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Markovian Bridges: Construction, Palm Interpretation, and Splicing

by

Pat Fitzsimmons 1, Jim Pitman2, Marc Yor2

1. Introduction.

By a Markovian bridge we mean a process obtained by conditioning a Markov process

X to start in some state x at time 0 and arrive at some state z at time t. Once the

definition is made precise, we call this process the (x, t, z)-bridge derived from X. Impor-

tant examples are provided by Brownian and Bessel bridges, which have been extensively

studied and find numerous applications. See for example [PY1, SW, Sa, H, EL, AP,

BP]. It is part of Markovian folklore that the right way to define bridges in some generality

is by a suitable Doob h-transform of the space-time process. This method was used by

Getoor and Sharpe [GS4] for excursion bridges, and by Salminen [Sa] for one-dimensional

diffusions, but the idea of using h-transforms to construct bridges seems to be much older.

Our first object in this paper is to make this definition of bridges precise in a suitable

degree of generality, with the aim of dispelling all doubts about the existence of clearly

defined bridges for nice Markov processes. This we undertake in Section 2. In Section 3 we

establish a conditioning formula involving bridges and continuous additive functionals of

the Markov process. This formula can be found in [RY, Ex. (1.16) of Ch. X, p.378] under

rather stringent continuity conditions. One of our goals here is to prove the formula in its

"natural" setting. We apply the conditioning formula in Section 4 to show how Markovian

bridges are involved in a family of Palm distributions associated with continuous additive

1 Research supported in part by NSF Grant DMS 91-01675.
2 Research supported in part by NSF Grant DMS 91-075.31.

1



functionals of the Markov process. This generalizes an approach to bridges suggested in a

particular case by Kallenberg [K1], and connects this approach to the more conventional

definition of bridges adopted here.

Our concern with these matters was prompted by an interesting splicing construction,

the inverse of a path decomposition that we now describe in the context where we first

encountered it. Perman, Pitman and Yor [PPY] considered a process Y = (Ys)o.<s
constructed as follows from a standard Brownian bridge B = (B)o.8<<, that is to say the

(0, 1, 0)-bridge derived from a standard one-dimensional Brownian motion. Let U be a

random time independent of B, with uniform distribution on [0, 1]. Let G be the time of

the last zero of B before time U, D the time of the first zero of B after time U. Delete

the segment of the path of B over the excursion interval ]G, D[, close up the gap of length

D - G to obtain a path of random length 1 - (D - G), then standardize this path by

Brownian scaling to obtain a random path Y parameterized by [0, 1]. According to [PPY,

Corollary 3.15], the law of this process Y is absolutely continuous with respect to the law

of the standard Brownian bridge B, with density proportional to L1, the local time of B

at zero up to time 1. On the other hand, Aldous and Pitman [AP] give a decomposition

of the original Brownian bridge B into three independent paths: two standard bridges

obtained by Brownian scaling of the segments of B on [0, G] and B on [D, 1], and one

standard signed excursion obtained similarly from B on [G, D]; moreover these three

paths of length 1 are independent of the triple of interval lengths (G, D -G, 1- D), which

has the same exchangeable Dirichlet(1/2,1/2,1/2) distribution as (N2/I, M2/S, 02/E),

where N,M and 0 are independent standard normal variables, and E = N2 + M2 + o2.

Since the path of Y can be recovered from the two bridges in this decomposition and the

fraction T = G+_D' it follows that Y admits the following decomposition at time T:

(i) IP(T E dt) = p(t)dt, where p(t) = (r tX())' is the arc-sine density on [0, 1]

of N2I/(N2 + 02), and

(ii) conditional on the event {T = t}, the process Y splits into independent pieces
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(Ys)o<.<t and (Y8)t<.<l whose conditional distributions are those of Brownian

bridges over the time intervals [0, t] and [t, 1] respectively.

Here by a Brownian bridge over [u, v], say, we mean a standard Brownian motion started

at 0 at time u and conditioned to return to 0 at time v.

