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Abstract
Classical goodness of fit tests, including exact permutation tests, are well-defined

and calculable only if the test statistic is a pivotal quantity. Examples of problems
where the classical approach fails include models with constraints, Bayesian models
with strong prior distributions, hierarchical models, and missing data problems. Using
posterior predictive distributions, we systematically explore the Bayesian counterparts
of the classical tests for goodness-of-fit and their use in Bayesian model monitoring
in the sense of Rubin (1984). The Bayesian formulation not only allows a tail-area
probability (p-value) to be defined and calculated for any statistic, but also allows a
test "statistic" to be a function of both data and unknown (nuisance) parameters (Meng,
1992). The latter allows us to propose the realized discrepancy test of goodness-of-fit,
which directly measures the true discrepancy between data and the model, for any
aspect of the model. We demonstrate how to compute the tail-area probability for the
Bayesian test using simulatiorn, and compare different versions of the test using the x2
discrepancy for linear models. A frequency evaluation shows that, if the replication is
defined by new parameters and new data, then the Type I error of an a-level Bayesian
test is typically less than a, and will never exceed 2a. Also, the posterior predictive
test is contrasted with prior predictive testing (Box, 1980).

Three applied examples are considered. In the first example, which is used to mo-
tivate the work, we consider fitting the Poisson model to estimate a positron emission
tomography image that is constrained to be all-nonnegative. The classical x2 test fails
because the constrained model does not have a fixed number of degrees of freedom in
the usual sense. Under the Bayesian approach, however, goodness-of-fit can be tested
directly. The second and third examples illustrate the details of the Bayesian posterior
predictive approach in two problems for which no classical procedure is available: es-
timation in a model with constraints on the parameters, and determining the number

'We thank Donald Rubin for helpful discussions, Giuseppe Russo for the mortality rate example, Jerome
Kagan, Nancy Snidman and Doreen Arcus for the infant temperament study data, and the National Science
Foundation for financial support.
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of components in a mixture model. In all three examples, the classical approach fails
because the test statistic is not a pivotal quantity: the difficulty is not just how to
compute the reference distribution for the test, but that no such distribution exists,
independent of the unknown model parameters.

Keywords: Bayesian inference, Bayesian p-value, x2 test, contingency table, discrep-
ancy test, likelihood ratio test, mixture model, model monitoring, posterior predictive
test, prior predictive test, p-value, realized discrepancy, significance test.

1 Introduction

1.1 Goodness-of-fit tests

Checking the correctness of an assumed model is important in statistics, especially in

Bayesian statistics. Bayesian prior-to-posterior analysis conditions on the whole structure

(i.e., not just a few moments) of a probability model, and can yield false inferences when the

model is false. A good Bayesian analysis, therefore, should at least include some check of

the plausibility of the model and its fit to the data. In the classical setting, model checking

is often facilitated by a goodness-of-fit test, which quantifies the extremeness of the observed

value of a selected measure of discrepancy (e.g., differences between observations and pre-

dictions) by calculating a tail-area probability given that the model under consideration is

true. This tail-area probability is often called the p-value or significance level, and we will

use these terms interchangeably. This paper attempts to study Bayesian versions of the

usual Fisherian goodness-of-fit tests and explore their uses in Bayesian model monitoring

in the sense of Rubin (1984).

As pointed out in Rubin (1984), a goodness-of-fit test can be based on any "test statis-

tic" or function of the data, and the choices depend on what aspects or characteristics of

the models are considered to be important for the problems under study. For example, if

one wishes to directly compare a set of observations with predictions, then a x2 test on

the residuals might be appropriate. On the other hand, the Kolmogorov-Smirnov test can

be useful to test the goodness-of-fit of an estimate of a continuous distribution function.
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Because in the classical setting a test statistic cannot depend on any unknown quantities,

these comparisons are actually made between the data and the best-fit distribution (typi-

cally maximum likelihood) within the family of distributions being tested. Our Bayesian

formulation will allow a discrepancy measure to be a function of both data and unknown

parameters, and thus allow more direct comparisons between the sample and population

characteristics.

1.2 Difficulties with non-Bayesian methods

In the classical approach, the test statistic-typically a measure of discrepancy between the

best-fit model and the data-is calculated, and the desired p-value measure of goodness-

of-fit is determined, based on the sampling distribution of the data under the model. The

main technical problem with the classical method is that, in general, the p-value depends

on the unknown parameters.

For some problems, such as linear models, the common discrepancy tests have exactly

known null distributions, or at least good approximations. For example, if the parameters

can vary freely in a hyperplane, the log-likelihood has an asymptotic X2_k distribution,

where n is the number of data points and k is the number of parameters being fit. Un-

fortunately, once we move beyond unrestricted linear models, generalized linear models,

and so forth, the handy approximations fail, especially for complicated models with many

parameters. Thus the sampling distributions of the test statistics depend crucially on the

unknown parameters, even for moderately large sample sizes (see our example in Section 2

with a total of 6,000,000 counts). In other words, as is well known, useful test statistics are

typically not pivotal quantities.

The classical approach can fall in at least three kinds of models: severe restrictions on

the parameters, such as positivity; probabilistic constraints, which arise from a hierarchical

model or just a strong prior distribution; and unusual models that cannot be parameterized
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as generalized linear models. Useful approximations to the distribution of test statistics

are possible for simple extensions of the linear model (see, for example, Chernoff, 1954)

but are not useful for more realistic models, especially involving many parameters. In fact,

computing the distribution of classical goodness-of-fit tests can be difficult even in standard

generalized linear models (see McCullagh, 1985, 1986). Once we move beyond the simplest

models and asymptotic approximations, no clearly-defined classical p-values exist for useful

test statistic, even in the case that the sampling distribution of the test statistic can be

calculated exactly.

1.3 Bayesian remedy

When the standard asymptotic-based methods fail, the Bayesian approach, described in

this paper, determines a unique significance level for any goodness-of-fit test. That is,

given a set of data, a hypothesized model (including a prior distribution), and a goodness-

of-fit measure, a unique p-value can be computed, using the posterior distribution under

the model. The Bayesian method reproduces the classical results in simple problems with

pivotal quantities. The price a non-Bayesian must pay for this logical precision, of course,

is the assignment of a prior distribution to the model parameters. Rejecting a Bayesian

model is a rejection of the whole package, and one may suspect that one is rejecting the

prior distribution rather than the model constraints and the likelihood. We will discuss this

issue when presenting the examples.

Of the many versions of Bayesian model monitoring or hypothesis testing in the liter-

ature, what we present here is the posterior calculation of tail-area probabilities, an idea

introduced by Guttman (1967), applied by Rubin (1981), and given a formal Bayesian def-

inition by Rubin (1984). We also briefly examine p-values based on the prior distribution,

as described by Box (1980). Conceptually, the ideas presented here may be thought of as a

Bayesian extension of the classical approach to significance testing. In this paper, we focus
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on testing a whole model, not just a few parameters of it. See Meng (1992) for a discussion

of Bayesian and classical tail-area tests for parameter values within a model.

It may seem surprising that Bayesian tail-area probabilities have not been formally

applied to discrepancy tests, considering the long history of the x2 test and of Bayesian

statistics itself. We believe that the two concepts have escaped combination for so long for

two reasons: first, significance testing has for a long time been considered non-Bayesian

(see, e.g., Berger and Selke, 1987). While willing to occasionally compute x2 tests and

the like, Bayesians have not been quite ready to treat them as respectable methods. For

instance, Jeffreys (1939) and Jaynes (1978) both use x2 tests to good effect, but are mys-

teriously silent on the connection between the significance probabilities and the Bayesian

probability distributions on parameters. Dempster (1974, p. 233) writes, "some Bayesians

may feel comfortable switching over to a significance testing mode to provide checks on their

assumed models." This is of course what we are proposing; the advance of Rubin (1984)

is to give the significance tests a Bayesian interpretation, which, as we show in this paper,

provides a framework for theoretical and computational improvements. Good (1967, 1992)

recommends tail-area P-values, but only as approximations to Bayes factors.

