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1 Introduct'ion
Let 7r be a random discrete probability measure. Given xr, let X1,X2,...
be i.i.d random variables with distribution 7r. Let P,n be the ir-measure of
the nth distinct value observed in the random sample (Xi} from 7r, with the
convention Pn = 0 if there are fewer than n distinct values in the sample
sequence. That is to say, Pn is the almost sure limiting frequency in the
sequence (X1, X2,...) of the nth distinct value observed in the sequence of
exchangeable random variables (X1, X2, . . ). Think of the atoms of 7r as rep-
resenting the frequencies with which various species are present in an infinite
population. Then X1, X2,.. . represents the sequence of species obtained by
random sampling. And P,, is the proportion in the whole population of the
nth species observed in the random sample. Given that the random discrete
distribution 7r has atoms of sizes say

7rl> 7r2 > -. > 0, with Zlri =1,

the (Pn) are a size-biased random permutation (SBP) of these atoms: P1-
7ri with probability 7ri; given P1 = 7rk, and P1 < 1, P2 = 7rj for j #
k with probability 7rj/(l - P1), and so on:
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given Pi-=rj, for 1i<i<n, withZ 'n=1 Pi < 1,1Pn+ =- rj with probability
rj/(l - Z:'= Pi) for j < {Jl.--.n}-

The most general possible distribution for the sequence (Pn) is one that
is invariant under size-biased permutation (ISBP). See Patil and Taillie [12],
Donnelly and Joyce [4], Donnelly [3], Ewens [6], Zabell [16] for background,
and motivation for the study of random discrete distributions that are ISBP.
One reason for interest in such- distributions is that due to the represen-
tation theory of random partitions of Kingman[9, 10], these are the only
possible joint distributions for a proper distribution (Pn) derived from an ex-
changeable random partition of the positive integers as the long run relative
frquencies of classes ordered by their least elements.

The problem considered in this paper is how to characterize those random
discrete probability distributions (Pn) that are ISBP. A basic result in this
vein is the following:

Theorem 1 (McCloskey [11]). Suppose that

Pn =W1W2 ** Wn-Wn, n.1 (1)

where 41,W2,... are i.i.d with values in [0,1], and Wi = 1 - Wi. Then
(Pn) is ISBP iff the common distribution of the Wi is beta(1;0) for some
0 < < 0.

Here, for a > 0, b > 0, the beta(a, b) distribution on [0,1] has density

B(a, b)-lxaUlx 0 < x < 1,

where x= 1 - x, and the beta(a, 0) distribution is a unit mass at 1. Mc-
Closkey derived the "if"? part of his result by showing that if (Pn) is the size-
biased permutation of the random probability distribution (7rn) on {1, 2, ..
defined by

=n=XnEl (2)
where X1 > X2 > ... are the points of a Poisson point process on(0, oo) with
intensity measure

A(dx) := Ox-le-AX x > 0

for some A > 0, 0 > 0, and E = En Xn, then (1) holds for independent
Wi with beta(1, 0) distribution. Perman, Pitman and Yor[13] generalize this
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argument to find the joint law of (Pn) derived this way from a Poisson pro-
cess on (0, oo) with arbitrary intensity measure A such that E < oo a.s..
McCloskey formulated the "only if" part of his result assuming (Pn) was the
SBP of (7rn) derived as in (2) from the points of a Poisson process on (0, oo).
But McCloskey's argument establishes the more general result formulated
above, as it is based only the following property shared by every (Pn) that is
ISBP: If P' is a random variable which given (Pn) is such that

p,i_f P1 with probability P1 (3)
l P2 with probability 1 -P1,

then P' has the same distribution as P1. A multidimensional form of this
property appears in Theorem 4 below, which gives a symmetry on the joint
distribution of (P1,. . . , Pn) that is both necessary and sufficient for (Pn) to
be ISBP.