The above observation prompts the question of what process Y is obtained by pre-

scribing some other density p(t) on [0, 1] for T as in (i) above, then splicing together two

Brownian bridges of lengths T and 1 - T, as in (ii)? The law of Y can be computed

explicitly:

(1.0) IP(Y E dw) = j f(t) dLt(w) * IP(B E dw),

where B denotes a Brownian bridge, Lt(w) is the Brownian local time at zero up to

time t, defined for all 0 < t < 1 for almost all w relative to the law of B, and

f(t) = p(t) 2wt(1-t). Using a version of Bayes' rule one can compute the conditional

distribution of T given Y:

f(t) dLt (Y)(1.1) J~~~~~P(TE dt Y) - f1 ()d~Y

In particular, in case p(t) is the arcsine density, f(t) = 7F is constant, the density

of the law of Y relative to B reduces to N/27Lj, and the conditional distribution of T

given Y is proportional to the local time: P(T < t1Y) = Lt(Y)/L1(Y). Note also that no

such splicing of bridges can yield a "pure" bridge Y, for the density factor in (1.0) cannot

be 1 almost surely, no matter what the choice of p(t). Put another way, given a standard

Brownian bridge B, it is impossible to find a random time T such that T falls almost

surely in the zero set of B, and given T the processes B on [0, T] and B on [T, 1] are

independent bridges over these intervals.

In the main result of this paper, we apply the Palm interpretation of bridge distri-

butions to establish a general "splicing" construction for Markov processes which includes

the above example as a special case. An informal description of this result is as follows.
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Let (X8)s>o be a time-homogeneous Markov process with state space E. Fix e > 0 and

let a space-time point (Z, T) be chosen according to a suitable distribution on E x [0, t].

Conditional on {Z = z, T = t} let Y be the concatenation of independent X-bridges,

the first an (x, t, z)-bridge, the second a (z, e - t, y)-bridge. Then the (unconditional)

distribution of Y is absolutely continuous with respect to the law of an (x, t, y) -bridge,

and the Radon-Nikodym derivative can be written down explicitly. Moreover, the condi-

tional distribution of (Z, T) given Y can be expressed by a formula analogous to (1.1).

This result is presented more formally as Proposition 4 in Section 4. Finally, in Section 5

we record a general probabilistic interpretation of the family of Palm measures associated

with a random measure, which underlies the splicing result in the context of Markovian

bridges.

2. Construction of Bridges

For the rest of the paper, we will work with a right Markov process X =(Xt)t>o
with state space E and transition semigroup (Pt). Thus X is a strong Markov process

with right continuous sample paths. To streamline the exposition, we assume that E is

Lusinian (i.e., homeomorphic to a Borel subspace of some compact metric space), that Pt

maps Borel functions to Borel functions, and that the paths of X are cadlag. This allows

us to realize X as the coordinate process on the sample space Q of all cadlag paths from

[0, oo[ to E. The law of X when started at x is ]P. We write (.Ft)t>o for the natural

(uncompleted) filtration of X and (0t)t>o for the usual shift operators. (Certain details,

in particular the completion of the a-algebras Ft, will be left to the reader.)

A reasonable theory of bridges requires (at a minimum) that X have transition

densities; namely that

(2.1) Pt(x, dy) = pt(x, y) m(dy)

where m is a a-finite measure on E. Note that this condition forbids jumps at fixed
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times:

(2.1a) IP.,(Xt =Xt-) =1, Vt > O,x E E.

To see this, consider T, the first time at which X has a jump of size bigger than e; then

by virtue of (2.1), IP.,(T = t) = 0 for all t > 0 by [GS4, (3.18)].

To develop things fully we need to assume a bit more. We suppose that there is a

second right process X in duality with X relative to the measure m. This means that

the semigroup (Pt) of X is related to (Pt) by

(2.2) J f(x)Ptg(x) m(dx) = J Ptf(x)g(x) m(dx),

for all t > 0 and all positive Borel functions f and g. For simplicity we assume that X

and X have infinite lifetimes; this implies that m is an invariant measure for X (and for

X as well). It is known that (2.1) and (2.2) imply that there is a version of the density

pt(x,Iy) that is jointly measurable in (t, x, y) and such that the Chapman-Kolmogorov

identity

(2.3) Pt+s(X, Y) = JPt(x, z)p(z, y) m(dz)

holds for all ss,t > 0, and x,y e E. Moreover, the dual of (2.1) is valid:

(2.4) Pt(x, dy) = pt(y, x) m(dy).