Second, until recently, Bayesian methods were applied to simple enough models that the

usual x2 asymptotics sufficed whenever a goodness-of-fit test was desired. As a result of

increased experience and computing power, Bayesian model monitoring has become practi-

cal for complex models (for example, Smith and Roberts, 1992, recommend using iterative

simulation methods to apply the methods of Rubin, 1984), and thus more general methods

for monitoring more realistic models are in demand.

1.4 The role of tail-area testing in applied Bayesian statistics

In Bayesian statistics, a model can be tested in at least three ways: (1) examining sensitivity

of inferences to reasonable changes in the prior distribution and the likelihood; (2) checking
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that the posterior inferences are reasonable, given the substantive context of the model; and

(3) checking that the model fits the data. Tail-area testing addresses only the third of these

concerns: even if a model is not rejected by a significance test, it can still be distrusted or

discarded for other reasons.

If a data set has an extremely low tail-area probability, we say it has refuted the model

(or else an extremely low-probability event has occurred), and it is desirable to improve the

model until it fits. It may sometimes be practical to continue inference using an ill-fitting

model, but on such occasions we would still like to know that the data do not jibe with the

predictions derived from the posterior distribution.

As usual with goodness-of-fit testing, a large p-value (e.g., 0.5) does not mean the model

is "true," but only that the model's predictions are not suggested by that test to disagree

with the data at hand. Also, "rejection" should not be the end of a data analysis, but

rather a time for examining and revising the model.

Where possible, we try to be fully Bayesian, and consider the widest possible model to

fit any dataset, so that all choices of "model selection" occur within a large super-model.

Within any model, we would just compute posterior probabilities, with no need for p-values.

However, in practice, even all-encompassing super-models need to be tested for fit to the

data. In addition, it is often much more convenient to test a smaller model using tail-area

probabilities than to embed it into a reasonable larger class. While not the end of any

Bayesian analysis, tail-area tests are useful intermediate steps that, for a little effort, can

tell a lot about the relation between posterior distributions and data.

We do not recommend the use of p-values to compare models; when two or more models

are being considered for a single dataset, we would just apply the full Bayesian analysis to the

model class that includes the candidate models as special cases. If necessary, approximations

could be used to restrict the model, as in Madigan and Raftery (1991).

For more detailed discussions of Bayesian tail-area testing and related ideas, see Demp-
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ster (1971, 1974), Box (1980), and Rubin (1984).

1.5 -Outline of the paper

This paper presents Bayesian goodness-of-fit testing as a method of solving the problem of

defining and calculating exact significance probabilities, a problem with serious implications

when considering whether to accept a probability model to use for inference. Section 2

presents a motivating example from medical imaging where the classical approximation

fails. Section 3 defines the Bayesian versions of discrepancy tests, including the realized,

average, and minimum discrepancy tests. Section 4 illustrates these approaches for the

x2 test, where we imagine they will be most frequently applied in practice. Section 5

presents simulation methods for computing the Bayesian p-values as a byproduct of standard

methods of simulating posterior distributions. Two real-data applications are presented in

Section 6. Section 7 provides some general results about the frequency properties of Bayesian

tail-area probabilities. We conclude in Section 8 with a discussion of the implications of

the choice of reference distribution, prior distribution, and test statistic for a Bayesian test,

including a comparison to the method of Box (1980).

In this paper we discuss only "pure significance tests," with no specified alternative

hypotheses. Of course, the test statistic for a pure significance test may be motivated by a

specific alternative, as in the likelihood ratio test, but we will only discuss the use of testing

to highlight lack of fit of the null model. In particular, we do not cover posterior odds ratios

and Bayes factors (e.g., Jeffreys, 1939; Spiegelhalter and Smith, 1982; Berger and Sellke,

1987; Aitkin, 1991), model selection (e.g., Stone, 1974; Raghunathan, 1984; Raftery, 1986),

Q-vaiues (Schaafsma, Tolboom, and Van der Meulen, 1989), or other methods that compare

the null model to specified alternative hypotheses. We intend to use p-values to judge the

fit of a single model to a dataset, not to assess the posterior probability that a model is

true, and not to obtain a procedure with a specified long-run error probability.
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2 Motivating example from medical imaging

The rewards of the Bayesian approach are most clear with real-world examples, all of which

are complicated. This section provides some detail about an example in which it is difficult

in practice and maybe impossible in theory to define a classical p-value. Gelman (1990,

1992a) describes a positron emission tomography experiment whose goal is to estimate the

density of a radioactive isotope in a cross-section of the brain. The two-dimensional image

is estimated from gamma-ray counts in a ring of detectors around the head. Each count

is classified in one of n = 22,464 bins, based on the positions of the detectors when the

gamma rays are detected, and a typical experimental run has about 6,000,000 counts. The

bin counts, yi, are modeled as independent Poisson random variables with means Oi that

can be written as a linear function of the unknown image g:

9= Ag+r,

where 9 = (01,.0,G), A is a known linear operator that maps the continuous g to a

vector of length n, and r is a known vector of corrections. Both A and r, as well as the

image, g, are all-nonnegative. In practice, g is discretized into "pixels" and becomes a long

all-nonnegative vector, and A becomes a matrix with all-nonnegative elements.

Were it not for the nonnegativity constraint, there would be no problem finding an image

to fit the data; in fact, an infinite number of images g solve the linear equation, y = Ag + r.

However, due to the Poisson noise, and perhaps to failures in the model, it often occurs

in practice that no exact all-nonnegative solutions exist, and we must use an estimate (or

family of estimates) 4 for which there is some discrepancy between the data, y, and their

expectations, 6 = Ag + r.

However, the discrepancy between y and 6 should not be great; given the truth of the

model, it is limited by the variance in the independent Poisson distributions. To be precise,
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the x2 discrepancy,
n(y, 6i)2(1X2(y;')=E(Y i(1

i=l &i

should be no greater than could have arisen from a x2 distribution with n degrees of freedom.

In fact, X2(y; 6) should be considerably less, since a whole continuous image is being fit to

the data. (As is typical for positron emission tomography, yi > 50 for almost all the bins i,

and so the x2 distribution, based on the normal approximation to the Poisson, is essentially

exact.)

The hypothesized model was fit to a real dataset, y, with n = 22,464. We would

ultimately like to estimate 6; i.e., to determine the posterior distribution, P(Gly), given a

reasonable prior distribution. We would also like to examine the fit of the model to the

data. For this dataset, the best-fit nonnegative image g was not an exact fit; the discrepancy

between y and 6 = A' + r was X2(y; 6)~ 30,000. This is unquestionably a rejection of the

model, unexplainable by the Poisson variation.

At this point, the model and data should be examined to find the causes of the lack

of fit. Possible failures in the model include error in the specification of A and r, lack

of independence or super-Poisson variance in the counts, and error from discretizing the

continuous image, g.

Consider, now, the following scenario: the experimental procedure is carefully examined,

the model is made more accurate, and the new model is fit to the data, yielding a best-fit

image 9. Suppose we now calculate the estimate of the cell expectations, 6 = A' + r, and

the x2 discrepancy, X2(y; 6). How should we judge the goodness-of-fit of the new model?

Certainly if X2(y; 6) is greater than n + 2V"2 23,000, we can be almost certain that the

model does not fit the data. Suppose, however, X2(y; 6) were to equal 22,000? We should

probably still be distrustful of the model (and thus any Bayesian inferences derived from

it), since a whole continuous image is being fit to the data. After all, if k linear parameters
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were fit, the minimum x2 statistic would have a x2 distribution with n - k degrees of

freedom. For that matter, even X2(y; 6) = 20,000 might arouse suspicion of a poor fit, if we

judge the fitting of a continuous image as equal to at least 3,000 independent parameters.'

Unfortunately, the positivity constraints in the estimated image do not correspond to any

fixed number of "degrees of freedom" in the sense of a linear model.

We have arrived at a practical problem: how to assess goodness-of-fit for complicated

models in "close calls" for which the simple x2 bound is too crude. The problem is impor-

tant, because if we take modeling seriously, we will gradually improve models that clearly

do not fit, and upgrade them into close calls. Ultimately, we would like to perform Bayesian

inference using a model that fits the data and incorporates all of our prior knowledge.

