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1. Introduction

For each n = 2,3,... let Xn = (Xn(l),Xn(2),...,Xn(n)) be a vector of n inde-

pendent random variables with values in a measurable space X. Suppose that Xn(i)

has distribution Pn for i < nOn and Qn otherwise, where Pn, Qn are unknown, dif-

ferent probability measures on X, and the changepoint On is an unknown number in

)n := 1{/n, 2/n,..., (n - 1)/n). The problem treated here is to find a confidence

set for OnG
There is an extensive literature on this problem for models, where Pn and Qn are

assumed to be in a specified parametric family of distributions. Siegmund (1988)

gives a good overview and references to other related work. Much less is known

about nonparametric confidence sets. One possible method, which uses bootstrap

tests, is described in Diimbgen (1991), but it relies on asymptotic theory. Alterna-

tively we investigate parametric and nonparametric confidence sets that are both

based on the classical method of randomization tests; see also Worsley (1986) and

Siegmund (1986, 1988): Let P be a class of distributions containing Pn and Qn.

For each r E on let SIT) = S(r)(Xn) be a sufficient statistic for the restricted

model, where O9n = 7 and Pn, Qn E P. Then consider a version IP(r)(-fs) of

L(XnlS(r) = S, On = T). For a given test statistic Tn = Tn(Xn), one can compute

the p-values 3n(r) = Pnr(7Xn), where

Pn(T X) ]PnP(')(Tn > Tn(xT) ISn )(,x)

Then

Cn = Cn(Xn) = {r E O3n (PVT) >a!

defines a confidence set for en with level a E (0,1/2). Note that this set is not

necessarily an interval. Now the problem is to find suitable test statistics Tn and to
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study asymptotic properties of the corresponding sets Cn.
Most papers on estimators or confidence sets use restrictive conditions on Fn-Qn

and On. One typical assumption is that fn is bounded away from 0 and 1, while

Fn - Qn stays fixed or tends to 0 at a slow rate. A goal of the present paper is to

relax such restrictions.

In section 2 we consider a simple normal shift model and derive a particular class

of confidence sets, which are Bayes-optimal in a certain sense. Various asymptotic

properties of these sets are presented.

Motivated by the parametric methods in section 2, we propose nonparametric

confidence sets in section 3. They are based on permutation tests and use a formal

Bayes-test statistic. The validity is now guaranteed without any restrictions on Pn
and Qn. These sets have similar asymptotic properties as the parametric confidence

sets of section 2. An interesting reference in this context is Romano (1989), who

discusses permutation tests of the hypothesis Fn = Qn-
The results of sections 2 and 3 are proved in section 4.

2. The simple normal shift model

In this section we assume that Pn = Af(1,, 1) and Q,n = A/(vn, 1) with unknown

means u,,, vn E R. Thus Xn has an n-variate Gaussian distribution Af(m, I) with

mean vector m = m(,n, nAn v,I) and identity covariance matrix I; generally m(7-, a, b)

denotes the vector in Rn with the first nr coordinates equal to a and the remaining

n - nr coordinates equal to b.

At first let us discuss briefly what can be expected from any confidence set
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C= C,(Xn) with level a, where the size of C,, is measured by

dist(Cn, O,n) max It - O,.
tECn

For any fixed T E one can view 1{rT C,} as a test of the hypothesis O,n = 'r.

Thus IP{rf C,j can not exceed the power of the Neyman-Pearson test of (r, a, b)
VS. (On gn, ,J,) with level a, which is given by

IIM(O6n, Jn, -n)- m(r, a, b)j1 + '-1(a)) < >(Ijm(On,sn, 1n) - m(r, a, b)II)

for any fixed a, b E R (4 is the cdf ofA(O, 1)). But with

An := V;;;(/n -IJn)

and k(s,t) := s A t - st, k(t) := k(t,t) for 0 < sit < 1 one can show that the

minimum of jIm(On, n,vn) - m(, a, b)112 over all a, b E R equals

17 - OnIk(T) -k(T, On) An AT A2

Therefore a necessary condition for dist(Cn, On) to tend to 0 in probability is given

by

k(On) n -- °°

Furthermore the best possible result (in terms of rates of convergence) one can expect

is that

dist(Cn, On) = (^n2)

Note that this lower bound for the size of Cn does not depend on On. Another

interesting conclusion for #Cn, the cardinality of Cn, is that

IE(#Cn) . (n - 1),(-k(On)I/2lAnI)
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Therefore, if A2 -+ 0, a necessary condition for IE(#Cn) to be of order O(nA. 2)

is given by

k(6n)A2/log(1/k(On)) > 2 + o(l)

This follows from the known asymptotic expansion 4>(-x) = exp(-x2/2)/x(1+o(1))

as x -p oo.