See [D, GS4, Wi, Y].

Note, for example, that any one-dimensional regular diffusion without absorbing

boundaries satisfies the above hypotheses, with the speed measure of the diffusion serving

as the reference measure m; see [IM, p. 149 ff.].

We now use Doob's method of h-transforms to construct bridge laws IPt which for

each x and t will serve as a family of regular IPx conditional laws for (Xt, 0 < t <ct) given

X_- = y. In view of (2.1a), these IP' will serve equally well as conditional laws given
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Xe = y rather than given X_ = y. But with the h-transform approach it is natural to

thiink primarily in terms of conditioning the left limit. For background and further details,

the reader can consult [Ml, F, AJ, GS1, GS4, RY].

Fix x; y E E and e, 0 such that 0 <p(x, y) < oo. Using (2.3) it is a simple matter

to check that the process

Ht= pe-t(Xt,y), O<t<C,

is a (positive) martingale under IP2. Consequently, the formula

(2.5) Q(A) = Ht(w) I)x(dL), A E t, O <t< e,
defines a finitely additive set function Q = Ql on the algebra g = Uo<t<jEt such that

each restriction Qljy is a-additive. We claim that Q extends to a measure on Fe-, the

a-algebra generated by 59. This extension, when normalized by pe(x, y), will be the law

ipex,y.
We verify the claim as follows. Let Qe be the space of right continuous paths from

[0, e [ to E that have left limits on ]0, e [. We can view Q as a finitely additive measure

on f7. in the obvious way. The point is that Q2e equipped with its natural filtration

(9t)o<t<f is "projectively closed" so that we may apply the projective limit theorem to

conclude that Q extends to a (u-additive) measure Q* on the a-algebra Vo<t<e9t. (See

[AJ] or the appendix in [F]; (Qe, (9t)o<t<e) is a "standard system" in the terminology of

Parthasarathy [Pa].) If we knew that Q* gave full measure to the set of paths with left

limits at e, then we could identify Q* with a measure on (Q,h-) and this would be the

desired extension. Here is the first place where the duality hypothesis (2.2) comes into play.

For we can make the dual construction, obtaining a measure Q* on Qe corresponding to

X started at y and conditioned to have left limit x at time t. Let Q+ be the space of

cadlag maps from ]O, £[ to E. We can view both Q* and Q* as measures on Q+4. Using

(2.2), a check of finite dimensional distributions shows that Q* is the image of Q under

the time-reversal mapping which sends a path w E Qt to the path (w((e -t)-))o<t<.
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Since Q* is concentrated on those paths whose right limits at time 0 exist and equal y,

it must be that Q* concentrates its mass on those paths whose left limits at time e exist

and equal y.

Thus there is a measure Q = Ql on (Q,Fe) such that (2.5) holds. Let us define

1pe = f [pe(x,y8)L' Qe,!, if 0 < pe(x,y) <oo,
1O, otherwise.

The above discussion is summarized in the following

Proposition 1. Under the assumptions (2.1), (2.2), and (2.3), if 0 < pe(x, y) < oo then

there is a unique probability measure IP on (Q, Fe) such that

(2.6) ie,(F) * p(x, y) =IPx(F ppt-t(Xt, y))

for all positive Ft-measurable functions F on Q, for all 0 < t < t. Under I T yI the

coordinate process (Xt)o<t<e is a non-homogeneous strong Markov process with transition

densities

(2.7) p(Y' )(z,s;zI,t) = pt-s(zz')pet-t(z' O< s < t <4.
Pt-s(z,)Y

Moreover ]Pt Y(Xo = x, Xe = y) = 1. Finally, if F > 0 is Fe- -measurable, and g > 0 is

a Borel function on E, then

(2.8) IPz(Fg(Xe)) = JJPt(F)g(y)pe(x,y)m(dy),

a formula which holds also with Xe instead of Xe-. Thus (IPY)yEE is a regular version

of the family of conditional probability distributions l]Px(- iXe = y), y E E, equally so

with Xt instead of Xe-.

