IMA,,gA)(y)(1) Moo()II
!ExjrO

with K(E)) a suitable constant depending on ec, so that

sup IlogGMPL(G,A,y) logMPL(O,Oo) I 0 (3.19)

by (3.16), with Peo,co-probability one.

Next, we show that log GMPL(8, A, y) is a strictly concave function of 8. Let 8, 8' E R',

with 0' # 0. Then

dt log GMPL(O + tO', A, y) (3.20)

E MA,y,e-)(A)(xo V g) ire+te'(-xok)0 *' [Uo(-xo V O Uo(xo V 1)]
(XOVt)EXjvO

and

dt2 log GMPL(8 + tO', A, y) (3.21)

=- E
(xoVt)EXI;o

MA,y,A)(y)(xo V )ire+te'(-xo1)07r+tel(xok0)(O' * [Uo(-xo V )- Uo(xo V )])2-
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Since 0' # 0 and Mea(e) > 0, it follows from (2.7), (3.16) and (3.21) that for all 0 E R'8
log GMPL(O, A, y) is strictly concave with Po,,0-probability one if A is sufficiently large.

Finally, note that (3.20) and (3.21) also hold (with Me, replacing MA Y A)(y)) if MPL(O, 00)
replaces GMPL(O, A, y). In this case, we may set 0 = 0O in (3.20) and use (2.7) to see that
log MPL(O, 00) has a unique maximum, and that it achieves this maximum at 0 = 0O. There-
fore, by taking e, such that 0o E e0, it follows from (3.19) that with Pe0,,,-probability one,
if A is large enough, log GMPL(9, A, y) has a unique maximum in Ri, at 0(A)(y) E E3C, and
that @(A)(y) -+ 0o as A T Zd.

The Consistency Theorem was formulated for the (homogeneous) polynomial relations.
Lemma 3 indicates how to produce at least one polynomial equation of the type (2.17);
however it may happen that all of the polynomial relations which are obtained in this fashion
are null-relations in that each is identically zero in e for certain values if 0 E e. In such
circumstances, it may be possible to use further insight into the model to obtain additional
non-null (or effective) relations - an example is given in section 4 (for the general nearest-
neighbor Markov random field on z). Loosely speaking, the polynomial relations which we
have shown how to construct in Lemma 3 can fail to be effective if either 0 is taken to be
an unreasonably large subset of ]R8, or there are some special symmetries in the process. In
the latter case, it is not unreasonable to expect that the presence of the many symmetries
necessary to make all of the these polynomial relations null should lead to (enough of) an
exact solution of the model to enable one to construct some additional relations which are
not null. It is also conceivable that some these new relations may not be polynomial relations
in the sense defined above- in that they may be nonhomogeneous. Actually, in the example
of section 4 mentioned above, we are able to find two effective relations: one is homogeneous
(and thus is covered by the Consistency Theorem), the other is not.

To be able to handle situations in which we wish to consider nonhomogeneous polyno-
mials, we point out that if no use is made of Lemma 6 and the homogeneity of Q, then the
proof of the Consistency Theorem yields the following result.

Corollary. Let C and 0 be given, and let so E [0, 2) and 0o E E. Suppose that Q = Q(M) is
a polynomial in the entries ofM such that for every 0 E e), Q(Mo) = 0 and the only solution
e E (-oo, s0] of

Q(MAeI,g1) = 0

is a single root at co. Then for any y > 0,
(I) the smallest real root in [--y, 1], call it c(^)(y), of

Q(MAIA,1,) = 0,

is such that
lim c(^)(y) =co,
ATZd
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and (II) the vector @(A)(y) which maximizes

GMPL(O, A, y) = JJ [,Xe(xo jt)]MA,y,(A)(y)(xoV()
(xOVt)EXRO

in iR' converges pointwise to So with Pe0,0 o-probability one.

4. Examples in one dimension. The reader should be able to read this section right
after the introduction [comments between brackets are for the benefit of those who have also
read sections 2 and 3], occasionally looking at some parts of sections 2 and 3 when indicated.

In this section we consider the one-dimensional nearest neighbor Markov random field on
{-1, 1}Z. Stationary one-dimensional nearest neighbor Markov random fields are in one-to-
one correspondence with a collection of stationary one-step Markov chains, the latter defined

by means of a two-parameter transition matrix (1b a a b with a, b E (O, 1). The

Markov chains with a = 0, a = 1, b = 0 or b = 1 do not correspond to Markov random fields
because each of these chains prohibits some pattern of a pair of colors - which corresponds
to having an interaction which is infinite on that pattern. We shall further assume that the
a 0 1- b, which is the same as requiring that the Markov chain not be a Bernoulli process -
since in that case the interaction is not identifiable. We can use the correspondence between
Markov random fields and Markov chains as a method for writing down the probabilities
of the specification of colors in some finite array as explicit functions of the interaction, q0.
This explicit functional dependence is called an exact solution of the model.