Now we derive an explicit version of Cn. With Sn(t) := 1<i<ntXnW(i), the

statistic Snr) := (Sn(r), Sn(l) - Sn(r)) is sufficent and complete for the restricted

model, where On = T. Therefore any confidence set Cn with exact level a satisfies

the condition

I 1{r E Cn(x)}IP$r)(dxfs) = 1 -a for Lebesgue - almost all s E R2.

We want to minimize the Bayes-risk

R()(Cn) := I1{T7 E Cn(x)}M(r)(dx)

among all confidence sets with exact level a, where

M(') := AJr(m(t, a + (1 - t)b, a- tb), I) 1{t 5$ r} Un(dt) H(da) db

for some finite measure H on the line and Un := n1 tE19n 6t. In other words, H is

a prior for the mean 6nyn + (1 - On)vn of n-ISn(l) (which provides no information

about On), Un (restricted to O(n \ {7}) is a prior for O,n, and Lebesgue measure is a

noninformative prior for An - vn. This Bayes-risk is finite, which is not obvious but

can be shown quite easily. The density f of M(T) with respect to Ar(O, I) exists and

has the form

f(Xn) = T' 9(Slr))
for some function g > 0, where

J k(t)-'2 eXp(Wn(t)) 1{t Tr} Un(dt)
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W~~~~(t)t)1/
Tn := Jkt- exp(Wn(t))Un(dt) I

Wn(t) :=k(t)-'Dn(t)2/2 a

Dn(t) = 4-~'-(Sn(t) -tSn(l))-

Furthermore, since

AJ(O,I) = JIP$r)(-Is) Ar (° ( 0 (ds) ,

the Bayes-risk R(r)(Cn) can be written as

| Tn'(x) 1{' E Cn(x)}1P(r)(dxIs) g(s) J 0f( ( 01 ) (ds).

Therefore the confidence set Cn, which is defined as in section 1 with the particular
test statistic Tn above is Bayes-optimal among all confidence sets with exact level a

(note that T' and Tn differ by a function of S() only).

In the above derivation one could certainly replace Un with any other finite prior

for On. From now on we consider the test statistic

Tn := Jk(t)fiexp(Wn(t))Un(dt)

where 36 is any fixed number in [-1, oo). The resulting confidence sets Cn have the

following asymptotic properties:

Theorem la: Suppose that

k(GOn)A2 /loglogn 00 if,3=-1,

k(6n)A2/log(l/k(6n)) -- oo if >>-1

Then

dist(n fn) = OP(A-2)
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There are two interesting special cases: Suppose first that in -tn = const $ 0.

Then dist(On, On) is of order Op(nw1), provided that

((n6n) A(n-n6n))/loglogn - oo ifI3=-1,

((n6n)A (n-nOn))/logn -- oo if , >-1.

If 6On 6 E (0, 1), then dist(Cn, 6n) is of order O(An2) provided that

A2/loglogn -- oo if = -1

fE2 oo if >

The limiting behavior of C,, can be described as follows: Let P7(r) := 0 for

r E [-00, 0]u[1, oo] and pn(r) := fn([nr]/n) for r E [0, 1] (the same type of extension

is used for any other process on (n). Further let (Z(r))?ER be a two-sided Brownian

motion on the line; i.e. (Z(r))r>O and (Z(-r))r>o are two independent Brownian

motions.

Theorem 2a: Suppose that the assumptions of Theorem la hold with n vn -* 0.

Then the process

(Pn(On+n 'r))rE[ 0

converges in distribution in D[-oo, oo] to the process

(P(r))rE[-o,oo]

where p(-oo) := p(oo) := 0, and

p(r) := H(exp(-W(r)) exp(W(t)) dt)

H(r) := IP{exp(W(t))dt > r

W(r) := Z(r) -|Ir|/2 for r E R .
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An explicit formula for H is given by Siegmund (1988). For our purposes one only
needs to know that H is continuous.

If it, - v- 6 $ 0 one can obtain a similar result for the process (Pin(6n +

j/n))j=O14-2,.. Here the corresponding limit process (p*(j))i=oA1 2 has the

form

p(j)~ H: (exp(-W*(i)) E exp(W*(i)))
-00<i<00

H*(r) IP{ E exp(W*(i)) . r}
-00(i<oo

W*(j) : Z(j) - 62jj/2.

Hence Cn behaves similarly as the optimal shift equivariant confidence set C5 in

Siegmund (1988).

3. Nonparametric confidence sets

Here we make no parametric assumptions on P,n and Qn. Similarly as in section 2

define

Sn(t) = 2 6Xn(i) -

1<t<nt

Again the statistic S(r) (Sn(r), Sn(l) - Sn(r)) is known to be sufficient for the

restricted model when 6n = r and Pn, Qn are arbitrary. An explicit version of

lPr)(-S(r)) can be described as follows: For r e1n let In7) be uniformly distributed

on the set of afl permutations r of {1,2,...,n} such that ir(i) < nr for all i < nr,

and let T(t) and Xn be independent. Then

£(XnISn( B_ = r) = C(f$n(r)XnIXn) v
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where IIH(r)X: (x( n)(1)),... ,Xn(II( )(n))).