Proof. The strong Markov property of (Xt)o<t<e under IPt follows from (2.6) by

optional stopping, and the reader can easily verify the formula (2.7) for the transition

densities. Thanks to the monotone class theorem, in proving (2.8) it suffices to consider
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EFt-measurable F, where 0 < t < e. For such F, by the Markov property at time t, (2.6),

and (2.la),

IPx (Fg(Xet_)) = JPx (F P-t g(Xt))

= JPx(F JP-t(Xt, y)g(y) m(dy)) = J 1Pz(F pe t(Xt, y)) g(y) m(dy)

= J JPz,(F)pe(x, y) g(y) m(dy),

as desired. 0

Remark. A few comments concerning ratios such as (2.7) are in order. First note

that if pt(x,y) < oo, then the optional sampling theorem applied to the martingale

Ht = p&_t(Xt,y) shows that {(z,t): pt-t(z,y) = oX} is IPx-polar in the sense that

IPx(pe_t(Xt, y) = oo for some t E]O, t [) = 0. Because of (2.6), it is likewise true that

{(z, t): pe-t(z, y) = oo} is ]Pe,y -polar. Similarly, since a positive martingale "sticks" to the

value 0 once that value is attained, we have IPtP,y(pe-t(Xt, y) = 0 for some t e [0, f [) = 0.

These observations should comfort the reader should our subsequent treatment of ratios

such as (2.7) seem cavalier.

We conclude this section by mentioning some results which flow easily from Proposi-

tion 1 under the basic hypotheses (2.1), (2.2) and (2.3).

Corollary 1. Suppose 0 < pe(x,Y) < oo. The Ipe -law of the time-reversed process

(X(e_t)_)o<t<e is IPY! , the law of a (y,t,x)-bridge for the dual process X.

Corollary 2. Suppose 0 < p(x, y) < oo. For each (Ft) stopping time T, a IP y regular

conditional distribution for (XT+u,O<0 U < e- T) given FT on (T <k) is provided by

ipe-T
XT ,Y'

Applied to the dual process after time reversal and conditioning on Xe, Corollary 2

implies the following decomposition of the original Markov process X at random times r

that correspond to stopping times on the reversed time scale (first for r with i < e, then

for unbounded r by an easy argument). A special case of this result is due to Kallenberg

[K1]. See also [Yo] for an application to Bessel processes.
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Corollary 3. Suppose that X is a Hunt process. For each random time r such that

(r > t) is in the a -field generated by (Xt+u+ U > 0), a IP. regular conditional distribution

for (Xt, 0 < t < ) given (r, XT, X+u, u > 0), is provided by IPX.r

A crucial ingredient of the proof is the "left Markov property" of X at such times T,

which are co-optional relative to the space-time process based on X. See [GS2, GS3] for

details, especially section 6 of [GS3].

3. Conditioning Formula.

Recall that a continuous additive functional (CAF) of X is a continuous increasing

adapted process (At)t>o such that for all s, t > 0, for EPx a.e. w E Q,

(3.1) At+s(w) = At(w) + As(9tL).

By a "perfection" theorem due to Walsh [Wa], we can assume without loss of generality

that (3.1) holds for all s, t > 0 and all w E Q, that t -* At(w) is continuous for all w E Q,
and that At is Ft*+-measurable for each t > 0, where Yt is the universal completion of

.Ft =a{X, 0 < s < t}. See also the appendix in [G] for a detailed discussion.

In the following discussion we fix a CAF A = (At) such that

(3.2) IP(At < oo) = 1, Vt > O,x E E.

All that follows is based on a formula, due to Revuz [R], allowing the explicit computation

of expectations involving A. The Revuz measure v associated with A is defined by

(3.3) v(g) = t1lIPm ( g(X,)dA,

where g is any positive Borel function on E. The fact that the right side of (3.3) does

not depend on t > 0 is an easy consequence of (3.1) and the invariance of m. Because of

(3.2), the measure v is a-finite; see [R, p. 509]. The role of v is expressed in the following
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key formula: if f is a positive measurable function on E x [0, oo [, then for all x E E and

t > ,

(3.4) P(j f(Xs s)dAs) = j dsJ v(dy)ps(x,y)f(y,s).