The existence of an exact solution should mean that the estimation of the parameters 00
and eo is not overly difficult, and this presentation serves mainly to illustrate our method in
a simple case, and also to offer an explicit estimator that the reader might want to compare
with his/her preferred one. It would now be easy to obtain our polynomial relations from
the exact solution - eventually we will do this, and the impatient reader can go directly to
the subsection on the general nearest-neighbor Markov random fields below- but we choose
instead to begin working from the general setup of Markov random fields, using interactions
between pixel colors [along the lines of section 2]. In this way we shall also illustrate what
one does when the exact solution is not available.

Before we go on, let us mention two possible alternative estimators which could be used
in this situation. First, as the necessary probabilities can be easily obtained from the exact
solution, one can try to use the Maximum Likelihood Estimator to estimate a, b and C simul-
taneously. Second, if one has the a-priori information that the Markov chain is symmetric,
i.e. a = b, then the method of moments, as in Frigessi and Piccioni (1990), turns out to
be an computationally easier task. However, it is not clear how to extend the method of
moments to the asymmetric case, a $ b, and we thus make this our starting point, provid-
ing a computationally fast method for estimating the parameter in an asymmetric one-step
Markov chain with independent symmetric noise. The general case, with a, b E (0, 1) and
a 0 1 - b (but without the hypothesis that a 5$ b) will be discussed afterwards.
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Asymmetric nearest-neighbor Markov random fields. As mentioned above, we begin
our treatment by studying the interactions, which are functions of the colors in cliques. It is
suggested that the reader who has not already done so, should read the definitions in section
2 up to (2.3). Here cliques are all the elements of Z, and all the pairs (which we can take to
be ordered, for simplicity) of nearest neighbor elements of Z. Modulo translations, there are
two cliques in the present model, for a total of six specifications of colors:

(+7 +)? (+' _)' ( X +), (1X ) (+)7 (-); (4.1)
here and in the following we abbreviate by dropping the 1 in +1 and -1. It-is assumed
that a noise level co E [0, 2) and an asymmetric interaction, qO, are fixed but unknown; an
interaction is a real-valued function of the six specifications above, and it is asymmetric if
it is not invariant under the exchange of + and - in the specification of colors above. Our
goal is to estimate the parameters 4O and co, which characterize the Markov random field
and the noise process, respectively, by observing the specification of colors in finite portions
of the observable image y E {-1, 1}Z; this image is distributed according to the product
measure P=00Co Y'0 x vIeo where g4*o is a Markov random field of qO and Zv0 is the Bernoulli
measure with density co. The interaction can only be estimated up to an equivalence class,
where two interactions are said to be equivalent if they generate the same Markov random
field [see Lemma 1].

The neighborhood of the origin is {-1, 1} C Z, the complete neighborhood of the origin
is {-1, 0, 1} C Z, and interactions are vectors in ]R6. We list the 2INoI local patterns:

(++), (+-), (-+), (-), (4.2)
and the 2INOI complete local patterns:

(+ + +) (+ + - ), (- + +), (- + -), (+ - +), (+ -),( +), ( -), (4.3)
and we fix these orderings.

The energy function (at the origin) is

U"(4(-l,O,l-= q(.(-1,0)) + q(4(0,1)) + q(6o)
for any interaction 0 and any 4-1,o,1) E Xp0. An examination of this energy function leads
to the construction of some polynomial relations [following Lemmas 1 and 3].

(I) Let U(q) be the vector indexed by ( E XNO given by U(q)(() = U4'(+ V ) UO(- V (),
where we define (± V g) = (& ±),,.(+1)) E Xgo for ( =-(_i) E XNO. [For special
choices of 0, U(q) is a column of the related matrix U in (2.19).] This defines a map
= (0(++), q(+-), + (- (+), q(-)) i-)U(q) = Uq from ]R6 to Rt4 described by

the matrix
(2 -1 -1 0 1 -1)

U= ( 1 ° -1 1 -1|(4.4)

0 1 1 -2 1 1,
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when using the order given in (4.1) and (4.2).

