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Limit laws for Brownian motion conditioned to reach a high level.

by Michael Klass and Jim Pitman

Dept. Statistics, U.C. Berkeley, Ca. 94720, U.S.A.

Abstract. A functional limit theorem is presented for the behaviour of Brownian
motion conditioned to reach a high level during a fixed time interval. The asymptotic
behaviour of the conditioned path as the level tends to infinity is related to Williams'
path decomposition at the maximum.
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0. Introduction.

Let B = (B1, t > 0) be a standard Brownian motion on the line starting at Bo = 0. Let

Mt= supB; T,,.m,1 = sup{s.t:Bs=Mt}; Th = inf{t: B1=h}.

Mathew and McCormick (1992) obtain the limiting distribution as h -> oo of
h jl - T,,, 1 conditional on the event (Th < 1). (Note that the events (Th . 1) and

(M1 > h) are identical, due to path continuity of B). Here. we consider for h > 0 the
process (B,, 0 < t < 1 I Th < 1), that is to say the Brownian motion on the time interval
[0, 1 ] conditioned to reach level h at some time in this interval. We extend Mathew
and McCormick's result to a functional limit theorem for a rescaled version of this
process as h -+ oo. A precursor of this type of result, in a slightly different context,
was obtained by Berman (1982, Lemma 5.1).

1. Results.

As a first approximation, it is easy to see that for large h, conditioning B on the event

(Th < 1) forces the path to stay fairly close to the line ht, 0 S t < 1. More precisely,
we have the following elementary proposition, whose proof is left to the reader:

Research supported in part by NSF grants DMS-90-07469 and DMS-91-07531



Klass - Pitman: BM conditioned to reach a high level.

Proposition 1.1. As h -* 0o,
d

(B,- ht, 0 < t < 1 1 Th < 1) -* (B,, 0 < t < 1 1 B1 = 0),

d
where the right side is standard Brownian bridge, and -e denotes convergence of dis-

tributions on the path space C [0, 1 ] with the topology of uniform convergence.

In particular, Proposition 1.1 implies that as h -* oo

d
(l.b) (B1-h ITh.l) - 0,

d

(l.c) (l-Th ITh < 1) - 0,
d

where -* now denotes convergence of one-dimensional distributions. Our concern
here is a second order of approximation, starting with how to normalize the random
variables in (1.b) and (l.c) to obtain non-trivial limit laws. In Section 2 we prove:

Lemma 1.2. As h -* oo

(h2(I _Th) I Th < I) C

tv

where C has exponential (1/2) distribution: P (C E dz )ldz = e2, and denotes
2

convergence of laws in total variation norm.

Now let

(l.d) ,h = h2(1 -Th)

(l.e) Bh (t) = h [B (Th + tlh2)-h ], t > 0,

By the strong Markov property of BM at time Th, and Brownian scaling, Bh is a BM

independent of Th, hence also independent of Ch given Th < 1. So from Lemma 1.2

we easily obtain

Theorem 1.3. As h -* oo
tv

(Bh (t), 0 C t < ,h I Th < 1) -e (B,, 0 5 t < 4)

where 4 has exponential (112) law, independent of the Brownian motion B.

The limit process appearing here, Brownian motion killed at an independent exponen-
tial time with mean 2, is a diffusion with particularly simple structure. It is well
known that due to its spacetime homogeneous Markov property, laws of functionals of
this process such as local times, time spent above a level, time and place of the max-
imum, etc., assume a much simpler form than for BM stopped at a fixed time.
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Since h (B1 - h) = Bh (Ch) on (Th < 1), Theorem 1.3 implies
tv

(l.f) (h2(1- T), h (B1 - h) I T, < 1) -* (,B;).
In particular, the limit law for h (B1 - h ) is easily identified as the bilateral exponential
law. So (1.f) implies the well known fact that this is the law of B;:

(1.g) P(B e dy) = 2 e-lIdy.

This amounts to the classical formula for the resolvent of the Brownian semi-group
(see e.g. It6-McKean (1965, 1.4.31). Theorem 2.1 of Mathew and McCormick (1992),
with convergence in distribution strengthened to convergence in total variation, appears
as the second component of the following consequence of Theorem 1.3. As h .- 00,
given Th < 1, the joint distribution of the four variables

h(max,, _Th) ~ h (1T, ) h (Ml -h), h (Ml - B1)3,
converges in total variation to that of

Tmax,s3, 4-Tm=,C M;, M;-B .