Motivation for this development is provided by the following problem
posed by Patil and Taillie[12], and solved in this paper: for what independent
non-identically sequences (Wn) does the formula

Pn = W) .. . Wn_lWn (4)

define a random discrete distribution (Pn) that is ISBP? The model (4) for
a random discrete distribution (Pn), with independent Wn, is called a resid-
ual allocation model (RAM). This model has been considered in a number
of contexts. Freedman[8], Fabius[7], and Connor and Mosimann[2] studied
the model in the setting of Bayesian statistics. A prior distribution of this
form over probabilities on { 1, 2,. . .} has the feature that given data from a
sequence of observations, which given (Pn) are i.i.d according to (Pn), the
posterior distribution of (Pn) is of the same form. Such priors are called tail
free, or completely neutral. If for each n the distribution of Wn is beta(an, bn)
for some an bn the joint distribution of (P1, P2,...) is known as a generalized
Dirichlet distribution. In particular, in case bk = Z!=k+l ai for some m > 2,
the joint distribution of (P1,... ,Pm) is the Dirichlet (a,,... , am) distribution,
that is to say the joint distribution of

(YI /E7* * I Ym/E)
where Y1,..., Ym are independent gamma random variables with common
scale parameter and shape parameters a1, ... , am, and E = M1 Y1. Patil
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and Taillie[12] noted that if (7r1,.. . ,7rm) has Dirichlet (A,....,,) distribution,
then the SBP of (r1,... , 7rm) follows a RAM that is generalized Dirichlet with
parameters an-1 +/, bn =m -3-nfl, n m1,...,rm.

2 Results
According to the following theorem and its corollary, apart from some rather
trivial examples and modifications, the only RAM's which are ISBP are the
McCloskey and Patil-Taillie schemes discussed above, and a scheme consid-
ered in quite different contexts by Engen[5] and Perman, Pitman and Yor[13].
These schemes form a two parameter family of generalized Dirichlet distri-
butions, as indicated in cases (i) and (ii) a) of the theorem. The scheme in
(ii)b) is obtained from (ii)a) by letting 3 -4 oo. And the scheme in (ii)c) is
the most general distribution of the SBP of a random probability distribution
on two points. Theorem 1 is an immediate consequence of Theorem 2.

Theorem 2 Let (P1,P2,...) be such that Pn > 0, >,jjP, = 1, Pi < 1, and
Pn=W, ... Wn-,Wn for independent Wi. Then (PR, is ISBP iff one of the
following four conditions (i), (ii)a), (ii)b) or (ii)c) holds:

(i) Pn > 0 a.s. for all n, in which case the distribution of W,n is
beta(1-a,09+nca), for every n = 1,2,. .., for some 0< a < 1, 0 > -a.

or (ii) {n PPn > 0} = {l,. . , m} a.s. for some integer constant m, in which
case either

a) for some /3 > 0, the distribution of Wn is beta(1 + /3, mr/ - n#)
forn =,...,m.

orb) Wn = 1/(m -n + 1) a.s., that is to say P,n = 1/m a.s., for
n =1,...,m,

or c) m 2 and the distribution F on (0, 1) defined by

F(dw) = wiP(W1 E dw)/E(Wi )

is symmetric about 1/2.
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For O < a < 1, 9> 0, Engen[5] showed that for (Pn) as in case (i) of Theorem
2, a single size-biased pick from (Pn) has the same distribution as P1. The
full invariance of (Pn) under size-biased permutation in this case follows from
the work of Perman, Pitman and Yor [13]. For 0 < a < 1, 9 = 0, they showed
that (Pn) as in case (i) of Theorem 2 appears as the SBP of (Xn/ Z) derived
from a Poisson process of points X,, with intensity measure

A(dx) =, Kx-a-dx, x > 0

for a constant K, so that the distribution of E = jjXn is stable with
index a. In case 0 < a < 1, for arbitrary 9 > -a, they showed that this
sequence (Pn) remains ISBP, and that the W,, become independent with
beta(l - a, 0 + na) distributions, if the underlying probability measure is
changed by a density factor proportional to Y-'. (In the special case 9 = ka
for some positive integer k, that (Pn) stays ISBP follows from the case 9 = 0
by simply shifting along the sequence: if Wi, W2,... induce (Pn) that is ISBP,
then so do Wk+l, Wk+2, . . ., for any k > 1, given W1W2 ... Wk > 0).