The current problem, however, is more serious than merely obtaining an accurate ap-

proximation. In the classical framework, the p-value (and rejection regions) depend on the

unknown parameters, and quite possibly vary so much with the continuous parameters so

as to be useless in making a rejection decision. In the next section, we review the posterior

predictive approach to hypothesis testing, which alows an exact significance probability to

be defined in any setting.

3 Bayesian tests for goodness-of-fit

3.1 Notation and classical p-values

We will use the notation y for data (possibly multivariate), H for the assumed model, and

6 for the unknown model parameters (6 may be multivariate, or even infinite dimensional,

in a nonparametric model). A classical goodness-of-fit test comprises a test statistic, T,

that is a function from data space to the real numbers; its observed value, T(y); and the

'In fact, as the total number of counts increases, the Poisson variances decrease proportionally, and it
becomes increasingly likely that an exact fit image § will exist that solves y = Ag + r. Thus, conditional on
the truth of the model, X2(y;6) must be zero, in the limit that the number of counts approaches infinity
with a fixed number of bins, n. Due to massive near-collinearity, the positron emission tomography model
is not near that asymptotic state even with 6,000,000 total counts.
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reference distribution of possible values T(y) that could have been observed under H. The

p-value of the test is the tail-area probability corresponding to the observed quantile, T(y),

in the reference distribution of possible values.

To avoid confusion with the observed data, y, we define yreP as the replicated data

that could have been observed, or, to think predictively, as the data we would see if the

experiment that produced y today were replicated with the same model, H, and the same

value of 9 that produced the observed data. We consider the definition of yreP to be part of

our joint probability model. In this notation, the reference set is the set of possible values

of preP, and the reference distribution of the hypothesis test is the distribution of T(yreP)

under the model. In other words, the classical p-value based on T is

pc(y, 9) = P(T(yreP) > T(y) I H, 9). (2)

Here, y is to be interpreted as fixed, with all the randomness coming from yrep.

It is clear that the classical p-value in (2) is well-defined and calculable only if (a) 9 is

known, or (b) T is a pivotal quantity, that is, the sampling distribution of T is free of the

nuisance parameter. Unfortunately, in most practical situations, neither (a) nor (b) is true.

Even if a pivotal, or approximately pivotal, quantity exists, it may be no help for testing

a different aspect of the model fit. A common practice in the classical setting for handling

this dependence on 9 is to insert an estimate (typically the maximum likelihood estimate

under H) for 9. This approach makes some sense: if the model is true, then the data tell us

something about 9, and we should use that knowledge.2 But it obviously fails to take into

account the uncertainty due to unknown parameters. More sophisticated methods such as

finding a range of p-values corresponding to the possible range of values of 9 can be thought

of approximations to the Bayesian approach in the next section.

2One might be wary of a method that tests a model H by using an estimate 8 that assumes H is true
(typically a necessary assumption for any estimate, certainly if a standard error is included too). This is,
however, not a good reason for suspicion; the point of testing a model, or any null hypothesis, is to assume
it is true and check how surprising the data are under that assumption.
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3.2 Bayesian testing using classical test statistics

In the Bayesian framework, the (nuisance) parameters are no longer a problem, because

they can be averaged out using their posterior distribution. More specifically, a Bayesian

model has, in addition to the unknown parameter 0, a prior distribution, P(9). Once the

data, y, have been observed, 0 is characterized by its posterior distribution, P(Ojy). Under

the Bayesian model, the reference distribution of the future observation yreP is averaged

over the posterior distribution of 0:

p(yrep I,H7 = J p(y,reP IH, O)P(O1H, y)dO.
The tail-area probability under this reference distribution is then,

Pb(Y) = P(T(yreP)>T(y)IH,y) (3)

- J P(T(YreP) > T(y)IH, 0)P(0IH, y)dG

- J Pc(y, 0)P(OjH, y)dO, (4)

that is, the classical p-value of (2), averaged over the posterior distribution of 0. This is the

significance level, based on the posterior predictive distribution, defined by Rubin (1984)-.

Clearly, the Bayesian and non-Bayesian p-values are identical when T is a pivotal quan-

tity under the model, H. In addition, the common non-Bayesian method of inserting 0 is

asymptotically equivalent to the Bayesian posterior predictive test, given the usual regu-

larity conditions. For any problem, the Bayesian test has the virtue of defining a unique

significance level, not just some estimates or bounds, and can be computed straightfor-

wardly, perhaps with the help of simulation, as demonstrated in Section 5.

The posterior predictive distribution is indeed the replication that the classical approach

intends to address, although it cannot be quantified in the classical setting if there are un-

known parameters. Figure la shows the posterior predictive reference set, which corresponds

to repeating the experiment tomorrow with the same model, H, and same (unknown) value
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of d that produced today's data, y. Because 9 is unknown, its posterior distribution is

averaged over. (Figures lb and lc are discussed in Sections 8.1 and 8.5, respectively, and

can be ignored here.)

3.3 Bayesian testing using generalized test statistics

The Bayesian formulation not only helps solve the problem of nuisance parameters, a prob-

lem that the classical approach almost always faces, but also allows us to generalize further

by defining test statistics that are a function of both data, y, and the true (but unknown)

model parameters, 9. This generalization beyond the Rubin (1984) formulation is important

because it allows us directly to compare the discrepancy between the observed data and the

true model, instead of between the data and the best fit of the model. It also, as we shall

show in Section 5, simplifies the computations of significance levels.

Let D(y; 9) be a discrepancy measure between sample and population quantities. If we

take D as a generalized test statistic and put it in the place of T in (3), we can formally

obtain a tail-area probability of D under the posterior reference distribution:

Pb(Y) = P(D(yreP; 9) > D(y; 9)IH, y) (5)

J P(D(yrep; 0) > D(y; 9)IH, 9)P(OjH, y)dO. (6)

This p-value measures how extreme is the realized value of the discrepancy measure, D,

among all its possible values that could have been realized under H with the same value of

9 that generates current y. Interestingly, although the realized value is not observed, the

Bayesian p-value, Pb, is well defined and calculable. The reference set for the generalized test

statistic is the same as that in Figure la, except that it is now composed of pairs (yreP, 9)

instead of just yreP. (The term "realized" discrepancy is taken from Zellner, 1975.)

The formulation of generalized test statistics also provide a general way to construct

classical test statistics, that is, test statistics that do not involve any unknown quantities.

For example, as illustrated in Section 4 for the x2 test, the classical statistics that arise
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from comparing data with the best fit under the null typically correspond to the minimum

discrepancy:

Dmin(y) = min D(y; 6).

Another possibility is the average discrepancy statistic,

Davg(y) = E(D(y; 6)IH, y) = J D(y; 6)P(6IH, y)dO,

The corresponding Bayesian p-values are defined by (3) with T being replaced by Dmin and

Davg, respectively. The comparison between Dmin and Davg, as well as with D itself, will

be made in the next section in the context of the x2 test.

4 Bayesian x2 tests

4.1 General case

We now consider a specific kind of discrepancy measure, the x2 discrepancy, by which we

simply mean a sum of squares of standardized residuals of the data with respect to their true,

unknown expectations. For simplicity, we assume that the data are expressed as a vector of

n independent observations (not necessarily identically distributed), y = (Y1, I* yn), given

the parameter vector 6. The x2 discrepancy is then,

X2(Y; 0) = n (Yi - E(yi1))2j var(y1jI6) (7)

For example, the discrepancy in equation (1) in Section 2 is just the above formula for the

Poisson distribution, evaluated at the estimate 6. For this section, we will assume that,

given 6, expression (7) has an approximate x2 distribution.

Now suppose that we are interested in testing a model, H, that constrains 6 to lie in

a subspace of R'. Given a prior distribution, P(6), on the subspace, we can calculate the

Bayesian p-value based on x2 as,

Pb(Y) =|p(X2 > X2(Y; 0))P(OIH, y)dO, (8)
14



where x2 represents a chu-squared random variable with n degrees of freedom. The proba-

bility inside the integral is derived from the approximate x2 distribution of X2 given 9.