Actually, the Laplace-transformed version of this formula (under the hypothesis of resolvent

duality) was established by Revuz [R] for standard processes, and under weaker conditions

by Meyer [M2]. Getoor & Sharpe [GS4] have proved formula (3.4) under the present

hypotheses (plus standardness) by applying Revuz' result to the space-time process (Xt, t),

which is in resolvent duality with (Xt, -t). Since we are restricting attention to continuous

additive functionals, standardness is unnecessary. See [AM] and also [GS1].

Before proceeding we record the version of (3.4) appropriate to bridges.

Lemma 1. Fix e> o and x, y E E such thatO < pe(x,y) < oo. Then for O < t < t and

Borel f > 0,

(3.5) iPx, (f f(XsIs)dAs) = f dsJ v(dz) [P8(XZ2(Pf.;)(Z7Y)] f(z, s).

Proof. It suffices to prove the lemma in case 0 < t < e. Using (2.6) we have

(3.6) Pe(X,y)JPptY ( fjf(Xs,s)dAs) = f(j f(xs)dA -Pep-t(Xt,Y))
But for fixed t the IP. -optional projection of the (constant in time) process s ) Pe-t(Xt, Y)
0 < s < t, is the process s -4 Pt_8(X,,pe.(.,y)), 0 < s < t, which coincides with

pt-,(Xs, y) because of the Chapman-Kolmogorov identity. Feeding this into (3.6), and

then using (3.4), we arrive at the right side of (3.5), and the lemma is proved. [1

We now prove our CAF conditioning formula, first for the laws TPx.

Proposition 2. Hf H > 0 is a predictable process and f > 0 is a Borel function on

Ex [0,oo[,then

(3.7) ]Px ( Hsf(Xs,s)dAs) =IPx (jtIPzx(Hs)f(Xss) dA,).
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Proof. By the monotone class theorem we need only consider processes H of the form

H8 = 1]a,b](S) - C, where 0 < a < b < t and C E -Fa is bounded and positive. For such an

H the left side of (3.7) becomes

(c.8C.f(x8s)dA8) =I, (. ( f(X(u +a)dAu) °(a)

(3.8)C=IPXc 2 ( af(Xuu+ a)dAu)).

On the other hand the right side of (3.7) equals

IPz (jb P,x8(C) f(X8,S)dAI)

(3.9) x(C)=jb dsI (dz)JPX(C)p(x z) f(z, s) by (3.4)
br
ds J v(dz)JPx(Cps- a(Xa, z)) f(z, s), by (2.6)

= IPx(C9(Xa)),

where

g(y) = ds J (dz)ps-a (Y, z)f(z, S) = IP! (j f(Xu, u + a) dAu)

Thus (3.8) and (3.9) combine to yield (3.7). a

Remark. Since the diffuse measure dA8 does not charge the countable set of discon-

tinuities of X, formula (3.7) holds also with X, replaced by Xq- (three times). This

point should be borne in mind in the sequel. It is also worth noting that Proposition 2 is

valid if X is a Hunt process and A is a predictable (but possibly discontinuous) additive

functional, provided X, is replaced by X,_ in (3.3) and (3.7). (See [GS4].) In fact, the

same replacement makes (3.4) valid for predictable A, and the reader will have noticed

that the continuity of A was not used explicitly in the proof of Proposition 2. Any Hunt

process satisfying (2.1) (but not necessarily the duality hypothesis (2.2)) for which bridge

laws IPt can be constructed such that the altered form of (3.7) holds for all predictable

H and A, must satisfy the CMF (=Co-Markovien Forte) condition of Azema [A]. If, in
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addition, the reference measure m is invariant, then by results in [A], X must have a

strong Markov dual X such that (2.2) holds. In this sense our duality hypothesis is not

too much to ask if we wish (3.7) to hold.

The bridge form of (3.7) follows from Proposition 2 in the same way that Lemma 1

followed from (3.4). We state the result but leave the proof to the reader.

Proposition 3. Hf H > 0 is a predictable process and f > 0 is a Borel function on

E x [0, oo[, and if 0 <pe(x,y) < oo, then for 0 < t < e

(3.10) Pt, ( Hsf(XsIs)dA) = IPz (jIPSx(H8)f(X87s)dAS).