As for the choice of Tn, let 11 - g be a seminorm on the space of finite signed

measures on X, which can be a function of the random measure Sn(i). Then we

define

Tn := | k(t) exp(Wn(t)) Un(dt) X

Wn(t) k(t)-1jjDn(t) 12/2 7

Dn (t) :=+n;- (Sn(t)- tSn(1))

for some fixed ,B > -1.

An essential technical requirement is that 11 - jln is bounded by a Kolmogorov-

Smirnov type norm j.F:

-11 - ln < || -II1 almost surely

More precisely, IImllr SUpfEy Im(f)I, where F is a countable family ofmeasurable

functions f: X -+ [0, c], 0 < c < oo, and there are constants A, B> 0 such that the

covering numbers

min{kE {1,2,.} 3fi, -..fk with min p((f _ fj)2) < u2 Vf E -F}

are bounded by Au-B for all u E (0,1] and arbitrary probability measures P on X.

Different examples for 11 lln and 11- 11 can be found in Diimbgen (1991). When

X = R one might take

||m||nD := " m(x) n-lSn(l )(dxr)|

(proposed by Darkhovskiy, 1976), where m(x) := m(-oo,x) - m(x,oo) is a sym-

metrized cdf of m. This seminorm 11 IjnD is bounded by V'T2 times the usual

Kolmogorov-Smirnov norm on the line.
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The nonparametric confidence sets Cn have similar asymptotic properties as the

parametric ones of section 2. With

An =, n n-Qn)

the following result holds:

Theorem lb: Suppose that

k(9n) IlAn112 /loglogn -vp Xo if / = -l

k(9,n) lA-n112o/log(l/k(On)) -ip 00 if / > -1

Then

dist(Cn,60n) = Op(IIAnIIn )

Note that IIAtIln is random in general. But it can often be approximated by a

nonrandom number. For instance it follows from Tshebyshev's inequality that

V'3JAn(X)n-'Sn(l)(dx) = n + Op(1), (1)

where

6n := V3J n(x)Pn(dx)-

Here is a result about the limiting distribution of C,n for the particular seminorm

11 - IInD. The proof in section 4 could be extended to other seminorms; see also

Diimbgen (1991).

Theorem 2b: Suppose that Pn, Qn converge weakly to a common continuous

distribution P on the real line and

k(O,n)6 /loglogn - oo if ==-1,
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k(O,,) b'llog(l/k(O,)) -+oo if ,B>- 1.

Then the process (Pn(On + n2r))rE[_-0] converges in distribution in D[-oo, oo] to

the process (- defined in Theorem 2a.

In particular suppose that Pn, Qn are normal distributions as in section 2, where

/in - vn tends to zero. Then n-1(QLn - V.)-2+2 3/r t0.955. Consequently the

nonparametric p-values Iin(Gn + r) behave asymptotically as the parametric p-values

in(Gn + 3r/r).

4. Proofs

One can prove the preceding results in a common framework: The quantities

An, Pn, Vn, Qn, An as well as the random variables Sr,(t), Dn(t) are viewed as

points in a normed linear space (B, 11 11). In the normal shift model B = R and

11 tIln j= 11 ,11I 1, whereas in the nonparametric model B is the space of bounded

functions on ; and 11 -11 := 11 11. In order to distinguish between the cases = -1

and 3 > -1 we use superscripts (.)(=) and (.)(>) respectively for Tn and other related

quantities.

4.1. Auxiliary results, I

In this part we regard 11 -Il and Dn(On) as fixed and write

Dn(t) = k(t,en)Yn + zn(t) X Yn := k(O,)-'Dn(On) i

so that Zn(Gn) = 0. The following quantities play a crucial role:

Ln =meax (k(t)loglog(1/k(t))) IjZn(t)112,
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Mn(a) a max IIZn(t)II and
Nn() ~~tE9n:jt-0nj> I n 1 ( 1
Nn(a) a112 max~I>t - 6nI-1IIZn(t)Ij fOr a> 0.

Here is a crude but useful bound:

Proposition 1: If Ln = Op(l), then

T(=) = Op ((log n)Ln+l exp(2Wn(6n)))

and

T() = Op (k(On )('+)/' exp(2WK(On)) + exp(4k(On) /2Wn(On)))

Proof of Proposition 1: One can write

Wn(t) = IIP(t,0n)Yn + k(t)-1/2Zn(t)II2/2
where

p(t,9) := k(t)'/2k(t,9) = [(1A-)(t/(1 - t))l/2] A [(((1-

The function p(., 8) is strictly increasing on (0,9] and strictly decreasing on [9, 1)
with p(G, 9) = k(G)1/2. By the triangle inequality,

Wn(t) < p(t6On)2YnII2 + loglog(l/k(t))Ln V t E O,n * (2)

