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1. Introduction.

Let (Bt,t 0) denote real-valued Brownian motion starting from 0, and

let v be a real.

The so-called geometric Brownian motion with drift v, which is defined

as

exp(Bt + vt), t ' 0,

is often taken as the main stochastic model in Mathematical finance. This

process may be represented as:

(l.a) exp(B + vt) = R(v) t 2 0
wiA(t)

t

with

(l.b) Atv) = ds exp 2(Bs+vs),
0

and (Ru ,u > 0) denotes a Bessel process with index v, starting from 1.

Both for theoretical reasons, and practical purposes, the law of the process

(A v),tt 0), taken at various (possibly random) times has been of some in-t

terest in recent years.

In a previous paper [10], the following result was obtained

let T be an exponential variable, with parameter A, which is independent
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of (Bt,t ' 0) ; then, we have:

(1.c) P exp(B1 )) E dp, At ) E du) = A v p(1,p)dp

where ,i = 2X+v2 and pt(a,p)dp is the semi-group, taken at time u, of

(II)the Bessel process (Ru,u >. 0) starting from a.

A number of results about Bessel processes are presented in [10], among which

the following formula for ph(a,p)

(l.d) pA (a,p) = (a)-u exp a2up)2
u a(~ I 2uJ ',L&U

where I denotes the modified Bessel function of index ,u.

Using formula (1.d), together with the (implicit) Laplace transform in A

presented in (l.c), it is possible to obtain an expression for the joint law

of (exp(Btv)),Atv), for a fixed time t. Indeed, taking up the notation in

Section 6 of [10], we define at(x,u) as

(l.e) P(At E) dulBt )=x) a (x,u)du

(as explained in [10], a does not depend on v). Then, we have

(1.f) 1 ~~~~x=1 1 2x(t(2.f) 1 exp(- ') a (x,u) - exp(- y-(l+e ))E (t)vr2--iraxt u - u-1-- ex/u

where r (u) is characterized by the formula

X0 2
(2.g) I (r) = { exp(- v2u) r(u)du (v E R, r > 0).

Jo

An integral formula for er(u) is presented in ([10], formula (6.b)), which

in turn leads to an integral formula for the joint law of (exp(Btv)),Atv))

(see [10], formula (6.e)). This result has just been used by Kawazu-Tanaka [6]
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to obtain some asymptotics for certain diffusions in random media. The same

result may also be used to give an expression of the important quantity

(l.h) E[(A(v -k)+]

which governs the so-called financial Asian options.

However, it appears that the expression thus obtained for (l.h) is too diffi-

cult for computational purposes and, at this point, it seems better to con-

sider again the randomized functional A , which has a remarkably simple

distribution, presented in Theorem 1 below. Consequently, the expression

E[(A" -k) ] = X { dt eXt E[(AV)-k)+]

has also a simple form (see Corollary 1.3 below) which should doubtless be

possible to use for practical purposes.

Theorem 1 Let A > 0 ; define ,u = 2X+v.

Then, if T denotes a random time, which is exponentially distributed, with

parameter A, and independent of B, one has:

(1.i) A (v)w(lw) l wa,where a=- b - VT 2Zb 22

and Z
O

resp. Z , denotes a beta variable with parameters (a43), resp.

with parameter ', that is

uo1( 1-u)t31du e
= du

(Zo,f3 u) B(o,13) P(ZE du) r(-)
and Z a and Zb are further assumed to be independent.

We now illustrate Theorem 1 with the two following Corollaries.
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Corollary 1.1: Let T be an exponentially distributed random variable, with

parameter 1, i.e. E(T) = 1, which is assumed to be independent of the

Brownian motion (Bt,t ' O).

Then, considering successively, in the statement of Theorem 1, the values

v = O, v= 1/2 and v= -1/2 , we obtain:

/2 21a)Ulw
F ds exp(Bs) d s exp(2B +s) = Ua;/2 (law)T J(lw

0 0

(law) 1-U2
ds exp(2B s) = 2T

0

where U is a uniform random variable valued in [0,1], C- = inf{t: Bt = 1),
and the random variables which are featured on the right-hand sides in each of

the three identities in law are assumed to be independent.

Corollary 1.2: Let v > 0. Then, one has:

co ~~(law) 1
(l.k) J ds exp 2(BS-vs) ( 2Z

0 v

The identity in law (1.k) is easily deduced from (1.i), in which we let

A converge to 0 ; (1.k) was obtained first by D. Dufresne [3], and then re-

proved in [9], where the connection with last passage times for Bessel proces-

ses is established.