More general versions of Propositions 2 and 3, in which tf(Xs s) dAs is replaced by

an arbitrary predictable additive functional of the space-time process, are also valid if X is

a Hunt process. The ramified form of Propostion 3 leads to an alternate proof of Corollary

3 once one notes that for a time 'r as in the corollary, the dual predictable projection of the

increasing process t f 4 l{<t} is an additive functional of the space-time process. (Recall

from the remark following Corollary 3 that r is co-optional for the space-time process.)

In the same vein one can express the conditional distribution of (Xt, 0 < t < r) given

(X,._, r) in terms of bridge laws, provided the dual predictable projection of t - 1Or<t}
has the form fo A, dAs, where A is a predictable process and A is a predictable additive

functional. See [JY, Prop. (3.13)] for a prototype result in this direction.

4. Splicing Bridges.

VWe are now prepared to prove the splicing theorem outlined in section 1. Fix x, y E E

and e > 0 such that 0 < pe(x, y) < oo. Also, fix a probability distribution on E x]0, e

of the form p(z,t)v(dz)dt, where p(z,t) = 0 whenever pt(x,z)p-e.t(z,y) = 0, and

where v is the Revuz measure of a CAF A = (At) as in section 3. (Revuz [R] has

shown tha.t a measure v is associated with a CAF satisfying (3.2) if and only if zv
charges no semipolar set and there is a strictly positive Borel function 0b on E such
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that sup,EEfOE exp(-t)pt(x,y)4'(y)v(dy) < oo and inf{t > 0: 4(Xt) < 1/n} -Z as

n oo, almost surely.) Consider the probability space (I*,*,1P*):

Q* Ex]O,e[xQ x Q,

.F - se(101e )XsX

JP*(dz, dt, dw7, dw') = p(z, t) v(dz) dt IPtz(dw)IPyt(dw')
(A path chosen according to IPt is continued beyond time t with the constant value z;

we thereby identify IPt with a law on Ye that is concentrated on {w: w(s) = w(t-), t <

s <k}.) We write w* = (z,t,w,w') for the generic point of Q*, and (w/t/w') for the path

obtained by splicing w and w' together at time t. That is,

f w(s), if 0 < s < t,

(w/t/w)(s) w'(s- t), if s > t.

Notice that w (w/t/ltw). Now define

Z(w*) =-z, T(wo*) =t,

Ys(w*) = X8(w/t/w'), 0 < s < e,

A(4*)= A8(w/t/w'), 0 < s.< e.

Thus

IP*(Z E dz,T E dt) = p(z,t)v(dz)dt,

and the conditional distribution of Y given {Z = z, T = t} is the law ]pt 0o1p-t on

(0,jFe_) defined by

(4.1) p0 P-t(H) = j j t ,(dw)IP'-t(dw')H(wLt/w').
In other words, under IPt 0oIp't the path fragments (Y8)o<8<t and (Yt+8)o<8<e-. are

independent, with laws IPt and ]Pe-t respectively.

The following refinement of Proposition 3 is the key to our main result.

13



Lemma 2. Let A be the CAF of X associated with v as in section 3, and write

(4.2) K = jf(Xt1t)dAt1

where f is a positive Borel function on Ex]0, e [. If H > 0 is Fe- -measurable, then

(4.3) JPXy(HK) = ]odt]v(dz) [ P j f(z,t)P, o0IPEt(H).

Remark. Let (e be the random measure on E x ]0, e [ that is the image of dAt (a measure

on ]0, t [) under the mapping t '-+ (Xt, t). In the terminology of random measures, taken

from Kallenberg [K3, Ch. 10] and reviewed in Section 5, the lemma states that under

Ipet the probabilities jpt O]pt-t serve as the family of Palm distributions of (t. Just as

this result follows from Proposition 3, it follows from Proposition 2 that for ( the random

measure on E x ] 0, oo [ that is the image of dAt under the mapping t -+ (Xt, t), under IPx
the probabilities IPt o lPz serve as the family of Palm distributions of (. In case At is

the local time at a recurrent point in the state-space of X, the latter assertion is implicit

in Kallenberg's work [K1].

Proof. Consider the process

Jt(z,w) = j Pt-ft(dwJ)H(w/t/I'), 0 < t < t.