In particular,

Wn(t) < 2Wn(On) + loglog(l/k(t))Ln < 2Wn(6n) + loglog(2n)Ln,

and thus

Tn(=) < k(t)-1 Un(dt) (log(2n))Ln exp(2Wn(6n))

= 0(log n)(log(2n))Ln exp(2Wn(6n)) .
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On the other hand one can easily show that p(t, On)2 < 2k(6n )3/2, if On S 1/2 and

t > k(On)1/2, or, if On > 1/2 and t < 1 - k(On)1/2. Consequently,

T(>) < |k(t)' log(l/k(t))Lo eXp(p(t, ofn )21||yn | 2)Un(t

< Opfl) |k(t)(,1-1)/2 eXp(p(t7 t1n)2 ||Yly2)U(t

< Op(l ) nn[O k(19n)1/2] k(t),I)2 Un (dt) exp(2Wn (On))

+ Op(1) J k(t)("- )1Un(dt) exp(2k(Onn)3/2IIYnJI)
= Op(k(6On)(+1)/4) exp(2Wn(9n)) + Op(l) exp(4k(On9)1/2Wn(On)) 0

The bounds in Proposition 1 are useful for small values of k(9n) and moderate

values of Wn(On). However, if Wn(On) is sufficiently large, one can approximate

Wn(t) - Wn(On) by

Wn(t) := IIYnInlnIk(n)Yn- 2-1lt - OnlYn + Zn(t)IIn - k(tn)IIYInIn
and Tn by k(9n)P+'Wn(On)-1 exp(Wn(On)) times

Tn = {ln 112 |)exp(Vn(t))Un(dt)/2 1

where OG°) := {t E O,)n -It- n < 2k(On)}

Proposition 2: Suppose that Ln = Op(l), Mn(un) = Op(l) and Nn(on) = Op(l)
for any fixed sequence of numbers a,, > 0. Further suppose that

k(On)nYn2/ logloglog n -+ 0 if , = -1

k(On n112llog(l/k(On)) -0 o if 6> -1

Ifn1IIlYnI - oo, then

Tn = n-rk(Gn) exp(Wn(6n))(1 + op(l)) .
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On the other hand, if n-rIYn112 = 0(1), then

= Op(l) I = Op(l) and

Tn= k( 9n)/3+Wn(6n)-l exp(Wn(On))'n (1 + op(l)) -

Proof of Proposition 2: At first some useful inequalities are listed that can be

proved with elementary calculations: For arbitrary t, 6 E (0, 1),

ik(t)-k()J < itt-e1 (3)

p(O, ) - p(t,9) < k(O)-1/21t - Gj and

jp(0,O) - p(t, 9) - k(9)-1/2t - 01/21 < k(9)-3/21t _ 912

Further, let

71 (t V G(1-t A 0))I(t A G(1-t V9)) > 1.

Then,

p(t, )2 = -lk(9) 71- -1 < k()-1jt - 01 < Ti - 1 , (4)

7-1 < k(t)-1k(t,9) < 1 and 7-1 < k(t)lk(9) < 77.

Now let A > 1 and -Y, -yn > 0 be arbitrary fixed numbers such that yn -a oo. The

set Orn is split into the two subsets Orn(A) and Orn \ On(A), where Or,(A) is the set

of all t E On such that

A-' < (t(l - n))/(On(l -t))<A

Then (2) and (4) imply that

I|n\e,A k(t)1exp(Wn(t))Un(dt) = Op(logn)Ln+lWexp(2A) Wf (or ))(5-
1n\E)n(\))

|k(t)1exp(Wn(t))Un(dt) = Op exp(2A-'Wn(0wn))) for .3 > -I1
En \En(-\)
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Furthermore

max lDn(t)- k(t,O,)YnII = Op(k(On)1/2) . (6)tEen(A)
For Dn(t) - k(t, On)Yn equals Zn(t), and IIZn(t)II is not greater than

(A - 1)'/2k(On)1/2Mn((A - 1)k(On))

for all t E On(A), by (4).

Now the set On(A) itself is split into two subsets 0n(A,f)l and On(A) \ On(A,5)
where en(A,5) is the set of all t E E<3(A) with It-OnI n4IIYnI;2 On the one hand,

Wn(t)-Wn(On) < -It-OnI)A1(1+2p(1))IIYnIl/2 Vt E En(A)\en(A,7n)* (7)

For Wn(t) - Wn(On) is not greater than

(p(t, O )IIYn IIn + k(t)-1/211Zn(t)lIn)2/2 - k(On)llYn 112 /2

. (p(ti On) + k(tY112t - OnEn)2I|Yn112 2 - k(On)jIYn /2

= -jt - GnI(k(t)-k(t,On)(1 -2)-k(t)-l't -6nICE)IIYnl2/2
- it - OnjA 1(1 - 2En _ A2)IYn 112 /2

for all t E en(A) \ En(A,7n), provided that En : ;I/2Nn(ynIiYnIIn2) < 1/2; the last

displayed inequality is a consequence of (4). In particular, if n := A-(1 - 2en -