Here the two pairs (Tmax,; , M;) and (; - T,; , M; - B;) are independent and identi-
cally distributed, due to the path decomposition of B at its maximum on [0, I (see
e.g. Williams (1974), Millar (1977), Greenwood & Pitman (1980)). It is well known
and easily verified that the first component of each pair has the X2 distribution of B 2,
while the second component is exponential with rate 1.

For two more examples, let

AX, = P (Bs > x)dx = time B spends above x before t

GX1 = sup{s: s < t B, =x} = time of last visit to x before t .

Jointly with the preceding results, we have that as h -e oo, given TA < 1, the joint law
of

hAA,l, h -TA -AhAl), h (G,l Th)- h2(T- GAhl)
converges to that of

Ao;' -AO,;, GO'f; -Go,4.

Standard arcsine laws for Brownian motion combined with the exponential distribution
of 4 imply these four variables have identical x2 distribution. The first two are

independent, and so are the last two, by standard algebra of beta and gamma variables.
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Theorem 1.3 above describes the asymptotic behaviour of B in the interval [Th, 1]
given that Th < 1. To complete the picture we now describe what happens on the
same scale, considering times both before and after Th, by consideration of a rescaled
and time reversed process.

Theorem 1.4. As h -* oo, for every T > 0,
tv

(,h (B (1- t/h2) - h), 0 < t < T Th < 1) -4 (X (t), 0 < t < T),

where X is a non-Markovian process with continuous paths constructed as follows
from Brownian motion B, an independent exponential (1) random variable 4, and a
further independent random sign a which is equally likely to be ±1: Let

D(t) = 4+B(t)-t; t0 = inf{t:D(t)=O},

X (t) aD (t),0 < t < to
XD (t), co < t < o.

Remark. The process D is a BM with drift -1 started at the random level 4, > 0. So
X starts at X (0) = a;, which has the bilateral exponential limit distribution of
(h (B1- h) I Th < 1). Given X(0) > 0, X =D moves as a BM with drift -1. Given
X (0) < 0, X moves as a BM with drift +1 until time c0 when X first hits 0. Thereafter,
X moves as a BM with drift -1.

Let Go = sup{t: XI = 0}, and let Bh and Ch be as in Theorem 1.3. According to
Theorem 1.4

tv

(Bh (Ah -u), 0 < a ) - (X(u), 0 < u < GO),
whereas Theorem 1.3 implies the same limit distribution is that of
(B (; - u), 0 < u < 4). The fact that these are two descriptions of the same limit pro-
cess amounts to:

Corollary 1.5. (Williams (1974, Theorem 4.5)). If B is a BM and 4 is exponential
(1/2) independent of B, and b > O,

d
(B,0,<t < IBt,=b) = (Bt +t, 0<t .Gb)

where Gb = sup{t: B, + t = b}.

Two other consequences of Theorem 1.4, both closely related to Williams' path
decompositions, are the following Corollaries.
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Corollary 1.6. As h -* oo, for every T > 0
tv

(h [B (Th-t /h2)-h ],0 < t < T I Th < 1) -+ (D_(Go + t),0 < t < T)

where (D_-(u),u .0) is a Brownian motion with drift -1: D_(u)=B(u)-u, u .0,
and Go = sup{u : D_(u) = 0} is the last time D_ visits zero.

Remarks. (i) Williams (1974) showed the limit process appearing here as a diffusion
process on [-oo,0] and identified its generator. Intuitively, the process is "Brownian
motion with drift -1 conditioned never to return to 0". See Williams' paper for a
more careful account. The one-dimensional distributions and transition probability
function can be found explicitly in Rogers-Pitman (1981) and Rogers (1983).

(ii) The processes in Corollary 1.6 and Theorem 1.3 describe the behaviour of B on
the same spacetime scale, one looking backwards and the other forwards from time Th,
given Th < 1. Theorem 1.4 implies these processes converge jointly as h -* oo to
independent limit processes. The limits of these processes are recovered from the pro-
cess X in Theorem 1.4 by reading forwards and backwards from time

Go = sup{t: Xt = 0} = sup{t: Dt = 0}.

The independence assertion amounts to the last exit decomposition of D at this time.