It is easy to check that ((w, t), z) '-4 Jt(z, w) is Pt 0 E-measurable, where Pt is the

predictable a-algebra restricted to Q x [0, e [ and E is the Borel a-algebra on E. Moreover,

Jt(Xt(w), L) is a version of the IPF) -optional projection of the process t '-+ H. (This is

easy to see if H has the form 1k fk(XtC); an appeal to the monotone class theorem settles

the matter.) Consequently,

(4.4) IPt y(HK) = e ( Hf(Xtjt) = t (1 JtX, )f(Xtt)dA)

If we now apply Proposition 3 to the last term in (4.4), then (4.3) follows. U
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We apply Lemma 2 with a specific choice of the function f in the definition (4.2) of

A:

[Pe(X, y)1(4.5) f(z,t) = p(z,t) [pt(Xz)Pe-t(z,Y)]

Proposition 4. Let Z, T, and Y be defined on ( I*,:*,1P*) as described above. If

H > 0 is F.. -measurable, then

(4.6) IP*(H(Y)) = IPt (HK),

where K = fo f(Xt, t) dAt aad f is given by (4.5). Moreover, the conditional distribution

of (Z, T) given Y is determined by

(4 7) IP*(g(Z T) Y) ffo(Yt,t)f(Ytt)dAt

part of the assertion being that

IP*(O < j f(Ytjt)dA* < o=) 1.

Proof. Let H > 0 be an Fe- -measurable function on Q, and let g > 0 be a Borel function

on Ex]O,C[. Then by Lemma 2,

IP*(H(Y) g(Z, T))
(4.)= dt J v(dz)p(z, t) ]P, oIPt`(H) g(z, t)

=48IdtJ v(dz) f(Z t)w,pt o]Pt-t(H) g(z, t)
w fPt =

where K foj g(Xt, t)f(Xt, t) dAt. The first assertion in Proposition 4 follows upon taking
g = 1 in (4.8). Next, A = A, oY is measurable over the IP* -completion of cr(Y), since

A8 is measurable over the universal completion of F,. Let K* =- fo f(Yt, t) dA* , so that

K* = KoY. By (4.8),

]P*(K*O=0) = JPt ,(K; K = 0) = 0,
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and

]P*(K* > A) = IPy(K;K > A) -O Gas A -÷ 00,

since IP'y,(K) = f'O dt fEv(dz) p(z, t) = 1. Thus IP*(O < K* < cx) = 1. Now (4.7)
follows easily from (4.8). [1

Remark. It follows immediately from Proposition 4 that if Q* = (K*)-lIP*, then

Q*(Y e *) IPt y, while Q*((Z,T) e JY) = IP*((Z,T) E jY).

Example. Suppose that x E E is a regular point for X. That is, IPx(inf{t > 0

Xt = x} = 0) = 1. Then by [BG, V,(3.13)] X admits local time at x. This is a CAF

Lt= L' of X such that Lt = fO1{:1(X8)dL8 for all t > 0. The Revuz measure of L

is proportional to the point mass at x, and we normalize L so that v = VL e. Thus,

writing p(s) =p (x, x),

IPF(Lt) = p(s)ds, t > 0,

and
ft _________SY

IP =(Lt)= t
- s)] ds, O< t <L.

Let p be a probability density on ]0, t [ and define f(z, t) = f(t) = p(t)p(f)/[p(t)p(e- t)].

Proposition 4 states that if we splice together two X -bridges (each beginning and ending

at x ) at an independent time T with law p(t) dt, then the law of the resulting process Y

is absolutely continuous with respect to ]Pj with Radon-Nikodym derivative f (t) dLt

In particular, the choice p(t) = [p(t)p(e- t)]/[p(e)c(t)], where c(t) = ]Pt z(Le), leads to

f 1_l/c(Q), so the density factor is simply Le/c(e). In case X is one-dimensional Brownian

motion, these are the results presented in the introduction around formulae (1.0) and (1.1).