As announced before stating Theorem 1, we now present an expression of

the Laplace transform (with respect to the variable t) of the quantity (l.h).

Corollary 1.3: For every v > 0, A > 2(1+v), and k > O, one has:

1/
p-v__ 2 II+v + 1

'p2k dt e
t

t
2 (1-2kt)

(.e) A f dt e At E[(A )-k) ] = 1 -1

0 2
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It has been pointed out to the author that the actual quantity of inte-

rest for financial Asian options is not so much (1.h), but

1 (v) + 1 ()(1.h') E[( At - k) ] - E[(At -kt) ].

Of course, if an explicit, simple expression for (1.h) were available, then,

it would suffice to replace in such an expression the constant k by (kt),

and then divide the obtained quantity by t. Since, despite (1.f) and (1.g),

no such simple quantity has been obtained, we shall show, in section 7, that,

at the cost of a further Laplace transform (with respect to the variable k)

an expression for (l.h') may be obtained.

(1.3) We now give the details of the organization of the present paper

- in section 2, some prerequisites about Bessel processes, which

complete those presented in [10], are given;

- in section 3, two proofs of Theorem 1 are given, together with a

partial explanation of the identity in law (l.) ; furthermore, the arguments

of the proofs of Theorem 1 lead to some other identities in law, presented at

the end of section 3;

- in section 4, we obtain more identities in law, after first reproving

Bougerol's identity in law

(law)(1.m) for fixed t 2 0, sinh(Bt) =
t A~t

where (7 ,uu 0) is a Brownian motion starting from 0, which is assumed to
be u ~ ~ ~~ =(0)be independent of B, and At A(

We already gave a (computational) proof of (1.m) in [10] , using some

classical integral formulae for Bessel functions ; here, the proof of (1.m)
relies upon our previous identity in law (l.i).

Then, with the help of (1.m), we are able to obtain the laws of variables of

the form: AS I where S varies amongst a family of random variables which

are independent of B, and have some particular distributions;
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- in section 5, we use the conformal invariance of planar Brownian

motion, and, more generally, the skew-product representation of Brownian

motion in R (n 2 2) in order to obtain some more identities in law for va-

(v)riables of the form As ) as we just described.

- in section 6, we present some generalizations of the results obtained

in the previous sections ; indeed, both the Brownian motion with drift

(Bt+Vt, t 2 0) and the exponential function may be replaced by, respectively,

some adequate diffusion, resp: function ; again, such generalizations may

have some important applications in Mathematical finance, when the archetype

model of geometric Brownian motion is replaced by some other models;

- in section 7, finally, we look at some computational issues which arise

in the study of Asian options.

(1.4) Some of the results discussed in this paper have been presented,

without proof, in [11], whereas a detailed discussion of the implications in

Mathematical finance is being made in Geman-Yor [4].

2. Some complements on Bessel processes.

(2.1) For the clarity of the exposition below, we need to take up the

main part of the discussion on Bessel processes presented in Section 2 of

[101, and to add some complements which will be used below.

Let Qx denote the law, on C(R ,R ), of the square, starting from x,
x

of a Bessel process with dimension d ; one of the main properties of the fa-

mily (Q3; 3 > O,x : 0) is the additivity propertyx

(2.a) QX+ = Qx * Q, (a,a',x,x' 2 O).

From this additivity property, we deduce the following important consequence

fix t : 0, and u 2 0 ; then, the function of (x,6)

def aq(x,a) QQ(exp -tX)x u
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is multiplicative in both arguments, i.e.:

q(x+x',S+6') = q(x,S) q(x',S') (x,x' 2 0 ; 6,6' 2 0).

It is then easy to obtain:

(2.b) Q=(exp(-tX (1+2tu) exp (x t

by computing first this quantity for 6 = 1, say.

(2.2) The following remarks about the absolute continuity relationship

(2.c) 0aIR r{t<T) = (at) exp(-- { -2) "a'R
Jos

which is valid for a > 0, and v E R, will also play an important role in

the sequel. Here, in agreement with the notation in [10], section 2, Pa
a

denotes the law on C(R ,IR) of the Bessel process with index v, starting

from a, (Rt)to is the process of coordinates, Rt = a(R ,s < t), and

T = inf{t : Rt = ( 00).