(II) The model can be parametrized [see Lemma 1] by first finding a basis of a linear space
S independent of the null space of the matrix U, and then writing the interactions as
linear combinations of these basis elements, which can be chosen to be vectors in Z6. A
customary choice in the present case is to form the basis from q1 = (1, -1, -1,1,0, ) and
02 = (0, 0, 0, 0, 1, -1), in which case the two parameters are called P and h. Regardless of
which basis we choose, we have that dim(S) = 2 <4 = 21N0I [as predicted by Lemma 2].
(III) We find polynomial relations [see Lemma 3] by solving the equation

aU=0,

i.e., by finding vectors a which are orthogonal to the columns of U. Since U is a rank
2 [2 = dim(S)] linear transformation into R4 [4 = 21NO I], it is possible to find two such
independent vectors, for instance

aM(l (O, 1, 1, O) (4.5)
and

-(2) (1,-2,0, 1). (4.6)

(IV) Next, for any 6 = (0(1),0(2)) E ]R2, let Me be the vector indexed by E Xo of
the probabilities Me(g) = /O(1),41+0(2)02(i), where q1 and q2 are a basis for S. A pair of
polynomial equations can be obtained from (2.16), using the a's in (4.5) and (4.6):

Qo(l)(M) = M(+ + -)M(- -. +) - M(+ - -)M(- + +) =0 (4.7)

and

Q(2)(M)= M(+++)(M(+ -))2M( -+-) _M(+-+)(M(++±-))2M(-- ) = 0. (4.8)

(V) Let Mo = MeAeoA-1, where A, is the matrix defined in (2.14). It is clear that e =0
is a solution of Qcji) (Me,0o,e) 0 for i = 1, 2, but it it is not easy to tell whether the relations
Qc,(i) are null in the sense that for some value of 6, Q,(i)(MG,,o,,) = 0 for all e. It is to
decide whether these relations are null or effective that we now turn to the exact solution,
as proceeding without it would prove quite arduous.

(VI) It is most convenient to change from the original parameters Oo = (01, 62) to the pa-
rameters a and b appearing in the transition matrix for the Markov chain corresponding to
the Markov random field. Let us indicate this change of parameters by the transformation
(a, b) i-+ O(a, b). We then have

Ma,b = M(a,b) (4.9)
= (a + b)-'[b(l - a)2, ab(l -a), ab(l-a), a2b, ab2, ab(l - b), ab(l - b), a(l -b)2],
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where we use the ordering of the complete local patterns given in (4.3). A direct calculation
(left to the reader) shows that Qa,(i) is a null relation. On the other hand, temporarily
assuming that cO = 0, we note that Qa(2)(Me(a,b),O,) = O reduces to

c(c- 1)ab(b -a)[a- (1- b)]2(c2 -C + ab)[(a + b)2_ (a + b)c+ ab(2-a- b)] = 0, (4.10)
where we have ignored various factors of a+ b and 2c -1. Our assumptions on the parameters
a and b (a, b ¢ 0, a =$ 1-b, and a 0 b) guarantee that (4.10) is not identically zero. Therefore
we only need to study the roots of the last two factors in order to verify that they cannot
be confused with the root at C = CO(= 0) when estimating co from the data. It is easily seen
that the real roots (in C) of last two factors in (4.10), are in (0, 1) for all a, b E (0, 1). The
homogeneity of the polynomial Qa(2) allows us to conclude from the observation that C = 0
is (a single root and) the smallest real root of (4.10), that for any co E [0,°), the root at
C = °OOf Qa(2)(MG(a,b),eo,,) = 0 is (a single root and) the smallest real root [see Lemma 6].

(VIII) We are now ready to define our estimators. Recall that for any given interaction
qo E R6, there is a vector O E R2 with 0o(1)fol + 0o(2)q2 =o, where q1 and q2 the elements
of some basis for S, as described in (II) above. We will estimate co and 0O. First, let y(A)
be the periodic extension to Z of the observed image YA (which is the restriction of the
observable image y to A), and define MA,y to be the vector, indexed by ( E Xg0, of the
empirical frequencies of the specifications of colors ( in y(A) in A [see (2.12]. Then, form the
equation in C,

Qa(2)(MA,yA-1) = 0, (4.11)
[as in (2.23)]. Next, find the smallest real root c(A)(y) of (4.1); [as we proved in the Consis-
tency Theorem]

e (Y) -+c

with P,0 ,0-probability one as A T Zd. Finally, consider the function GMPL :2R- R given
[as in (2.24)] by

0 >-+ GMPL(0, A, y) = I [e(Xoj)]MAyA,)( )(OV) (4.12)
(Xovt)EXrj0

where 7re(xoI) = Me(xo V )/(Me(+ V >) + Mo(-V()), for ( E XNO. The vector @(A)(y) E 2
which maximizes GMPL(0, A, y) satisfies [see the Consistency Theorem (and its proof)]

0 @((y) -- o

with P40,,0-probability one as A T Zd, and this concludes the discussion of the asymmetric
case.