There is a multivariate version of the result of this section, whose formulation and proof

we leave to the reader. The idea is to replace (Z, T) by (Z1,T1),... , (Zn, Ta), where T1 <

T2 <... < Tn. By making a suitable choice of the joint density of (Z1, T1),... , (Zn, Tn)
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one can obtain a spliced process whose density relative to the X -bridge is a multiple of

(At)n/n!.
Consider for example the setup in the introduction, with B a Brownian bridge on

[0,1], U uniformly distributed over [0, 1], independent of B, and let ]G, D[ be the

excursion interval straddling U. Using the tripartite decomposition of B at times G

and D into bridge/excursion/bridge, and the fact that given G and D, U is uniform on

]G, D[, we can use U to perform the (inverse) Vervaat shuffle on the excursion fragment

[V,Bi,BP], thereby obtaining three adjacent bridges. The joint law of G and D is then

exactly what is required to make the transformed process have unconditional law with

density a constant times (L1 )2 relative to the standard bridge. Compare with [PPY,

Corollary 3.15]: a process whose law has density a constant times (Ll)n relative to that of

the standard bridge B is obtained from B by length biased sampling without replacement

of n excursion intervals, closing up the gaps, and standardizing.

5. A General Probabilistic Interpretation of Palm Measures

The passage from Lemma 2 to Proposition 4 illustrates a general calculation involving

random measures and their Palm measures which we have found useful in other contexts

(see [PPY, Lemma 4.1] [PY2, Lemma 2.2]), and which it seems worth recording in a

general setting. The general result of this calculation appears in Proposition 5 below.

Let (Q, F, Q) be a probability space, (S, S) a measurable space, and ( a random

measure on S based on (Q, F, Q). That is, ((w, A) is a F-measurable function of w e Q

(A e B(S) fixed) and a measure on (S,1B(S)) as a function of A (w E Q fixed). The

intensity measure of ( is

(5.1), A(A) = J((w,A)Q(dw), A E B(S),

which we assume to be a-finite. Let us assume that the bimeasure

Q( (A); B), A E B(S), B E F,
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admits a disintegration

(5.2) Q(6(A); B) = A Q(B),

where (x, B) i-÷ QX(B) is a Markov kernel from (S, B(S)) to (Q, F). (For a disintegration

as in (5.2) to exist, it is sufficient that Q be a Polish space and that ,F be the corresponding

Borel ca-algebra.)

The collection {Qx: x E S} is the family of Palm distributions associated with the

random measure 6. When 6 is the random counting measure corresponding to a point

process with no multiple points, QX may be interpreted intuitively as Q conditioned on 6
putting a point at x. See for example [K2]. In case 6 is a more general random measure,

in particular if 6 is diffuse, the intuitive meaning of the Palm measures is less clear. Still,

the following proposition offers a general probabilistic interpretation of Palm measures in

terms of expanding the probability space to allow that, given 6, a point X E S is picked

at random with some density relative to 6.

Proposition 5. Suppose defined on a probability space (Q*, F*, P*) an S -valued random

variable X and an Q -valued random variable W. If

(5.3) P*(X E dx) = f(x)A(dx)

for some probability density f on S relative to the intensity measure A, and

(5.4) P*(W E dwIX = x) = g(wJx)QX(dw)

for some jointly measurable g(wJx), then

(5.5) P*(W E dw) = h(w)Q(dw),

(5.6) P*(X E dxlW = w) = j(xjw)6(w, dx),

where

(5.7) h(w) = jf(x)g(wIx) (w, dx),
s
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(5.8) j(xlw) = f(x)g(wlx)/h(w).

Conversely, if the joint law of W and X is such that (5.5) and (5.6) hold for some

probability density h relative to Q, and some jointly measurable j(xlw), then (5.3) and

(5.4) hold with

(5.9) f(x) = j h(w)j(xlw)QX(dw),

(5.10) g(wlx) = h(w)j(xlw)/f(x).

The proof just uses the definition of the Palm distributions: Q(dw)6(w,dx)
A(dx)Qx(dw), and a standard Bayes type calculation, as spelled out for instance in [L,

Lemma 2.1].

In conclusion, we reflect that in recent years arguments involving random measures

and their associated Palm measures have played an increasingly important role in the

theory of Markov processes. See for instance [AM, Fi, G]. Just as bridge laws can be

interpreted as Palm distributions, so can excursion laws. See for instance [Pi], where a

generalization of Bismut's [B] decomposition of the Brownian excursion is explained in

terms of Palm distributions.
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