As a consequence of (2.c), we remark that, for v > 0, we have

(2.d) ~a ItR(t<T0) (Jt) a It

and, as an application, we derive the identity

(.e) Pa (To > t) = Ev a )v

which demonstrates, if need be, that the (P (v))(RR) ) local martingale
a t ta.0

t 2 0) is not a martingale.
t

7



(2.3) It will also be interesting to consider the following time reversal

result:

(2.f) Under Pa, the process (RT t; t s T) is distributed as
0

(Rt t < L) under Pv, where L =supft O:0 Rt = a}.

Putting (2.e) and (2.f) together, we obtain the following

Proposition 1: The common distribution of T , under PaV and of Lao aa

under Pv, is that of a 2Z
0 2

Proof: i) The fact that T ,under P" , and L ,under Pv, have the
--___ o~~~~~a a 0

same law, follows from (2.f).

2Zii) In order to show that this common distribution is that of a12/Z,

we now use the identity (2.e) and formula (2.b).

Using the elementary formula

r(v)| ds exp(-sx) s
x Jo

we deduce from (2.e) that:

PV(T>ti 2v 1 v- v 2
pa(T0>o =a r(v) ds s Ea(exp sRt).

Then, applying formula (2.b) in the equivalent form

EV(exp - sR = 1 l exp(- a st)
a Rt) (1+2st) +12s

one obtains the result stated in the Proposition. o

Remark : Another proof of the statement in Proposition 1 is given in [9],

together with references to previous papers by Getoor and Pitman-Yor.
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3. Two proofs of Theorem 1, and a partial explanation.

(3.1) In order to obtain the law of A , we start with the followingTX
chain of equalities, which is a consequence of the time change relation (1.a):

P(A ) u) = X dt e P(At )u)

0

= X dt eXt P(Hu s t) = E[exp(-X Hu ))]

%0

( v) def [u dswhere H ))f ds

0 (R '

Using now the absolute continuity relationship (2.c), we obtain

(1-) 0 2
E[exp(-XH )] = E [(Ru) exp(- 2-H)]H E__M v

so that we have obtained the equality

(3.a) P(A4T ' u) = E_____
A lL~(Ru)~V

We now obtain an integral representation of the right-hand side of for-

mula (3.a).

Proposition 2: Let ,u > b : 0. Then, for every r > 0, one has

~d1 1_ [1/2u1d 2 b-i Ab(3.b) EAr dv)( J exp(-r v)v (1-2uv)

Proof: It uses the same arguments as those found in the proof of Proposi-

tion 1. Precisely, from the elementary formula:
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1 _ 1 00b-i
-1 - r'(b dt exp(-tx)t
x OJ

one deduces

EAr _( dt tb-i EA(exp-tR2).
r(R)2

U

We now write formula (2.b) in the equivalent form

EA[exp(-tR 2)J = (2u)1 exp( r2 -+ tu'
r u (1+2tu)"(+ 1 )t

and we finally obtain formula (3.b) by changing the variable t into

t
v 1+2tu

0

Using formula (3.b), we now remark that formula (3.a) may be written in the

following form: using the notation Zb for 1/2Z one gets
b

(v) u a(3.c) P(AT ) : u) = E[Zb >' u; (1 - -. ) ].
X Zb

Now, if we use the notation X for Z ,a we have

P(X 2 x) = (1-x)a

and we obtain, assuming that X and Zb are independent

P(XZb uU) = P(Zb u ; X
_ u

= U -
u abb ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-[b(1 )I

Zb Zb
Hence, we deduce from (3.c) that

(3.d) P(A4T) 2 u) = P(XZb > u),

which proves the identity in law (l.h).
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(3.2) It is, in fact, possible to give another proof of the identity in

law (l.h), without using the explicit Laplace transform formula (2.b).

First, we remark that, from formula (2.d), and formula (3.a), we have

(3.e) ( ~~~TA 1 (
0 (R )2(b-u)]

u

On the other hand, thanks to Proposition 1, the right-hand side of formula

(3.c) is equal to:

(3.f) E 1l((To 2 U); (2(T -u))p- r(p))_1 o o r(b)

Hence, since formula (3.c) is equivalent to the identity in law (1.0), we must

be able, in order to give a second proof of this identity in law, to pass

directly from (3.e) to (3.f), that is: to prove the following identity:

(3.g) E1l'((T0 > u); (Ru)2(b)) = E 1(T >u); (2(T -u))lb nw).
Indeed, the right-hand side of (3.g) is, thanks to the strong Markov property,

equal to:

E-"((T ' u) ; ERIA((2T ) ) rb)b
1 o R o0 r(b)

u

and this latter expression is equal to the left-hand side of (3.g) since, from

Proposition 1, we deduce:

E P((2T ) -b) r(ll) = r2(pi.baEr (Z)b r'(b)0

(3.3) In order to illustrate the method of time-change and change of

probability which we used in subsection (3.1), we now prove two other identi-

ties in law

Proposition 3: We keep the notation a = 2V and b = 1IiV Then, we2 ~~2
have

1) for r1P(suP exp(Bu+vu) _ r) - 2bb i.e. sup exp(Bu+vu) (iaw) z
u-<T u<T~ 2b,l1
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2) for p s 1, P(inf

usTA
exp(B +vu) p) = p , i.e. inf

u~A
exp(B +vu) (aw) z

u 2a,1f

Proof: 1) From (1.a), we have:

sup

usTA
(exp(Bu+vu)) =

P{sup exp(Bu+vu) > r} = A

sup ( V) ( S I

s-<AT~

dt eAt P sup (R (v)
S v) 5

t

=

0

=A
Jo

-t PA(v) T(v)}, where T( ) = inf{u: R =}
r r u

dt eAt P{t : H()} [=E[exp(-A (v)]
r r

1
=i-

from the absolute continuity relation (2.c).

2) Similarly, we have:

P{inf exp(Bu+vu) p}=A dt e-At P inf (,) (Rs) ip
t)

dt e Xt P{AA (v) TM) = A
p

o00 dt eAt P;t s H(v) T < C}

p

= E[exp(-AHT() ; T < ]

p

= 12 PA(T < ),
p2b 1 p

from the absolute continuity relationship (2.c).

12
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Now, it is well-known that, since (12 , t 2 0) is a local martingale

t

under PA', which converges to 0, as t > , then

1 (law) 1
sup 2i
taO (R21' U'

with U a uniformly distributed random variables on the interval [0,1]

therefore, one has:

PM(T < o) = P1 sup 2 21 p
1p 1 t>0 Rt2 2

and finally

P{inf exp(B +vu) s P1= 2bP = PD
uAT p

(3.4) In order to obtain a better understanting of the "factorization

identity" (1.0), we now relate the law of A(") to that of the future supre-

mum of a certain Bessel process with negative index.

Proposition 4: Let ,u = (2A+v )1 , and a = 11+' b = 1V Then,2 ' 2 .hn

if we denote: M = sup Rv , we have
vsT

0

r211 d1) Pr(M r -dx) (2u) 2 Ix

and, consequently:

E11[M2a] = ! r2a
r b

2) if we denote: Mu = sup Rv , for u > O, then, we have:

0

(3.h) P(Av() > E= [(Mu)2a
TX E-111[M aI
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3) if, for x > 0, we define Lx = sup{u: Ru = x4, then, we have, for

u a: O

E 11[M 2a z 2u
(3.i) P(AT = 1 U 2aLM ]

A EM~~~-[M2a ]E1 U

where Z is independent of (Ru > 0), and is a beta (2a,1) random variable,

i.e. P(Z E dx) = (2a)x2a-1 dx (O < x < 1).

(3.5) Although the proof given in (3.2) is certainly much more illu-

minating than the proof given in (3.1), we have not succeeded to obtain a

more satisfactory explanation of the "factorization identity" (1.i).

Ideally, one would like to find out, for each A and v, two independent

random variables N and D, which are measurable with respect to

o-{(Bt,t ' 0) ; T.}, and such that:

(v) N (law) (law)(3.j) A = N N = Z , D ( 2ZT D' i,a b

It is not clear at all that this program may be fulfilled, and we explain

why:

4. Some applications of Theorem 1.

(4.1) Theorem 1 allows to obtain a quick proof of Bougerol's identity in

law (1.m), which may be more natural than the proof given in [10].

Theorem 2: (Bougerol [11) Let (Bt,t > 0) be a real-valued Brownian motion,

starting from 0, and define At = f ds exp(2B ), t 2 0. Then, we have

0

(law)(4.a) for every fixed t : 0 sinh(Bt) ( tA
t
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Proof: Let e > 0, and x = 2 In order to prove (4.a), it suffices, from

the injectivity of Laplace transform, to prove the equality

(4.b) E[Isinh(BT)I'] E[I7 TI]

for all sufficiently small a's.