Similarly, one can use min or Xavg as the test statistic in place of X2 to calculate the

corresponding Bayesian p-values. The computations, however, are more complicated in gen-

eral, because the sampling distributions of X2 in and X2vg given 9 are generally intractable,

and more simulations are needed beyond those for drawing 9 from its posterior density; see

Section 5 for more discussion of this point. The minimum discrepancy statistic, xmin'
is roughly equivalent to the classical goodness-of-fit test statistic; both are approximately

pivotal quantities for linear and loglinear models.3

4.2 x2 tests with a linear model

Suppose H is a linear model; that is, 9 is constrained to lie on a hyperplane of dimension

k, an example that is interesting in its own right and is also important as an asymptotic

distribution for a large class of statistical models. For the linear model, it is well known that

the minimum x2 discrepancy, 2 in(y), is approximately pivotal with a Xnk distribution

(Pearson, 1900; Fisher, 1922; Cochran, 1952). The Bayesian p-value in this case is just

P(n-k Xmin(Y))-

If 9 is given a noninformative uniform prior distribution in the subspace defined by

H, then the tests based on X2(y; ) and Xavg(y) are closely related to the test based

on x2in(y). With the noninformative prior distribution, the posterior distribution of

X2(y;9)#-X2in(y) is approximately xk. Then we can decompose the average x2 statistic

as follows,

X2Vg(y) = E(X2(y;9)1Y)

= E(X2 +(X2(y; 9) - X (y))IY)
3The classical x2 test is sometimes evaluated at the maximum likelihood estimate and sometimes at the

minimum-X2 estimate, a distinction of some controversy (see, e.g., Berkson, 1980); we consider the minimum
x2 test in our presentation, but similar results could be obtained using the maximum likelihood estimate.
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and thus the average x2 test is equivalent to the minimum x2 test, with the reference

distribution and the test statistic shifted by a constant, k.

For the generalized test statistic, X2(y; 9), the same decomposition can be applied to

the Bayesian p-value formula (8),

Pb(Y) = J p(X2 > X2(y; 9))P(91H, y)d9

J P(X2 > X2 in(Y) + (X2(y; 9) - Xmin)) P(0IH, y)d
- P(X2 > Xmjn(Y) + Xk (9)

- P(X-n Xk> Xmin(y)),

where x2 and X2 are independent x2 random variables with n and k degrees of freedom,

respectively. In other words, testing the linear model using the generalized test statistic is

equivalent to using the minimum x2 test statistic, but with a different reference distribution.

The reference distribution derived from x2 - X2 has the same mean but a larger variance

than the more familiar X2_k distribution, and so a test using the generalized test statistic

is more conservative. For any given data set and a uniform prior distribution, the minimum

(or expected) x2 test will yield a more extreme p-value than the test based on the x2

discrepancy with respect to the unknown 9.

The reference distribution of X2 i depends only on n - k, while the reference distri-

bution for the realized discrepancy, X2, also depends on the number of bins, n. For any

fixed number of degrees of freedom, n - k, the difference between the two reference distri-

butions increases with n, with the realized discrepancy test less likely to reject because it is

essentially a randomized test, with independent X2 terms in each side of (9). Suppose, for

example, n = 250, k = 200, and data y are observed for which X2 in(y) = 80. Under the

minimum discrepancy test, this is three standard deviations away from the mean of the X20

reference distribution-a clear rejection. The corresponding reference distribution for the
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realized discrepancy test is X25 -2X20, which has a mean of 50 and standard deviation of

30, and the data do not appear to be a surprise at all.

What is going on here? The rejection under the minimum discrepancy test is real-the

model does not fit this aspect of the data. Specifically, the data are not as close to the

best fitting model, as measured by x2 i as would be expected from a model with a large

number of parameters. However, it is possible that this lack of fit will not adversely affect

practical inferences from the data. After all, in applied statistics one rarely expects a model

to be "truth," and it is often said that a rejection by a x2 test should not be taken seriously

when the number of bins is large. In the example considered here, the realized discrepancy

indicates that the data are reasonably close to what could be expected in replications under

the hypothesized model. The extra 30 by which the minimum discrepancy exceeds its

expectation seems large compared to 50 degrees of freedom but small when examined in

the context of the 250-dimensional space of y.

If some prior knowledge of 9 is available, as expressed by a nonuniform prior distribution,

the Bayesian test for x2 i is the same, since x2 i is still a pivotal quantity, but the tests

based on X2vg and X2 now change, as the tests are now measuring discrepancy from the

prior model as well as the likelihood. Sensitivity of the tests to the prior distribution is

discussed in Section 8, in the context of our applied examples.

5 Computation of Bayesian p-values
5.1 Computation using posterior simulation

Simulation is often used for applied Bayesian computation: inference about the unknown

parameter, 9, is summarized by a set of draws from the posterior distribution, P(Gly). As

described by Rubin (1984), the posterior predictive distribution of a test statistic, T(y), can

be calculated as a byproduct of the usual Bayesian simulation by (1) drawing values of 9

from the posterior distribution, (2) simulating yreP from the sampling distribution, given 9,
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and (3) comparing T(y) to the sample cumulative distribution function of the set of values

T(yreP) from the simulated replications. This procedure is immediate as long as the test

statistic is easy to calculate from the data. For example, Rubin (1981) tests a one-way

random effects model by comparing the largest observed data point to the distribution of

largest observations under the posterior predictive distribution of datasets. Using the same

approach, Belin and Rubin (1992) use the average, smallest, and largest within-subject

variances to test a family of random-effects mixture models.

Here we present algorithms that use draws from the posterior distribution to compute

Monte Carlo estimates of posterior tail-area probabilities. We first present methods for

computing Bayesian p-values based on the realized discrepancy D(y; 9). Typical examples of

the realized discrepancy functions are the x2 discrepancy (7), the likelihood ratio (measured

against a fixed alternative, such as a saturated model for a contingency table), and the

maximum absolute difference between modeled and empirical distribution functions (the

Kolmogorov-Smirnov discrepancy). We also consider the computations for the minimum

discrepancy, which is most commonly used in classical tests; and the average discrepancy,

where the average is taken over the posterior distribution of 9.

5.2 Computation for the realized discrepancy

There are two ways to simulate a p-value based on the realized discrepancy, D(y; 9). The

first method is to simulate the tail-area directly using the joint distribution of yreP and 9,

as follows:

1. Draw 9 from the posterior distribution, P(91H, y).

2. Calculate D(y;9).

3. Draw yreP from the sampling distribution, p(yreP IH, 9). We now have a sample from

the joint distribution, P(6, yrePly).
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4. Calculate D(yreP; 6).

5. Repeat steps 1-4 many times. The estimated p-value is the proportion of times that

D(yreP;6) exceeds D(y;6).

The steps above generally require minimal computation beyond the first step of drawing

6, which might be difficult, but will often be performed anyway as part of a good Bayesian

analysis. For most problems, the draws from the sampling distribution in step 3 are easy.

In addition, once they have been drawn, the samples from (6, yreP) can be used to obtain

the significance probability of any test statistic, that is, they can be used for simulating

p-values for several realized discrepancy measures.

Alternatively, if the classical p-value based on D(y; 6) (i.e., treating 0 as known) is easy

to calculate analytically, then one can simulate the Bayesian p-value more efficiently by the

following steps:

1. Draw 6 from the posterior distribution, P(61H, y).

2. Calculate the classical p-value, Pc(Y, 6) = P(D(yreP; 6) > D(y; O)IO), where the proba-

bility distribution of yreP is taken over its sampling distribution, conditional on 6.

3. Repeat steps 1-2 many times. The estimated p-value is the average of the classical

p-values determined in step 2.