General nearest-neighbor Markov random fields. We retain our 'finite energy' (a, b #
0) and non-Bernoulli (a 0 1 - b) assumptions on the parameters a and b, but now relax the
asymmetry (a # b) hypothesis. Note that it was essential in (4.10) that a 7$ b; if we are
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not given this a-priori information, then Qo,(2) is also a null-relation, and unfortunately no
effective relations are derived from our theory. However, one can now go further, and add
more relations by using the exact solution (4.9) explicitly. An examination of (4.9) yields a
pair of equations which are independent of the two null-relations (4.7) and (4.8):

Q3(M) = M(+ + )-M(- + +)-OX (4.13)
and

Q4(M) = M(+ + +)M(- + ) (M(+ + ))2 = 0. (4.14)
Another direct calculation (left to the reader) shows that Q3 is a null relation. However, it
is also readily seen that Q4(Me(a,b),o,e) = 0 is equivalent (neglecting various factors of a + b
and 2E-1) to

c(- 1)ab[a - (1 - b)]2 = 0. (4.15)
Therefore Q4 is an effective relation, and as above, for any so E [0, 2) and qo E ]R6, we can
define the estimators e(^) and 0(A) to be the smallest (real) root of e '-+Q4(MyA71) = 0
and the vector in ]R2 maximizing (4.12) with this current value of e(A), respectively. These
estimators converge (with Pe0,,,-probability one) to Eo and 00, respectively, where 0o is related
to the interaction qo by Oo(l)q1 + Oo(2)q2 = 400. [Although Q4 was not obtained via the
construction described in Lemma 3, it is a polynomial relation, and so the convergence of
the estimators is according to the Consistency Theorem.]

For the sake of completeness we point out that there are eight components to Ma,b. We
know that these eight components are functions of two parameters, they sum to 1, and they
satisfy Qe,(1)(Ma,b) = Q.(2)(Ma,b) = Q3(Ma,b) = Q4(Ma,b) = 0. Thus we should be able to
extract one more relation from the complete solution, and indeed we can. One choice for a
fifth independent equation is

Q5(M) = M(-+-)[M(-+-)+M(+-+)][M(+++)+M(++_)]2_M2(++_)M(+-+) = 0.
(4.16)

This fifth equation is different from the first four in that it is not homogeneous. On the
other hand it is still possible to base the estimation on this relation, and we conclude this
paper by showing that Q5 is effective as an example of how to proceed in the case of a
nonhomogeneous polynomial.

A somewhat lengthy calculation shows that Q5(MG(a,b),eo,e) = 0 reduces to

(-Eo)[ - (1 - co)](2E- 1)2ab[a - (1 - b)]2 (4.17)
* If2 _ + ab + (1 -4b)co(l co)]
*{3(a+b)E3- [2a + 7b +5(a-b)o]E2

+[b(5 - a2 - ab) + (4a - 6b + 4a2b + 4ab2)E0 + (a + b - 4a2b - 4ab2)E3]E
+[b(a2 - 1) + b(l - 5a2 + ab)co + (b - 2a + 8a2b - 4ab2)62

+(a- b - 4a2b + 4ab2)63]} 0.

We emphasize that because of the nonhomogeneity of Q5 it is no longer sufficient to only
verify that the smallest root in e of Q5(Me(.,b),o,C) = 0 is e = 0; we must show more generally
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that the smallest root in e of Q5(Me(,b),0o,e) = 0 is E = 60. Another feature of the lack of
homogeneity is that it now becomes critical to remember the denominators a+ b and 2E -1 in
Ma,b and A-' when computing (4.17), whereas they could have been neglected in the similar
computations of (4.10) and (4.15). To see that the penultimate factor in (4.17) does not
vanish for any e < cO, we note that at e = fo, this term, its derivative with respect to C, and
its second derivative with respect to e are ab(2Eo - 1)2 (positive), (2eo - 1) (negative), and 2
(positive), respectively. Hence this factor must be strictly positive for all e < co; a similar line
of reasoning shows that the last term in (4.17) is strictly negative for all e < cO. Therefore
Q5 is an effective (albeit nonhomogeneous) polynomial. We can now produce the estimators
e(^) and 0(A), as described above for the homogeneous cases, by using Q5(MyA-1) = 0 to
find C(,) from the observed image YA. [The convergence of the estimators is guaranteed by
the corollary at the end of section 3.]
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