A2E2 )/2 > 0, then

| Ak(n k(t) exp(Wn(t)) Un((dt)
in~~~~~~~~~~~~~~~~~~O I))i(Alyn

ln(AA9en(A,-Yn) PtFnI i In||)U t
< 2A"k(On)1exp(Wn(On)) exp(--nKn)n 1(1-exp(-rnn-1 IYnI2))fl

Consequently,

n k(t) ep(Wn(t)) Un (dt) (8)

=op (k(8n)1(||YnI|2 A n)-' exp(Wn(On)))
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For the moment suppose that n1 JjYn112 tends to infinity. Tn is obviously not

smaller than

n-lk(On) exp(Wn(On))-

The bounds in (5) are of smaller order than that, provided that A > 2. Together

with (8), where -yn := nIIYn12/2, one can deduce that Tn is not greater than

nw1k(On) exP(Wn(0n))(1 + op(l)). This establishes the first part of Proposition 2,
and for the rest of this proof we assume that n' Y1L12 is bounded.

As for the approximation Tn, note first that

On(3) C G$°) and On(0oo,5) C O(n(1 - 4lWn(00Y1/2)-l
whenever 0 < 5 < 2W(8n). This is a direct consequence of (4). In particular,

On(cn(°Y) C n'°) for sufficiently large n. Now one can show that

IlYnll Jeox)\e( p)exP(Wn(t))Un(dt) op(l) and (9)

(Jlynn exp(fVni(t)) Zn(dt)) = O (1)

For lWn(t) + It - 6n1j2Ynjj2/21 is not greater than llYIlnllZn(t)lln for all t E EJ$(), and

IIYllZ(t)II.n 712M(IYn2), if t E Gn(°, -Y)
11 n()llnll/2N(jYnil-2)lt 6PjillYniJ , if t

In particulax, (9) implies the boundedness of Tn and T;1.
Finally,

maX IWn(t) - Wn (on) -Wn(t)l = op(l) if 'nW2 (n) ' -°0 (10)tE9n(A,-Yn)nW(nP0
For Wn(t) -WK(O) - Wn(t) can be written as

k(On)n/2tIYlIn (lIp(t, On)Yn + k(t)-1/2z (t)lln

jlk(8n) n/2Y- 2-lk(6n)n/2It- nIYn + k(6n)-1/2Zn(t)lln)
+ (IIP(t,eRn)Yn + k(t)-1/2Zn(t)II1-k(On)1/2lIY 11 )2 /2
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and thus its absolute value is not greater than

k(O ) n12IIY1II2 lp(6n,9n)- p(tOwn)- k(On)-1/2itOn/2
+ IlYnIln Ik(t)-1/2k(en)1/2 _11IlZn(t)lIn
+ (P(On,Gn)-p(t,O0))2IIynII2 + k(ty1lizn(t)JI2
< (1 + A112'En + 1 + XE2)y2k(0n)-I nl-2

where en := oy,l/2Mn(ynIIYnII2); see (3) and (4). One can use (10) for showing that

n (xi1) k(t) exp(Wn(t))Un(dt)(1
k(On)"+lWn((On)lexp(Wn(9n))Tn(l+ op(l)) if ynWn(Gn)' - 0.

For E)n(0,°Y,) is a subset of On(An), where An := (1 - 1; in

particular, ®n(A,-y) = E)O(oow-y) C 0$n) for sufficiently large n. Thus

k(t)' exp(Wn(t)-Wn(Gn)) = k(On) eXP(Wn(t))(1 + rn(t))n

where maXtEen(A,Yn) lrn(t)l = op(l), by (4) and (10). Finally, k(9n)# exp(WVn(t)) can

be written as k(9n)'0+'Wn(9n)IiYnII2 exp(Wn(t))/2, and one can deduce (11) from

(9).
The inequalities (5), (8) and (11) with A > 2 yield the last assertion in Proposi-

tion 2 0

Here is a result that can be used to verify the assumptions about Ln, Mn and

Nn in Propositions 1 and 2:

Lemma 1: Let (V(t))iefl be a B-valued stochastic process such that

1{E miax IIV(t)II> 77} < Kexp(-La-1t72) Va,7> 0,
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where K > 1, L > 0. Then

IP e max (tjoglog(1/t))f1/2jjV(t)jj> 77 < CKexp(-L772/C) and

IP{al/2 max t- IIV(t)ll 2 7 < CKexp(-L772/C)

for all a, 7 > 0, where C > 0 is a universal constant.