Sections 3 and 4 of this paper provide a unified proof of Theorem 2,
without using the Poisson representation for the "if" part. The following
immediate corollary of Theorem 2 takes care of the rather trivial possibility
that P(P1 = 1) > 0:

Corollary 3 Let (Pn) be a random discrete distribution on {1,2,...}, rep-
resented as P, = P1W2 ... Wn_Wn, n > 2, for independent P1, W2, W31....
Assuming that P(P1 < 1) > 0, let W1 be independent of W2, W3,... with the
distribution of Pi given P1 < 1. Then (Pn) is ISBP iff either P(P1= 1) = 1,
or W1, W2,. .. is of one of the forms described in Theorem 2.

The above results show the ISBP condition imposes severe restrictions in the
joint law of (Pn). These restrictions seem at first hard to understand, as the
definition of ISBP appears to be essentially infinite dimensional. The central
result of this paper is that despite these appearances, a simple conjunc-
tion of conditions on the finite-dimensional joint distributions of a sequence
(P1, P2,...) is equivalent to ISBP. This is stated in the following theorem,
which is established in Section 3 , and applied to prove Theorem 2 in Section
4.

Theorem 4 Let (P1, P2,...) be a sequence of random variables satisfying
the almost sure constraints Pi > Ofor i > 2, and EZ 1 Pi < 1 n = 1, 2, .
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Let Gk denote the measure on Rk whose density with respect to the joint
probability distribution of (Pi, .. . ,Pk) at (Pi,*Pk) isPlk)(1-

k-1 i

Gk(dpi **dPk)=P(Pi e dpi I... Pk e dpk) II(l EPj) (5)
i=l 7j=l

The following statements are equivalent:

(i) ,i Pi= 1 a.s. and (P1, P2, ...) is ISBP.

(ii) P1 > 0 a.s. and for each k = 2,3,..., the measure Gk is symmetric
with respect to permutations of the coordinates in Rk.

(iii) P1 > 0 a.s. and for each k = 2, 3,. .. the function of k-tuples of positive
integers

k k-1 i

(nl, . ., nk) + E II Pin'-'iII( E Pj) | ' (6)
Li=1 i=1 j=1 J

is a symmetric function of (ni, * * *,nk),
Note the surprising feature of Theorem 4 that the condition >i Pi = 1 a.s.
in (i) is not assumed in (ii) and (iii), but is nonetheless implied by these
symmetry conditions. By contrast, for arbitrary random variables Pi > 0 the
condition >i Pi= 1 a.s. alone is obviously not just a simple conjunction of
conditions on the joint distributions of PI, . . . , Pk. (For the condition >j Pi
1 a.s. imposes no constraint on the law of P1, . . . , Pk besides El Pi < 1, and
the conjunction of these conditions is Ei Pi < 1 a.s..)

The proof of Theorem 4 provides a probabilistic interpretations of the
measure Gk in (5). And it shows that the function in (6) for (ni,.*. , nk)
with Si ni n defines the distribution of a random partition of the first
n positive integers derived from an exchangeable random partition of all
positive integers, constructed in such a way such the Pn are the long run
relative frequencies of classes ordered by their least elements. In the case
of McCloskey's Theorem 1, the corresponding random partition of n is that
defined by Ewens' sampling formula. See Ewens [6]. See Pitman [15, 14] for
analysis of the two-parameter family of random partitions corresponding to
Theorem 2.
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3 Symmetry in size-biased sampling

This section presents a proof of Theorem 4, then draws some corollaries.
Proof of Theorem 4
(i) .n (ii): Because (Pk) is ISBP, it can be assumed that (Pk) is represented
as

Pk =r(XN(k)), k = 1,2, ...

where 7r = (r(l), 7r(2),. . .) is a random discrete probability distribution dis-
tributed like (P1, P2,.. .), given ir the (Xi) are i.i.d. according to 7r, and the
N(k) are the times that successive distinct X-values appear, with the con-
vention Pk = 0 in case fewer than k distinct X-values ever appear. Define
indicator random variables