As a final consequence of Theorem 1.4 and Williams' path decompositions, we men-
tion the following result, where instead of centering at h and reversing we center at B
and reverse:

Corollary 1.7. As h - oo, for all T > 0
tv

(h [B (1 -t/h2)-B (1)], 0 < t < T I Th C 1) -* (Y(t), 0 < t < T)

where Y is a non-Markovian process with continuous paths. Let D_ = (D_(t), t 2 0), be
a Brownian motion with drift -1 starting from D (0) = 0, and let M = supD - (t). The

law of Y on C [0, oo) has density 2 em with respect to the law of D,.2

Remark. The formula for the density amounts to the following:

(i) Conditionally given M = m, Y admits the same path decomposition as does a BM
with drift -1 at its maximum. (This follows from Williams' results)

(ii) From (l.h) and (l.i), P (supY, E dmn)/dm = em' m > 0, whereas

P (supD_(t) E dmn)/ldm = 2e"2m' m > 0. The ratio of these densities is 2 e
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2. Proofs.

Proof of Lemma 1.2. Let (z) = .$ie 2, D(h) =
P (B,I h) =

z)dz and

recall that

(2.a) (D(h) 4)(h)/h as h -oo.

By the reflection principle, the event (TA < t) = (MI > h) has probability

P(Th <t) = P(Mt >h) = 2P(B, >h) = (h

Also, if we let

(2.b) f (h,t) = P (Th e dt)/dt = (2nt3)-12heA^2/2t

thenfor 0<y.h2,

P (h2(l - T) e dy | Th < 1)/dy = h2f (h,1-ylh2)/2I(h) 2 e1y/2
2

as h ->00 by an easy evaluation of the limit using (2.b) and (2.a). C1

Proof of Theorem 1.4.

Let K - h2, BK (t) = hB (t/h2). Then

(h (B (1-tlh2)-h), t > 0) = (BK(K -t)-K, t . 0)

d
(B (K - t) - K, t 2 0), by Brownian scaling.

Since (Th < 1) = (BS 2 h for some 0 < s < 1) = (BK(t) 2 K for some 0 c t < K),

d

(2.) (h (B (1-tIh2)-h),t 2 0 ITh C 1) = (BKrt-K,t 2 0 I TK < K).
So it suffices to examine the asymptotic behavior of the right hand process in (2.f) as
K -* oo. Due to the reflection principle, the event TK < K splits into two events of
equal probability, namely (TK < K and BK 2 K) = (BK > K), and
(TK < K and BK < K) . The description of the asymptotic distribution of the process in
(2.f) given (BK 2 K) follows at once from the following lemma, by conditioning on

tv

BK, and using the elementary fact that as K -> 0, (BK - K I BK 2 K) -> 4 where 4 is
exponential with rate 1. The description on the other half of the event TK < K follows
by the reflection principle at time TK combined with a last exit decomposition at time
sup{U : u . K, BU = K}, just after which the sign of BK - K is determined. E

Lemma 2.1. Let o (K) be any function of K with o (K)/K -* 0 as K -> oo. Then for
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any real 5, and T > 0, as K o,

tv

(B, O < t < T IBK = AK + o(K)) - (Bt+ St, O < t < T),
where the process on the left is the initial segment of length T of a Brownian bridge
of length K from 0 to SK + o (K), and

tv

(BK-.--BK,0<t<T I BK=6K +o(K)) - (Bt -t,Ot <T).

Proof. Elementary, using standard properties of Brownian bridges. In particular, the
second assertion follows from the first by time reversal. a

3. Concluding Remarks. It appears that the above results remain valid with the
Brownian motion B replaced by a more general diffusion with generator of the form

d 1 d2b(x)- + 2__dx 2d9

for a wide class of drift coefficients b (x). This substitution should be made only in
the definition of the basic conditioned process: the limiting processes remain the same
as in the plain Brownian case b (x) 0O. The validity of this claim is easily checked in
case of constant drift b (x) b. It appears also to be correct for a Bessel diffusion
with dimension d, with b (x) = (d - 1)/ 2x, for any real d, and more general drifts sub-
ject to very mild regularity conditions. Presumably this can be derived from the
present results using the Cameron-Martin formula, but we have not checked the details.

It might also be interesting to look for analogs of the Brownian results for random
walks or Levy processes. Presumably the Brownian result can be interpreted along the
lines of Donsker's invariance principle as a suitable double limit for an increasing
number of steps of a random walk with bounded increments conditioned to reach an

increasingly high level. But the level must not be allowed to increase too rapidly: e.g.
for a simple random walk with increments + or - 1, conditioning to reach level n in n

steps gives a trivial process. And for random walks with unbounded increments or

L&vy processes with jumps it is to be expected that the overshoot would typically
dominate behaviour of the conditioned process.

Acknowledgment.We thank Lucien Le Cam for a helpful conversation.
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