Proof of Lemma 1: The function h(t) (tloglog(1/t))1/2 is nondecreasing on

(O, exp(-2)]. Therefore P{maxtEen:t<xp( 2) h(t)-l jV(t)lI > 77} is not greater than

z _P{tee _m<ima IIV(t)jj > h(2t/n)77}
O<i<(log n-2)/ log 2 tEE)n.2i<t<i
< K exp(-LL72h(2'/n)2n2-il )

O<i<(log n-2)/ log 2

k E (logn - i log 2)f-LT2/2
O<i<(logn-2)/ log 2

1 rlognI(E(log2) -I x1972/2dx
2-log 2

K K(2/log2 - 1)(L2/2-1)-1(2 - log2)-L72/2

provided that L772/2 > 1. This yields the first assertion. As for the second part,

IPt <matx t 'IIV(t)ll > a-1/77
00

< =1 {teen iax+ IIV(t)II > i71/217}
00

. KEexp(-Li2772/(i + 1))
i=l

. K/(exp(L 2/2)-1) 0

4.2. Auxiliary results, II

The p-values P can be represented as follows: For each 'r E On let D(r) -
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(D$&T)(t))tEe, be a stochastic process defined on the same probability space as Xn
such that

D($)(r) = Dn(T) and £(D($r)jXn) = lP(0)(DnIS(i)) (12)

For any statistic Gn = Gn(Dn, fn) let G(T) := Gn(D$T), 7r). Then

pn(T) = ]P(T(r) > TnIXn) .

Explicitly, in the normal shift model let B be a Brownian bridge, which is inde-

pendent from Xn. Then Dn =z (k(t, n)An + B(t))tEen, and one may define

D(T)(t) := k(7)-1k(t, i-)Dn(r) + Z(r)(t) = k(t, r)Y(r) + Z(')(t)

where Z(T)(t) := B(t) - k(r)-k(t,r)B(r). The validity of (12) follows essentially

from the fact that B(r) and Z(r) are independent.

In the nonparametric model let D(T) be defined as Dn with Hnr)Xn in place of

xn.
The following two results are essential in the proof of Theorems la-b and 2a-b:

JJ(nn)-1Sn(n) - PnJ V j[(n- nn)OY(Sn(1) - Sn(6)) - Qnjj (13)
= 0p(N+/Zlk(6in)-1/2)

(in the normal shift model Pn and Qn stand for sn and vn respectively). Moreover,

there is a function b: (0, oo) -v [0, 1] such that (for suitable versions of IP(.jXn))

1P(L($) > 7iIX,,) V IP(Mlr)(a) . 7nlXn) V IP(Nn()(a) 2 77jXn) (14)

< b(77) Vr EE)n Va, 77 >O and b(77) O 0as 77 oo.

In the normal shift model, (13) is obvious, while (14) can be easily derived from

Lemma 1. For it is well-known that the Brownilan bridge B satisfies the assumptions
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of Lemma 1, and the process Z(T) can be represented as

Z()(tT))tE[0] = T1/ B ) I (z()(T + t(1 - r)) t[0,11 = (1 - r)1/2B(2) (15)

with two independent Brownian bridges B(1) and B(2).

In the nonparametric model, (13) follows from a maximal inequality for empirical

processes such as in Alexander (1984); see also Diimbgen (1991, Lemma 1). (14)

follows from Lemma 1 and Lemma 2 below. Just note that conditional on S$() the

two processes (Z )(t))tEe t<r and (Z$T)(t))tEent>,. are independent and behave

similarly as the processes (71/2Bn7r(t/r))teen :t<.r and ((1- )1/2Bn-nT((t - 7)/(1-

T0)))n respectively, where B2, B3,... are defined as follows:

Let x, = (Xn(l), v, n(n)) be a fixed point in Xn, let R := nI 6 (i)

and let Hn be uniformly distributed on the set of all permutations of {l..., n}.

Then define
nt

Bn(t) := v-1 E(6inXnn(j)- Rn)-
i=l

Lemma 2: There are constants K, L > 0 depending only on F such that

IP{ maxE IBn(t)11y >a1/2q} < Kexp(-L772) Vcr, > 0.

Proof of Lemma 2: Since (Bn(t))tsen =L (-Bn(l - t))tE9n

1Pt m<axII Bn(t)llI 7> a1/2X7} < 2R'{ max jjBn(t)jjjr 2 a1/2 t7}

Hence one may assume without loss of generality that a E (3n n [0, 1/2]. Now define

e := all/2i and

A := {max IBn(t)II 2 E}
At := {IIBn(t)IIy > e and IIBn(s)IIr < e for s < t}
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Then,

IP(A) < IP{IIBn(a)11y > E/4} + Z IP{At n {IIBn(a)11T < E/4}},
tEen:t<a

and one can show with the triangle inequality that At n {IjBn(a)1jy < E/4} is a

subset of

At n {II(Bn(or) - Bn(t)) - (1 - t)-( t)(Bn(l) - Bn(t))11 >./4}
The event At is measurable with respect to IIn(1),. , Iln(nt), and conditional on