Zk = l{X1,.. .,Xk are all distinct}. (7)
Then for each k the random vector

(P1,P2, * ,Pk)Zk = (7r(X1), 7r(X2), . .,r(Xk))Zk (8)

clearly has an exchangeable joint distribution. But since

k-1 i

P(Zk = lIP,... , Pk) = (1- Pj)i
i=1 j=1

the distribution of the exchangeable random vector (8) and measure Gk de-
fined by (5) are identical when restricted to Rk - {0}, where 0 is the origin
in Ijk. Thus Gk is symmetric.
(ii) X (iii): This is immediate from the definition of Gk, and the fact that
polynomials are dense in the space of continuous function on [0, 1]k.
(iii) => (i): The argument is based on the approach of Aldous [1] to Kingman's
[10] representation of exchangeable random partitions of V := {1, 2,. . .}. See
Pitman [14] for generalizations of the argument to the setting of partially
exchangeable random partitions of NV.

Define a sequence Hn,, of partitions of NV, :-{1,... , n} as follows: HIl
{1}; and for each n e N, conditionally given HI,, ={{Ai}k}, where {Ai} is
a partition of JN into non-empty subsets of sizes ni that satisfy the order
constraint: 1 e A1, the least element not in A1 is, in A2, and so on,
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[I,,+ is an extension of H, in which element n + 1 attaches to class Ai
with probability Pi, 1 < i < k, and forms a new class with probability
R, := 1 - P1 .- Pi. By constriction, the partitions HII are consistent as
n varies, so they induce a random partition H of IV. Also by construction,
for {Ai}k that satisfy the order constraint:

k k-1

P(HIn {A1}k) EJpni-l IJ Ri) (9)
i=1 i=1

This probability depends on Al,...,Ak only through their sizes 'n,... ,nk,
and hypothesis (iii) amounts to symmetry of the right hand side of (9) as a
function of (nl, ..., nk), for each k > 2. It follows that' H is exchangeable in
Aldous' sense. Aldous [1] uses further randomization to construct a random
probability distribution Xr on [0,1], and a random sequence (X1, X2,....
which given r is i.i.d. according to ir, and which generates H as the collection
of equivalence classes for the equivalence relation

i jXi=Xj, i, jEJA.

From the original construction of II and the law of large numbers, Pk is the
long run relative frequency of numbers in the kth class of H to appear. But
Aldous' construction identifies Pk as the ir-measure of the kth distinct value
to appear in the sequence (XI, X2,...). The assumption P1 > 0 implies
ir is discrete a.s., hence that >i Pi = 1 a.s., and that (Pk) is a size-biased
presentation of the atoms of 7r. Thus (Pk) is ISBP. 0

An immediate consequence of Theorem 4 is

Corollary 5 Suppose (P1,P2,...) is a sequence of random variables such
that for each n,

P(Pi E dpl11 ..* Pn E dPn) fn (Pl, ... Pn )dpi) ..* dpn)
for a joint density fn such that fn(pl ... ,Pn) = 0 unless pi > 0 and Ein=l pi <
1, and

n-1 j
fn(Pl,v * * Pn) rl (1 - pi) (10)

j=1 i=1

is a symmetric function of (pl,... ,pn). Then (P1, P2,...) defines a random
discrete probability distribution which is ISBP.
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By change of variables the above condition on f,n becomes a simpler con-
dition on the joint density gn of Wi,.. ., Wn such that P.,, = ..lW. -lWn
namely:

gn(Wl, ...W)n) = 0 unless 0 < wi < 1,
and

g p P2 Pn )(1
1-pl " 1 -P1 ..-Pn-1

is a symmetric function of P,..., Pn. Characterization of such joint densities
gn of product form is provided in the next section. More generally, the result
of Theorem 4 can be reformulated as follows.

Definition 6 Say the joint distribution of a pair of random variables (1471, W2)
is acceptable if 0 < Wi < l a.s., and for P1 = Wi, P2= W1W2, the joint law
of (P1, P2) is such that the distribution G2 in (5) is symmetric.