It is well-known that | BT | is an exponential random variable, with

parameter 6. Hence, the left-hand side of (4.b) is equal to

00

(4.c) 6 f dx exp(-Ox)(sinh x)¶
J0

whereas the right-hand side of (4.b) is equal to

(4.d) E( N ) E ((AT )/2

where N denotes a gaussian random variable, which is centered, and has va-

riance 1.

Using jointly the duplication formula for the gamma function and the identity
in law (1.0) for v = 0, it is easily shown that both quantities (4.c) and

(4.d) have the common value:

1 B(0,+)

which proves (4.b). o

We have not been able to find an adequate extension of the identity in

law (4.a) for v * 0, which would relate, say, the law of Bt ) to that oft

A , for fixed t.t

However, we have the following weaker relation
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Corollary 2.1: Let v > 0. Using the notation introduced in Theorem 1 and

Theorem 2.1, we have the following identity in law

(4.e) 7A(lw~ sinh(BT 2

T b, 2

where, on the right-hand side, Zboy denotes a beta variable, with parameters

(b,v), which is assumed to be independent of the pair {(Bt ; t ' 0) ; T J2

Proof: We remark that, from the algebraic relation between beta and gamma

variables, we have:

(4Nf) z (law)z z
b ~ b,v a

where, on the right-hand side of (4.f), the variables Zboy and Za are

assumed to be independent.

Now, using the identity in law (1.i), we obtain

(v) (law) 1A =AAT = Z T 2 'T b, v T 2

+2
so that, from the scaling property of Brownian motion, we deduce

(law) 1 (law) 1 in(T 1(4a o
A(v) TA sinhaBT 2 from (4a) a
T b, v +v b, v A+22

(4.2) We shall now exploit Bougerol's identity in law (4.a) in order to

describe the laws of variables of the form AT when T varies amongst a

fairly large class of random variables, assumed to be independent of

(Bt,t 2 0). To do this, our main tool will be the following elementary
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Lemma: Let T be a strictly positive r.v., and g be the density of

(law)sinh(BT) = A. Then, the law of B is given by:
T T T

P(BT E dy) = dy(cosh y) g(sinh y).

Now, we write down a Table, in which the main examples of distributions for T

which we have found to be tractable are presented.

P(BT E dx)/dx |2 exp (-OIxI| ) |
Ca. a cosh x x coth x - 1

Pl T Z-dx)/dx exp(-01XI)
(cosh(x)) u7(a +sinh x) (sinh X)2

z
1 , 0/2

AT 2Z 2Z a 2UZ
2 2

T T (oC) (3) + (3)
02 T So TnT //2 2 2

We now explain the Table, column after column

- first column : this is simply a translation of formula (1.0), in the

particular case v = 0, and A = 2

- second column: here, ax denotes any strictly positive real, and ca

c
is the normalizing constant which makes a a density of probability

(cosh x)Ca
on [R.

We find: c = 2
; the random variable T(CL)a Xr(a)'

satisfies:

E [exp(- 2 T )] = Ca

[00

dx exp(iXx) (c hC

00

17



and we find:

2 r("~xiX 2

E[exp(- 2 T

The cases a = 1 and a = 2 are particularly interesting ; for a = 1, T

may be represented as the first hitting time of n/2 by a reflecting Brownian

motion starting from 0;

for a = 2, T(2) may be represented as the first hitting time of n/ by ay ~~~~~~~~~~~2
3-dimensional Bessel process starting from 0.

- third column: this anticipates upon the discussion in section 5, where

the notation for S and ao are presented ; the case a = 1 corresponds to

a = 1 in the second column.

- fourth column: T(3) and T(3) are two independent copies of the
2 2

first hitting time of !/2 by BES(3), using the notation already introduced

in the explanation of the second column.

5. Some applications of the conformal invariance and skew-product representa-

tion of Brownian motion in , n > 2.

(5.1) Let Zt = Xt + iYt, t 2 0 , be a complex valued Brownian motion,

i.e. (Xt,t 2 0) and (Yt,t > 0) are two independent real-valued Brownian

motions.

P. Levy [7] remarked that, as a consequence of the conformal invariance of the

distribution of Z, if f : C > C is an entire fucntion, i.e. f is holo-

morphic on the whole complex plane C, and f is not constant, then there

exists another complex Brownian motion (Z ,u' 0) such that

u
(5.a) f(Zt) =Z ds If'(z)I2), t 2 0.

o
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Several important consequences of this result of Levy have now been obtained

see, for example, B. Davis [2], and in another direction, Pitman-Yor [8] who

are concerned with the level crossings of a Cauchy process.