Step 2 requires the computation of tail-area probabilities corresponding to quantiles from

a reference distribution which, in general, can be a function of 6. For some problems, such

as the x2 test with moderate sample size, the sampling distribution of the discrepancy

statistic, given 6, is independent of 6. In these cases, the cumulative distribution function

of the discrepancy may be tabulated "off-line," and step 2 is tractable even if it requires

numerical evaluation.
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5.3 Computation for the minimum and average discrepancies

Simulating p-values for Dmin and Davg is more complicated because one has to eliminate 6

when evaluating the values of the test statistics. For Dmin, the following steps are needed:

1. Draw 6 from the posterior distribution, P(61H, y).

2. Draw yreP from the sampling distribution, p(yrePIH, 6). We now have a sample from

the joint distribution, P(6, yrePly).

3. Determine the value 9 for which D(yreP; 9) is minimized. Calculate Dmin(yreP) -

D(yrep; 9).

4. Repeat steps 1-3 many times, to yield a set of values of Dmin(yreP). This is the

reference set for the posterior predictive test; the estimated p-value is the proportion

of simulated values of Dmin(yreP) that exceed the observed Dmin(y).

The main computational drawback to the use of Dmin is the required computation in step

3, where estimating 9 from yreP may itself require iteration.

Simulating the p-value for the average discrepancy statistic, Davg(y), is somewhat more

difficult, since it is, after all, a more complicated statistic than Dmin. Mimicking steps 1-4

above is generally infeasible, since now step 3 would require, not just a minimization, but

a full simulation (or integration) over the posterior distribution of 6, given yreP. In other

words, one may need to perform nested simulation.

In addition, if the posterior distribution for 6 given yreP can be multimodal, the op-

timization, simulation, or integration required to compute p-values for Dmin or Davg can

be difficult or slow compared to the realized discrepancy computation, which requires the

distribution of 6 to be computed only once, conditional on the observed y.
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6 Applications

6.1 Fitting an increasing, convex mortality rate function

For a simple real-life (or real-death) example, we reanalyze the data of Broffitt (1988), who

presents a problem in the estimation of mortality rates. (Carlin, 1992, provides another

Bayesian analysis of these data.) For each age, t, from 35 to 64 years, inclusive, Table 1

gives Nt, the number of people insured under a certain policy and yt, the number of insured

who died. (People who joined or left the policy in the middle of the year are counted as

half.) We wish to estimate the mortality rate (probability of death) at each age, under the

assumption that the rate is increasing and convex over the observed range. The observed

mortality rates are shown in Figure 2 as a solid line; due to low sample size, they are not

themselves increasing or convex. The observed deaths at each age, Yt, are assumed to follow

independent binomial distributions, with rates equal to the unknown mortality rates, Ot,

and known population sizes, Nt. Because the population for each age was in the hundreds,

and the rates were so low, we use the Poisson approximation for mathematical convenience:

P(yI~) H~ OYtNtOtP(Y Io) ac nt stat e-Ns

To fit the model, we used a computer optimization routine to maximize the likelihood,

under the constraint that the mortality rate be increasing and convex. The maximum

likelihood fit is displayed as the dotted line in Figure 2.

Having obtained an estimate, we would like to check its fit to the data; if the data are

atypical of the model being assumed, we would suspect the model. The obvious possible

flaws of the model are the Poisson distribution and the assumed convexity.

Classical x2 tests

The x2 discrepancy between the data and the maximum likelihood estimate is 30.0, and

the minimum x2 fit is 29.3. These are based on 30 data points, with 30 parameters being
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fit. However, there are not really thirty free parameters, because of the constraints implied

by the increasing, convexity assumption. In fact, the maximum likelihood estimate lies

on the boundary of constraint space; at that point, the solution is characterized by only

four parameters, corresponding to the two endpoints and the two points of inflection of the

best-fit increasing, convex curve in Figure 2. So perhaps a X26 distribution is a reasonable

reference distribution for the minimum chi-squared statistic?

As a direct check, we can simulate the sampling distribution of the minimum chi-squared

statistic, assuming 9 = 9, the maximum likelihood estimate. The resulting distribution of

X2 (yreP) is shown in Figure 3; it has a mean of 23.0 and a variance of 43.4 (by comparison,

the mean and variance of a X26 distribution are 26 and 52, respectively). The observed test

statistic, x2in(y) = 29.3, is plotted as a vertical line in Figure 3; it corresponds to a tail-

area probability of 16.5%. The distribution of Figure 3 is only an approximation, however,

as the true value of 9 is unknown. In particular, we do not expect the true 9 to lie exactly on

the boundary of the constrained parameter space. Moving 9 into the interior would lead to

simulated data that would fit the constraints better, inducing lower values of the minimum

x2 statistic. Thus, the distribution of Figure 3 should lead to a conservative p-value for the

minimum x2 test.

Bayesian inference under the hypothesized model

To perform Bayesian inference, we need to define a prior distribution for 9. Since we

were willing to use the maximum likelihood estimate, we use a uniform prior distribution,

under the constraint of increasing convexity. (The uniform distribution is also chosen here

for simplicity; Broffitt, 1988, and Carlin, 1992, apply various forms of the gamma prior

distribution.) Samples from the posterior distribution are generated by simulating a random

walk through the space of permissible values of 9, using the algorithm of Metropolis (1953).

Due to the convexity constraint, it was not convenient to alter the components of 9 one

22



at a time (the Gibbs sampler); instead, jumps were taken by adding various linear and

piecewise-linear functions, chosen randomly, to 6. Three parallel sequences were simulated,

starting at the maximum likelihood estimate and two crude extreme estimates of 0-one

a linear function, the other a quadratic, chosen to loosely fit the raw data. Convergence

of the simulations was monitored using the method of Gelman and Rubin (1992), with the

iterations stopped after the within-sequence and total variances were roughly equal for all

components of 6. Nine samples from the posterior distribution for 6, chosen at random from

the last halves of the simulated sequences, are plotted as dotted lines in Figure 4, with the

maximum likelihood estimate from Figure 2 displayed as a solid line for comparison.

Bayesian tests using classical test statistics

To define a Bayesian significance test, it is necessary to define a reference set of replications;

i.e., a set of "fixed features" in the notation of Rubin (1984). For this dataset, we defined

replications in which the (observed) population size and (unobserved) mortality rate stayed

the same, with only the number of deaths varying, according to their assumed Poisson

distribution. For each draw from the posterior distribution of 6, we simulated a replication;

a random sample of nine replicated datasets is plotted as dotted lines in Figure 5, with the

observed frequencies from Figure 2 displayed as a solid line for comparison.

It is certainly possible to test the goodness of fit of the model by directly examining a

graph like Figure 5, following Rubin (1981). The inspection can be done visually-is the

solid line an outlier among the forest of dotted lines?-or quantitatively, by defining a test

statistic such as Y64, the number of deaths at age 64, and comparing it to the distribution

of simulated values of Y64 . Sometimes, however, a formal test is desired to get a numerical

feel for the goodness-of-fit or to present the results to others in a standard form; to illustrate

the methods presented in previous sections, we work with the x2 test.

For each simulated replication, yreP, the computer optimization routine was run to find
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the minimum x2 discrepancy, X2 (p(reP). A histogram of these minimum x2 values-the

reference distribution for the Bayesian minimum x2 test-is displayed in Figure 6. With

a mean of 21.1 and a variance of 39.6, this posterior predictive reference distribution has

lower values than the approximate distribution based on the maximum likelihood estimate

and displayed in Figure 3. The Bayesian posterior p-value of the minimum x2 is 9.7%,

which is lower than the maximum likelihood approximation, as predicted.

Bayesian tests using gerneralized test statistics

Finally, we compute the posterior p-value of the x2 discrepancy itself, which requires much

less computation than the distribution of the minimum x2 statistic, since no minimization

is required. For each pair of vectors, (9, yreP), simulated as described above, X2(yreP; 9)

is computed and compared to X2(y; 9). Figure 7 shows a scatterplot of the realized and

predictive discrepancies, in which each point represents a different value of 9 drawn from

the posterior distribution. The tail-area probability of the realized discrepancy test is just

the probability that the predictive discrepancy exceeds the observed discrepancy, which in

this case equals 6.3%, the proportion of points above the 450 line in the figure. The realized

discrepancy p-value is lower than the minimum discrepancy p-value, which perhaps suggests

that it is the prior distribution, not the likelihood, that does not fit the data. (The analysis

of linear models in Section 4.2 suggests that if the likelihood were rejecting the data, the

minimum discrepancy test would give the more extreme tail-area probability.)