In view of (6), a joint distribution for (W1, W2) is acceptable iff 0 < Wi <
1 a.s., and

m(r, s) := E[WlWVI' W2S] (12)
is such that m(r, s) = m(s, r) for all pairs of non-negative integers r and s.

Corollary 7 Let (W1,W2,...) be a sequence of random variables with 0 <
W1 < 1 a.s. and let Pn = ... Wn_1Wn n = 1,2,. -The following are
equivalent:

(i) (Pn) is a random probability distribution that is ISBP.

(ii) The law of the pair (W1, W2) is acceptable, and for each n = 1,2,...,
on the event P1 + - - - + Pn < 1 there is a version of the conditional law
of the pair(Wn+l) Wn+2) given (P1, . . . ,Pn)- that is acceptable, and that
depends exchangeably on (P1i Pn).

Proof. Condition (ii) is a substitute for the condition that Gk in (5) is
symmetric for all k. Equivalence of these two conditions is easily established
by induction, using moments. Then the present corollary follows at once
from Theorem 4.
Remark. Condition (ii) above is analogous to the following necessary and
sufficient condition for (X1, X2,.. .) to be exchangeable: (X1, X2) is exchange-
able, and for each n = 2,3,... there is a version of the conditional law
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of (Xn+l,Xn+2) given (X1,.. . ,X,,) that is exchangeable, and that depends
exchangeably on (X,7... ,X7). The proof of Corollary 7 follows the same
pattern as the proof of this more intuitively obvious result, just with extra
density factors in the conditional expectation calculations.

4 Residual Allocation Models
This section applies the general results of Section 3 to the RAM

Pn = Wl ... Wn-1Wn

for independent Wi. The final result is Theorem 2 stated in the introduction.
The first step is provided by

Lemma 8 Let (WI, W2 ... ) be a sequence of independent random variables
with 0 < Wi < 1 a.s., and let Pn W= W...Wn-Wny n = 1,2,.... Then the
following are equivalent:

(i) (Pn) is a random probability distribution that is ISBP.

(ii) the law of (Wn, Wn+i) is acceptable for every n < m, where

m=inf{n:P(Wn=1)=1}.

Proof. This follows immediately from Corollary 7.
The problem now boils down to characterizing all acceptable laws for

(W, Z) say, where W and Z are independent. That is to say, from (12), all
possible pairs of distributions for random variables W and Z with 0 < W < 1,
0 < Z < 1, such that

m(r, s) E(W'WVV+l)E(Z') (13)

is symmetric function of non-negative in integers r and s. From (11) for n = 2
we obtain an elementary sufficient condition for acceptability of independent
W and Z with densities say f and g on (0,1), namely:

q p
f(p)g( = f(q)g(- (14)
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for 0 < p < 1, 0 < q < 1. In particular, in case f and g are beta densities
with parameters (a, b) and (c, d) respectively (14) becomes

av-1 -l1 q 1cl p-q )d-1 = a-1lqb-l (Pc_ q-P d-1

p pqq. q

for p > 0, q > 0, p + q < 1,;which simplifies to

a-1i-b-c-d+i c-i c-1 a- 4b-c-d+i
pp q =p q q

Clearly, this identity holds if c = a and d = b - a + 1. And it is easy to see
that for W and Z with beta densities these conditions are in fact necessary
for (W, Z) to be acceptable. Thus we obtain

Lemma 9 IfW and Z are independent with beta (a, b) distribution and beta
(c, d) distribution, respectively, for strictly positive a, b, c, d, then (W, Z) is
acceptable iffc = a and d=b-a + 1.

In particular for a = 1 and b > 0, Lemma 9 shows that W and Z i.i.d.
beta(1, b) makes an acceptable pair. So the "if" part ofMcCloskey's Theorem
1 follows at once from Lemmas 8 and 9. So does the "if" part of Theorem
2 in case (i). The entirety of Theorem 2 follows from the next lemma com-
bined with the symmetry condition for the moments (13) that- identifies an
acceptable independent pair (W, Z), and Lemma 8.

Lemma 10 For a random variable W with 0 < W < 1, the follo-wing state-
ments (i) and (ii) are equivalent:

(i) there exists a r.v. Z with 0 < Z < 1 such that for r = 0 and 1, and
s = 1,2,...