In the particular case where f(z) = exp(z), the equality (5.a) becomes

Irt
(5.b) exp(Zt) = z(j ds exp(2X)), t 2 0,

o

from which we deduce the following identities in law.

Theorem 3: Let (Bt,t ' 0) be a real valued Brownian motion, starting from

0 ; define, for a > 0, a- = inf{t: Bt = a).

Let Zt = Xt + iYtI t > 0, be a complex Brownian motikon, starting from 0,

t
and define At = { ds exp(2Xs), t O.

0

1) If S = inf{t Y = 2} then, we have

(5.c) A5 (law)

2) More generally, to any a E IR, we associate a = (1+a ) , and 0

TUTU9 1
the unique real in J- 7 such that: tg(o) = a

Then, if S = inf{t : cos(Yt) = a sin(Y)} inf{Yt = 0, or 0 - it), we have

(5.d) S {inf{ :Xt -Y =°} ( w) a -inf{t: B = a).

The proof follows immediately from the representation (5.b), and the

elementary formula: exp(z) = exp(x) (cos y + i sin y). o

(5.2) We now consider, more generally, (Zt,t > 0) a Brownian motion

valued in En, n 2 2, and starting from z. 0. For simplicity, we shall

assume that jZo0 = 1.
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As is now well-known (see Ito - Mc Kean [5], p. 270 and sq.), (Zt,t > 0) may

be represented in the skew-product form

(5.e) =t ZtI V(Ht), t O0,

where Ht = { ds ,t 0, and (V(u),u : 0) is a standard Brownian motion

on Sn i the unit sphere in 0Rn, and V is independent of (IZtI,t 2 0).

We may also represent the radial part of Z, i.e. Rt =Zt as:

(5.f) Rt = exp(Bu + vu) u=Ht t > 0,

where (B ,u > 0) is a real-valued Brownian motion, starting from 0.

This latter representation (5.f) is nothing else but the representation (1.a)

we started with, once we have remarked that

(5g) Ht = inf{u : A f ds exp 2(B +vs) > t}

0

We now replace in (5.e) the time variable t by A(, which gives, thanks
u

to (5.f)

(5.h) exp(Bu+vu) V(u) = ZA (v) , u : 0.
u

On the left-hand side of (5.h), the processes (B u; u > 0) and

(V(u) ; u ' 0) are independent, whereas, on the right-hand side of (5.h),

A( ) is measurable with respect to (jZu Iu 2 0), as it follows from (5.g).u

We now have the following extension of Theorem 3.

Theorem 4 : Let e E IRn | O | = 1, and define

S = inf{u : (E,V(u)) = 0}.
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Then, we have:

(v) (law)A =

where a. = (,z0), and 0-b has the same meaning as in Theorem 3.

The proof is just as immediate as that of Theorem 3, using the fact that

{(e,Zu),u 0, is a one-dimensional Brownian motion, starting from a8.

A natural question is now to find out the distribution of S

6. An extension to some diffusions.

7. Some computational issues.

(7.1) From the applied point of view, formula

/ 2-

2k e-t t 2

t (v) 0

A .|dt e AtE[(A(V - k)+] =°
t (A 2(1+v'

0

V + 1

(1-2kt) 2

)) r(pV - 1)

is not completely satisfactory ; one would like to invent the Laplace trans-

form in A, which would give on expression of

(l.h) E[(A) k)].

In order to do this, we may divide both sides of (1.e) by A, and then

inspect ther (new) right-hand side of (1.e), call it r(A) ; we can write

g-v 1

~~u/
2k (+ 2__

(7.a) r(X) = 1 d e 2kj 2Vk }(1-u)2
%,0 ~~2

(7.2) Another computational question, which also arises naturally in the

applications of the results of the present paper to Mathematical finance is

21
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that of finding an explicit expression for the distribution of:

(v) t du
t (R )

(1;)where (R ,u > 0) is a Bessel process with index v, starting from 1, say.

We shall show below that this problem is closely related to the problem rai-

sed in (7.1).

(7.3) Coming back to (7.1), we recall that, as indicated at the beginning

of this paper, it is the expression

(l.h') E[ (v) k)]

which is of interest, rather than (l.h).
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