We probably would not overhaul the model merely to fix a p-value of 6.3%, but it

is reasonable to note that the posterior predictive datasets were mostly higher than the

observed data for the later ages (see Figure 5), and to consider this information when

reformulating the model or setting a prior distribution for a similar new dataset-perhaps

the uniform prior distribution in the constrained parameter space should be modified to

reduce the tendency for the curves to increase so sharply at the end. Gelman (1992b)
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describes a similar theoretical problem with a multivariate uniform prior distribution for

the values of a curve that is constrained to be increasing, but not necessarily convex.

6.2 Testing a finite mixture model in psychology

Stern et al. (1992) fit a latent class model to the data from an infant temperament study.

Ninety-three infants were scored on the degree of motor activity and crying to stimuli at 4

months and the degree of fear to unfamiliar stimuli at 14 months. Table 2 gives the data,

y, in the form of a 4 x 3 x 3 contingency table. The latent class model specifies that the

population of infants is a mixture of relatively homogeneous subpopulations, within which

the observed variables are independent of each other. The parameter vector, 8, includes the

proportion of the population belonging to each mixture component and the multinomial

probabilities that specify the distribution of the observed variables within a component.

Psychological and physiological arguments suggest two to four components for the mixture,

with specific predictions about the nature of the infants in each component. Determining

the number of components supported by the data is the initial goal of the analysis.

Standard analysis

For a specified number of mixture components, the maximum likelihood estimates of the

latent class are obtained using the EM algorithm (Dempster, Laird, and Rubin, 1977).

The results of fitting one through four-component models are summarized in Table 3. The

discrepancy measure that is usually associated with contingency tables is the log likelihood

ratio (with respect to the saturated model),

L(y;O) = 2 yi log Y '

where the sum is over the cells of the contingency table. The final column in Table 3

gives Lmin(y) for each model. The two-component mixture model provides an adequate

fit that does not appear to improve with additional components. The maximum likelihood
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estimates of the parameters of the two-component model (not shown) indicate that the

two components correspond to two groups: the uninhibited children (low scores on all

variables) anid the inhibited children (high scores on all variables). Since substantive theory

suggests that up to four types of children may be present, some formal goodness-of-fit test is

desirable. It is well known that the usual asymptotic reference distribution for the likelihood

ratio test (the x2 distribution) is not appropriate for mixture models (Titterington, Smith,

and Makov, 1985), although it is common practice to use the x2 distribution as a guideline.

Bayesian inference

A complete Bayesian analysis, incorporating the uncertainty in the number of classes, is

complicated by the fact that the parameters of the various probability models (e.g., the

two and four-component mixture models) are related, but not in a straightforward manner.

Instead, a separate Bayesian analysis is carried out for each plausible number of mixture

components. The prior distribution of the parameters of the latent class model is taken to

be a product of independent Dirichlet distributions: one for the component proportions, and

one for each set of multinomial parameters within a component. The Dirichlet parameters

were chosen so that the multinomial probabilities for a variable (e.g., motor activity) are

centered around the values expected by the psychological theory but with large variance

(Rubin and Stern, 1992). The use of a weak but not uniform prior distribution helps identify

the mixture components (e.g., the first component of the two-component mixture specifies

the uninhibited infants). With this prior distribution and the latent class model, draws from

the posterior distribution are obtained using the data augmentation algorithm of Tanner and

Wong (1987). Ten widely dispersed starting values were selected and the convergence of the

simulations was monitored using the method of Gelman and Rubin (1992). Once the number

of iterations required for the data augmentation to converge was determined, sequences of

this length were used to generate draws from the posterior distribution. The draws from
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the posterior distribution of the parameters for the two-component model were centered

about the maximum likelihood estimate. In models with more than two components, the

additional components cannot be estimated with enough accuracy to identify the type of

infants corresponding to the additional components.

Bayesian tests using classical test statistics

To formally assess the quality of fit of the two-component model, we define replications of

the data in which the parameters of the latent class model are fixed. These replications may

be considered data sets that would be expected if new samples of infants were to be selected

from the same population. For each draw from the posterior distribution, a replicated data

set yreP was drawn according to the latent class sampling distribution. The reference

distribution of the average discrepancy, Lmin(yreP), based on 500 replications, is shown in

Figure 8 with a dashed line indicating the value of the test statistic for the observed sample.

The mean of this distribution, 23.4, and the variance, 45.3, are not consistent with the X20

distribution that would be expected if the usual asymptotic results applied. The Bayesian

p-value is 92.8% based on these replications. If the goodness of fit test is applied to the

one-component mixture model (equivalent to the independence model for the contingency

table), the simulated Bayesian posterior p-value for the likelihood ratio statistic is 2.4%.

Bayesian tests using generalized test statistics

The p-value obtained from the Bayesian replications provides a fair measure of the evidence

contained in the likelihood ratio statistic where classical methods do not. However, mixture

models present a difficulty that is not addressed by the classical test statistic: multimodal

likelihoods. For the data at hand, two modes of the two-component mixture likelihood were

found, and for larger models the situation can be worse. For example, six different modes

were obtained at least twice in maximum likelihood calculations for the three-component
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mixture with 100 random starting values. The likelihoods of the secondary modes range

from 20% to 60% of the peak likelihood. This suggests that inferences based on only a

single mode, such as the test based on Lmin, may ignore important information.

The p-value for the realized discrepancy between the observed data and the probability

model, L(y; 9), uses the entire posterior distribution rather than a single mode. In addition,

the realized discrepancy requires much less computation, since the costly maximization

required for the computation of Lmin(yreP) at each step is avoided. For each draw from the

posterior distribution of 9 and the replicated data set, yreP, the discrepancy of the replicated

data set relative to the parameter values is compared to that of the observed data. Figure

9 is a scatterplot of the discrepancies for the observed data and for the replications under

the two component model. The p-value of the realized discrepancy test is 74.0% based

on 500 trials. If the adequacy of the single component model is tested using the realized

discrepancy, then the p-value is 5.8% based on 500 Monte Carlo samples. Here the minimum

discrepancy test gives the more extreme p-value, in contrast to the mortality rate example.

The Bayesian goodness-of-fit tests show no evidence in the current data to suggest

rejecting the two-component latent class model. Since there is some reason to believe

that a four-component model describes the population better, we can ask whether a larger

data set (more cases and more variables) would be expected to reject the two-component

model. By averaging over a prior distribution on four-component models, and then over

hypothetical data sets obtained from that model, we can evaluate the effect of increasing

the size of the dataset. These calculations indicate that the current sample size does not

provide sufficient power to reject the two-component model when the data come from the

larger model. The infant laboratory has recently obtained measurements on five variables

for three hundred infants; this data set should provide the required power.
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7 Long-run frequency properties

Although we are not seeking procedures that have specified long-run error probabilities,

it is often desirable to check such long-run frequency properties "when investigating or

recommending (Bayesianly motivated) procedures for general consumption" (Rubin, 1984).

In the absence of specified alternatives, as in our setting, classical evaluation focuses on the

Type I error, that is, the probability of rejecting a null hypothesis, given that it is true. In

an exact classical test, the Type I error rate of an a-level test will never exceed a; that is,

Pr(p, < ajH) <Ca. (10)

The left side above may depend on the unknown parameter 9, in which case the replication

underlying equation (10) is only conceptual in the sense that it cannot be simulated.