Hn(l), ... n(nt) the random measure (Bn(a)- Bn(t)) - (1-t)-(a - t)(Bn(l)-
Bn(t)) behaves similarly as (1-t)1/2B,-nt((a-t)/(1-t)). Consequently the asserted

inequality follows via Tshebyshev's iInequality from the following one:

There exist K', L' > 0 depending only on F such that (16)

IE(exp(Atr1IIBn(t)IIs)) < 1 + K'A/(L' - A) A E (0,LI) Vt E On -

The aforementioned maximal inequalities for empirical processes imply that (16) is

true, if Bn(t) is replaced with

nt

Bn(t) := /i(6x -Rn)-
i=l

where Xl,...,Xnt are independent with distribution R,. But

IE(h(Bn(t))) < IE (h(bn(t)))

for arbitrary convex functions h on the linear span Of 6Zn(1)n--.., (n), according

to Theorem 4 of Hoeffding (1963); see LeCam (1986, Lemma 16.7.2) for an elegant

proof 0
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4.3. Proof of Theorems la-b

For any fixed number e > 0 let An be events in the underlying probability space

such that IP(An) 2 1 - e + o(1). All subsequent statements are meant to hold

along (An)n. According to (13), the An can be chosen such that (Yn)n meets the

requirements of Proposition 2 and

II(nf6n) Sn(On) - PnJJ V jf(n - nOn) (Sn(1) - Sn(6n)) - Qn = o(VGIIAnI1n);
in particular, llYn - Anll = o(IIAntln). Hence one has to show that dist('Cn,6n) =
O(IIYInII2). In addition one may assume that the following four conditions hold:

Ln < 771 (17)

for some 77i > 0 (by (14));

Tn > 772k(9n)'3l(ynY12 A n)f exp(Wn(6n)) (18)

for some 72 > 0 (by Proposition 2);

max lYnllj-lllYn(r)-k(r)lk(6r,6n)Yynl - 0, (19)TEen(A) n(9

for any fixed A > 4 (by (4) and (6));

Wn(T) - Wn(6n) < -73 |r - OnI nYI!2 Vr E e)n(A) \ n)(A,774) (20)

for some 13, 774 > 0 (by (7)).

Note that Cn is a subset of {T E En : qn(r) Tn}, where qn(r) stands for the

quantile max{r E R : IP(Tn) > rjXn) > ae). According to (14) one may apply

Proposition 1 to all processes Dn7), r E (n. Together with (2) this implies that

4n>)(r) < 715(k(r)( +1)/4exp(2Wn(r)) + exp(4k(r)1/2Wn(r)))
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77 (k(r)(0+1)/4 1og(1/k(r))"1 + exp (4tqlk(r)1/2 loglog(1/k(r))))

*exp(2p(-r, 6n) {lYnll')
< 6exp(2p(Tr,Gn)2'IYnl) and

( )(Tr) < q7s(logn)'- exp(2Wn(r))
. 776(log n)86 exp(2p(r, 6"I)2IIYlIz)

for some 7s, 776 > 0 and for all n > n, with a fixed integer ni. Together with (4) and

(18) this implies that

Cn C 0n(A) Vn> n2

for a suitable n2 > n1. But (19) and (4) show that one can apply Proposition 2 to

all Dn -r E 0O)(A), simultaneously for proving that

n(r) < 777k(r)"(InY )In A n) exp(Wn(7))
< 77sk(On)?(IIYnInA2 n)1 exp(Wn(r)) VrrE n(A) Vn 2 n3

for some 777,778 > 0 and some n3 2 n2. Hence

Cn nn0n(,) C O9ne>Qx 4 V(A74 1OIg(778/772))) Vn > n3,

according to (18) and (20) 0

4.4. Proof of Theorems 2a-b

For an arbitrary fixed E > 0 let the events An be as in section 4.3, and again all

subsequent statements are meant to hold along (An),. According to (1) one may

assume that

(21)11 2 __+ Illbn-',an n
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where En := An in the normal shift model and 6n := x3f An P,(dx) in the non-

parametric model. In particular, I6 12YnII -- 1. The proof of Theorems la-b shows

that

max 3n(OJ +En2r) .-- 0 whenever -yn -° oo.

Hence it suffices to show that (3n(On + 6;2r))re[-,] converges in distribution to

for any fixed -y > 0.
Let An = (1 - yk(6n)-l16-2)-'. Then 1 < An -- 1, and O,n(An) contains all

T- E On with Ir - OnJ < 76y2. It is shown below that the (An)n can be chosen such

that

((W(f)(T
+ 6n2r)) E[_...L WrXn)W

)
(22)

uniformly in (u.i.) 7 E 3n(An) VY > 0.

Further one may assume that

Tn = k(0n)"+1Wn(n)-1 eXP(Wn(n))Tn (1 + O(1))
Wn(7) - Wn(On) - Wn() -+ 0 u.i. E n(n)

according to Proposition 2 and (10). It follows from (4) and (19) that

k(7)/k(On) -+1 , Wn(7r)/Wn(Gn) -+ 1 and lyn1(1in n
1 (23)

u.i. r E On(An).