Such frequency evaluation is not a part of traditional Bayesian analysis, but in the

current context the frequency calculation is in fact straightforward because the Bayesian

formulation provides a natural way to quantify different replications under which the "Type

I" error is measured. For example, if we are interested in the error rate under the replication

with the same value of 8 that produced today's data, then we can use the posterior predictive

distribution as the replication. Of course, such a replication may be viewed as too restrictive

since data sets from different studies may well be generated from different values of 8 even

if they come from the same null model. It therefore may be more relevant to measure the

Type I error rate of Pb under the prior predictive distribution under H (Box, 1980),

P(yrePIH) - Jp(yreplH, )P(9)de (11)

which allows different values of 8 for each replication. In order for (11) to be defined,

the prior density P(81H) must be proper, as in Box (1980). Other replications, such as

fixing some components of 8, can also be of practical interest. More discussion of defining

replications is given in Section 8.1 and in Rubin (1984).
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The classical result (10) can be derived by comparing the sampling distribution of PC

to a uniform distribution. The following result establishes a general result for the prior

predictive distribution of the Bayesian p-value, Pb, as compared to the uniform distribution.

Since classical test statistics are special cases of generalized test statistics, we only state the

result in terms of generalized test statistics.

Theorem. Suppose the sampling distribution of D(y; 9) is continuous. Then under the

prior predictive distribution (11), Pb is stochastically less variable than a uniform distribution

but with the same mean. That is, if U is uniformly distributed on [0,1], then

(i) E(pb) = E(U) = 2

(ii) E(h(pb)) < E(h(U)), for all convex functions h on [0,1].

The proof of the theorem is a simple application of Jensen's inequality, noting that

Pb = E(pc(y, 0)IH, y), where Pc is given by (2) and has a uniform distribution given 9 under

our assumption. Details can be found in Meng (1992). The above result indicates that,

under the prior predictive distribution of (11), Pb is more centered around 2 than uniform2

since it gives less weight to the extreme values than the uniform distribution. Intuitively,

this suggests that there should exist an cao small enough such that

Pr(pb < ca) . a, for all aE [0,ao]. (12)

Of course, the value of ao will depend on the underlying model so there is generally no

guarantee such as ao > 0.05. Because of (i) and (ii), however, the left side of (12) cannot

be too big compared to a. The following inequality, which is a direct consequence of the

above theorem, as proved in Meng (1992), gives an upper bound on the Type I error.
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Corollary. Let G(a) = Pr(pb < a) be the cumulative distribution function of pb under

(11). Then

G(a) < a + [a2 - 2 G(t)dt] < 1, for all a E [0, 1]. (13)

The first inequality becomes equality for all a if and only if G(a)= a.

One direct consequence of (13) is that

G(a) < 2a, for all a < (14)

which implies that, under the prior predictive distribution, the Type I error rate of Pb will

never exceed twice the nominal level (e.g., with a = 0.05, Pr(pb < a) < 0.1). Although the

bound 2a in (14) is achievable in pathological examples, the factor 2 is typically too high

for a lying in the range of interest (i.e., a < 0.1). See Meng (1992) for more discussion.

8 Choosing an appropriate test

A Bayesian goodness-of-fit test requires a reference set to which the observed dataset is

compared, a prior distribution for the parameters of the model under consideration, and

a test statistic summarizing the data and unknown parameters. We discuss each of these

features in turn.

8.1 The reference distribution

Choosing a reference distribution amounts to specifying a joint distribution, P(y, 9, yreP),

from which all tail-area probabilities can be computed by conditioning on y and integrating

out 9 and yreP.

Both the examples in Section 6 consider replications in which the values of the model

parameters are fixed (although unknown), and therefore, draws from the posterior predictive

distribution are used to obtain replicated data sets. It is also possible, in the manner of Box
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(1980), to define the distribution of the predictive data, yreP, as the marginal distribution

of the data under the model:

p(yrepIH) = Jp(yrepIH,6)P(61H)d6.

In this manner of thinking, the Bayesian model has no free parameters at all, because

the "true value" of any parameter 6 can be thought of as a realization of its known prior

distribution. This prior predictive distribution is exactly known under the model, without

reference to 6. We may thus think of the model H as a point null hypothesis, with a tail-

area probability that does not depend on 0 and, in fact, averages the parameter-dependent

significance probability over the prior distribution of 6:

p-value(y) = P(T(yreP)>T(y)IH)

= J P(T(yreP) > T(y)IH, 6)P(GIH)d6

= JPC(Y, 6)P(61H)d6,

as proposed by Box (1980).

The prior and posterior predictive distributions for 6 are, in general, different, and their

associated significance probabilities can have quite different implications about the fit of the

model to the data. Although both are based on Bayesian logic, the two approaches differ

in their definitions of the reference distribution for yreP, as is shown in Figure 1.

Figure la shows the posterior predictive reference set, which corresponds to repeating

the experiment tomorrow with the same (unknown) value of 6 that produced today's data,

y. Because 6 is unknown, its posterior distribution is averaged over.

In contrast, Figure lb shows the reference set corresponding to the prior predictive

distribution, in which new values of both 6 and y are assumed to occur tomorrow. Since a

new value of 6 will appear, the information of today's data about 6 is irrelevant (once we

know the prior distribution), and the prior distribution of 6 should be used.
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In practice, the choice of a model for hypothesis testing should depend on which hypo-

thetical replications are of interest. For some problems, an intermediate reference set will

be defined, in which some components of 9, and perhaps of y also, will be fixed, and thus

drawn according to their posterior distributions, while the others are allowed to vary under

their conditional prior distributions. Rubin (1984) discusses these options in detail.

Of course, the various choices affect only the model for the predictive replications;

Bayesian estimation of 9, which assumes the truth of the model, is identical under what we

call the "prior" and "posterior" formulations.

8.2 Comparison with the method of Box (1980)

We illustrate the Bayesian goodness-of-fit test, in its prior and posterior forms, for an

elementary example. Consider a single observation, y, from a normal distribution with

mean 9 and standard deviation 1. We wish to use y to test the above likelihood, along with

a normal prior distribution for 9 with mean 0 and standard deviation 10. As a test statistic,

we will simply use y itself.

Prior predictive distribution

Combining the prior distribution and the likelihood yields the marginal distribution of y:

ylH N(0, 101).

When considering the Bayesian model as a point null hypothesis, we just use this as the fixed

reference distribution for yreP. If the test statistic is y, then the prior predictive p-value

is the tail area probability based on this distribution. Thus, for example, an observation

of y = 50 is nearly five standard deviations away from the mean of the prior predictive

distribution, and leads to a clear rejection of the model.

33



Posterior predictive distribution

To determine the posterior tail-area probability, we must derive the posterior distribution

of 0 and then the posterior predictive distribution of yreP, both under the hypothesized

model H. From standard Bayesian calculations, the posterior distribution of 0 is,

and the posterior predictive distribution of yreP, given y, is,

yrep Ny 1' N + 1 (15)

If we simply let the test statistic be y, then the posterior predictive p-value is just the tail

area probability with respect to the normal distribution (15). For example, an observation

of y = 50 is only 0.35 standard deviations away from the mean under the posterior predictive

distribution. The observation, y = 50, is thus consistent with the posterior but not the prior

predictive distribution.

The difference between the prior and posterior tests is the difference between the ques-

tions, "Is the prior distribution correct?" and "Is the prior distribution useful in that it

implies a plausible posterior model?" As the above example shows, it is possible to answer

"no" to the first question and "yes" to the second. Different reference sets correspond to

different conceptions of the prior distribution. The posterior predictive distribution treats

the prior as an outmoded first guess, whereas the prior predictive distribution treats the

prior as a true "population distribution."

The comparison becomes clearer if we consider an improper uniform prior distribution,

which is well known often to yield reasonable posterior inference even though any data point

whatsoever appears to be a surprise if, for instance, we use as a test statistic the inverse

of the absolute value of y: T(y) = lyi-1. With an improper uniform prior distribution, the

prior predictive distribution of tyl-1 will be concentrated at 0, and any finite data point, y,
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will have a prior predictive p-value of zero. By comparison, the posterior predictive p-value

will be 0.5 in this case.

8.3 The role of the prior distribution

In our posterior testing framework, the prior distribution for the parameters of the model

need not be especially accurate, as long as the posterior distribution is "near" the data.