Consequently pn(r) can be written as

lP(ep(-Wn(7))k(r)-'-'Wn(7-)Tn").>exp(-Wn(r))Tn(l + rn(r))jXn)

where rn(r) -O 0 u.i. T E en(An). But now one can apply Proposition 2, (9), (22)
and the Continuous Mapping Theorem to all processes Dn, D(T), T E e (A' ) for



25

showing that

(exp(-W~n(On + 6;2r))tn)r[--]
)L(x(-W(r)) |exp(W(t)) dt)_,

and

LC (exp(-Wn(T))k(T)-"-'Wn(T) T(')|Xn) -, LC( excp(W(t)) dt)

u.i. r E O)n(A)n) Since H is continuous, this implies that Pn('r) can be uniformly
approximated by H (exp(-Wn(r))iPn), and the desired result follows.

It remains to prove claim (22). For notational convenience we first consider the

normal shift model: Here

'CV( I (t) lY,T)jlk(7)Y(4) + Z(T)(t) - Y ')lt - Tr/21 - k(T)Yn

=y(r)Z(-)(t)_ y(r)21t - TI/2

provided that

IYn nZn (t)- - JTI/21 < k(7

But minEe (Ax) k(r)Yn(T)2 -- oo and

jy(7 )Znr)(t)-_- Y,)21t - 71/21
< 1/21i6-ly(7) M(r)(j6-2) + 6;2yE()2/2

= O(j)M(r)(j6;2) + 0(1),

y(1)Zn(r)(t)_y(r)2jt t|/2 6nZn$r)(t) + 6j2jt-T/2j
. ~1/21j-ly(7i)2_ 11M(r)(Qbn2) + aj6n2Yn)2_ 11/2
= O(l)Mn(7')(5/;2) + o(l)
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for all t E en with It--r < 162; see (23). Together with (14) it follows that one

may replace W,Tr(t) with 6nZ$T)(t) - 6jit - rI/2 when checking (22). But one can

deduce from (15) that for any fixed a > 0,

(6bnZnr)(7 + 6;2r))rE[-, ]-I (Z(r))r-E[tcj,]
u.i. EeE)n(An), and (22) follows for the normal case.

As for the nonparametric model, note first that

max II(nr)ylSn(r) - P V jj(n - nr)'(Sn(l) - Sn(r)) - f 0, (24)

where 11 - 11 stands for the Kolmogorov-Smirnov norm times Vi2. For 1J(n7)-1S(r) -
Pll can be approximated by

- ne)1Sn(6n)II = -/11I(1 - -r)Yn$) - (1 - 6n)YnjJ11(nT-) lSn(T-)- (n6in) ls(n| = /1ll-ET-1-T;Yl

and one can easily show that the right hand side tends to zero u.i. 'r E En(An); see

(19). The measure (n - nr)l(Sn(l) -Sn(r)) can be treated analogously.
Similarly as in the normal shift model one can show that W(r)(t) may be replaced

with

End|J Z(r)(t)(x) Rn(dx) - 6bj2t-r11/2
when checking (22); here Rn denotes nrrSn(1). One can write

JZnr)(t)(x)ni'Sn(l)(dx) = J i<n t )(n ) if t > T,

where

v/iDz(i *_ f Rn(Xnw(i)) (n7)- Ej<nr Rn(Xn(j)) , if i < nTr
VflXn~J '~-Rn(Xn(i)) + (n- nr)1 j>nT Rn(Xn(j)) if i > n7

These vectors x(t) have coordinates in [-V_'-l/J-1], and both xi<n$r(i) and

2i>nT x(T)(i) are zero. Moreover one can deduce from (24) that both
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T 1 2i<nr Xn()(i)2 and (1 -T)-1 Ei>n )(i)2 converge to 1/3 u.i. 7r E E)n(An).
Thus Lemma 3 below implies that the conditional distribution of

(6 ViJ Z(7r)(r + f;2r)(x) Rn(dx))[..]

given Xn converges weakly to £C(Z(r))rE[_;,il u.i. r E On(A) for any fixed 7 > 0

0

In order to formulate Lemma 3 let the random permutation 1n be as in sec-

tion 4.2, let Xn = (Xn(1),.. . , X,n(n)) be a vector in Rn such that ET' i xn(i) = 0 and

n=j Xn(i)2 = 1. Then define

bn(t) = E llnxn(i) i t E [0,1]-
1 <i<nt

Lemma 3: Suppose that maXl<i<n 7n xn(i)2 -* 0, where an > 0 are constants such

that an - 0 and n-yn -D oo. Then

(-yn-1'bn(r-Yn))1EO,-C (Z(r))rE[O,] Vy> 0

This can be proved with the techniques of Billingsley (1968, chapter 4), especially
Theorems 19.3, 19.4 and 24.1. For a different method of proof see Diumbgen (1992).
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