This relates to the observation that Bayesian methods based on arbitrary prior models

(normality, uniformity, Gaussian random walk (used to derive autoregressive time series

models), etc.) can often yield useful inference in practice.

In the latent class example of Section 6.2, p-values for evaluating the fit of the one and

two-component models have been calculated under a variety of prior distributions. Two

properties of the prior distribution were varied. The center of each component of the prior

distribution was chosen either to match the values suggested by the psychological theory,

or to represent a uniform distribution over the levels of each multinomial variable. The

strength of the prior information was also varied (by changing the scale of the Dirichlet

distributions as measured by the sum of the Dirichlet parameters). As long as the prior

distributions are not particularly strong, the size of the p-values and the conclusions reached

remained essentially unchanged. This was true for tests based on Dmin and D.

If the prior distribution is strongly informative, however, it affects the tail-area prob-

abilities of different tests in different ways. Tests based on the realized discrepancy are

naturally quite sensitive to such prior distributions. The posterior distribution obtained

under strong incorrect prior specifications may be quite far from the data. For example, in

Section 6.2, a strong prior distribution specifying two mixture components, but not corre-

sponding to inhibited and uninhibited children, leads to a tail-area probability of essentially

zero, and thus the model is rejected. By comparison, the minimum discrepancy test is much

less sensitive to the prior distribution, because the original dataset is judged relative to the
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best-fitting parameter value rather than to the entire posterior distribution. The sensitivity

of different test statistics to the specification of the prior distribution may be important in

the selection of the test statistic for a particular application.

8.4 Choosing a test statistic

As in the classical approach, our test statistic appears arbitrary, except in the case of a point

null hypothesis and a point alternative, in which case the Neyman-Pearson lemma justifies

the likelihood ratio test. In more complicated models, as illustrated here, test statistics are

typically measures of residuals between the data and the model, or between the data and

the best fit of the model.

If one decides to test based on a discrepancy measure, D, there is still the choice of

whether to apply the Bayesian test to Dmin, Davg, D itself, or some other function of

the posterior discrepancy. The minimum discrepancy has the practical advantage of being

standard in current statistical practice and easily understandable. In addition, Dmin is a

function only of the data and the constraints on the model, and not of the prior distribution

of the model parameters. A disadvantage of the minimum discrepancy is that it measures

only the best fit model parameters, and ignores how much of the posterior distribution of

the model is actually close to the data. This problem is potentially serious if the posterior

distribution is multimodal, as in the example of Section 6.2.

The average discrepancy has the clear advantage of using the whole posterior distri-

bution, not just a single point, and has the related feature of possibly testing the prior

distribution as well as the constraints on the parameters. Testing the prior distribution

is an advantage for serious Bayesian modelers and perhaps a disadvantage to others who

are just using convenient noninformative prior distributions. The evidence collected thus

far indicates that weak or noninformative prior distributions are not likely to affect the

goodness-of-fit test whereas strong prior information may affect the test. If the prior infor-
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mation is strong, it should certainly be tested along with the rest of the model. The main

drawback of the average discrepancy test is computational: a simulation or integration is

required inside a larger simulation loop.

The realized discrepancy test shares the above-mentioned virtues (or defects) of the

average discrepancy test and, in addition, is easy to compute, especially if simulations from

the posterior distribution have already been obtained, as is now becoming almost standard in

Bayesian statistics. Although the realized discrepancy cannot be directly observed, testing

it is in some ways simpler than any other discrepancy test.

8.5 Recommendations

In general, we recommend using the posterior predictive reference distribution, except in

some hierarchical models with local parameters 9 and hyperparameters a in which it is

reasonable to imagine 9 varying in the hypothetical replications, while the hyperparameters

a remain fixed-that is, use the posterior predictive distribution for a but a conditional prior

predictive distribution (conditional on the a but not y) for 9, as pictured in Figure lc. The

posterior predictive distribution must be used for any parameter that has a noninformative

prior distribution.

In choosing the prior distribution (and, for that matter, the likelihood), robustness to

model specification is a separate problem from goodness-of-fit, and is not addressed by the

methods in this article. As discussed above, however, different discrepancy measures test

different aspects of the fully-specified probability model.

Finally, test statistics can be often chosen to address specific substantive predictions

of the model, as discussed by Rubin (1981, 1984), or suspicious patterns in the data that

do not seem to have been included in the model, as in Belin and Rubin (1992). Often

these problem-specific test statistics depend only on the data (i.e., they are not generalized

test statistics). When considering test statistics based on discrepancies-possibly because
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discrepancies such as x2 and the likelihood ratio are conventional, or because of a particular

substantive discrepancy of interest in the problem at hand-we recommend the realized

discrepancy test, because of its direct interpretation and computational simplicity compared

to the minimum or average discrepancy tests.
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Table 1: Mortality rate data from Broffitt (1988)
number number

age, t insured, Nt of deaths, Yt
35 1771.5 3
36 2126.5 1
37 2743.5 3
38 2766.0 2
39 2463.0 2
40 2368.0 4
41 2310.0 4
42 2306.5 7
43 2059.5 5
44 1917.0 2
45 1931.0 8
46 1746.5 13
47 1580.0 8
48 1580.0 2
49 1467.5 7
50 1516.0 4
51 1371.5 7
52 1343.0 4
53 1304.0 4
54 1232.5 11
55 1204.5 11
56 1113.5 13
57 1048.0 12
58 1155.0 12
59 1018.5 19
60 945.0 12
61 853.0 16
62 750.0 12
63 693.0 6
64 594.0 10



Table 2: Infant temperament data
motor cry fear=1 fear=2 fear=3

1 1 5 4 1
1 2 0 1 2
1 3 2 0 2
2 1 15 4 2
2 2 2 3 1
2 3 4 4 2
3 1 3 3 4
3 2 0 2 3
3 3 1 1 7
4 1 2 1 2
4 2 0 1 3
4 3 0 3 3

Table 3: Comparing latent class models
Degrees of

Model Description Freedom Lmi-(y)
Independence (= 1 class) 28 48.761
2 Latent Classes 20 14.150
3 Latent Classes 12 9.109
4 Latent Classes 4 4.718
Saturated I



Figure la: The posterior predictive distribution

y -T(y)
0

\\ yreP T(yreP)

rep _T_ yrep
Yi 1Y2 (-- y

Figure lb: The prior predictive distribution
0 y -- -T(y)

arep8teP ~T(yleP)
rep rep rep

.rep_rep_T__rre

reference
distribution

reference
distribution

J'

Figure lc: A mixed predictive distribution

0 y T(y)

H -aa

Hrep yrep __P

rep yrep reT(yP)
~ 2 Ty~eP

0~~~~~~4

I

reference
distribution

H

H*

-

.-



Figure 2: Observed mortality frequencies and the maximum likelihood estimate of the
mortality rate function, under the constraint that it be increasing and convex
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Figure 3: Histogram of simulations from the reference distribution for the minimum x2
statistic for the mortality rates: classical approximation with 9 set to the maximum

likelihood estimate
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Figure 4: Nine draws from the posterior distribution of increasing, convex mortality rates,
with the maximum likelihood estimate as a comparison

0

0
0
0

Qit
CU

0L
M

C_)

0

0 -

35 40 45 50 55 60 65

age

Figure 5: Nine draws from the posterior predictive distribution of mortality frequencies,
corresponding to the nine draws of Figure 4, with the raw data a.s a comparison
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Figure 6: Histogram of simulations from the reference distribution for the minimum x2
statistic for the mortality rates, using the Bayesian posterior predictive distribution
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Figure 7: Sca.tterplot of predictive vs. realized x2 discrepancies for the mortality rates,
under the Ba.yesian posterior distribution; the p-value is estimated by the proportioni of

points above the 450 line.
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Figure 8: Histogram of simulations from the reference distribution for the log likelihood
ratio statistic for the latent class example, using the Bayesian posterior predictive

distribution.
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Figure 9: Scatterplot of predictive vs. realized log likelihood ratio discrepancies for the
la.tent class model, under the Bayesian posterior distribution; the p-value is estimated by

the proportion of points above the 450 line.
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