E(WrWV8+i)E(ZS) = E(WsWr+ )E(Zr) (15)

(ii) either

A) the distribution F on (0, 1), defined by

F(dw) = wP(W e dw)/E(W), (16)

is symmetric about 1/2.
or
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B) W has beta(a, /3) distribution for some a < /3 + 1
or

C) W = c a.s. for some constant c with 0 < c < 1/2.

In case A), Z 1 a.s., whereas in case B), Z has beta(ca, / + 1 - a) distri-
bution, and in case C) Z = c/(1 - c) a.s. In any case, identity (15) holds for
all positive real r and s.

Proof. Given some distribution for W, let Y be a r.v. with distribution F
as in (16), so-for any bounded function g,

Eg(Y) = E(g(W)W)/E(W)-

Then each condition above becomes a corresponding condition on Y, as in
the statement of Lemma 11 below. Thus Lemma 10 is a consequence of
Lemma 11. 0

Lemma 11 For a random variable Y with 0 < Y < 1, the following state-
ments (i) and (ii) are equivalent:

(i) there exists a random variable Z with 0 < Z < 1 such that for r 0
and 1, and s =1, 2,....

E(YrYS)E(ZS) E(YsYr)E(Zr), (17)

where Y=1-Y.

(ii) either

A) Y has a distribution symmetric about 1/2,
or

B) Y has beta(a, b) distribution for some a < b.
or

C) Y = c a.s. for some constant c with 0 < c < 1/2.

In case A), Z = 1 a.s., whereas in case B), Z has beta(a, b - a) distribu-
tion, and in case C), Z = c/(1 - c) a.s. In any case, identity (17) holds for
all positive real r and s.
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Proof. Suppose 0 < Y < 1 and (i) holds. For k = 0, 1,... let

Ik = EYk; vk = EZk.

Note first that (17) for r = 0, s = k implies

tk =E(Y )/E(Yk), (18)

In particular
VI =1i/('1- pi) (19)

and in general
Vk =Pk/Pk(Pl, **,IPk) (20)

for some polynomial pk. Thus the distribution of Z is determined by that of
Y. In particular if Y is symmetric about 1/2, that is E(Yk) E(Yk) for all
k, iff Z = 1 a.s.. And Y = c a.s. for some constant c iff Vk =(C/C)k for all k,
that is Z = c/C, in which case c < 1/2 by the assumption Z < 1.

Next, suppose that (i) holds, and that Y is neither constant, nor sym-
metric about 1/2. Then by the preceding argument, P(Z 1) < 1. Since
we assume 0 < Z < 1 a.s., this implies

1>v1>v2>> >0 (21)

Now (17) for r 1 states that for s = 2,3...

E(YY8)v= E(Y8Y)v1,

which rearranges to show that for s 2,3,...

-= rsCul,,L2;@e-,. ) (22)

ILs+1-v.(-1)-q + v'i
for some polynomial r5, where the denominator never vanishes, because 0 <
V,, < v1 by (21). Now (20) combined with (22) shows that

PSs+ =fs(pli - ..IX), s==2, 3, ...

for some function f8, hence by induction

ILk = gk(PI1, /2); Vk = hk(i1, P2), k = 3,4, ... (23)
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for some functions gk and hk. To summarise we have established the follow-
ing:
Uniqueness Claim. For all IL, and P2 with

° < I2 < 92 < Pl < 1/2, (24)

there is at most one distribution for Y with 0 < Y < 1, E(Y) 1', E(Y2) -
/2, and at most one distribution,of Z with 0 < Z < 1, such that (17) holds.

To complete the argument, note that the a priori constraints (24) deter-
mine unique a, b with 0 < a < b and

a a (a+1)
a+b' /2(a+b)(a+b+1)

If Y has beta(a, b) distribution, then

E(YrYS) [a]r[b]8[a + bIr+s
where e.g. [a]r = a(a + 1)... (a + r - 1) = F(a + r)/r(a). But then EY
EY2 =2, and it is obvious that (17) holds for Z with the beta(a, b - a)
distribution which makes

EZk = [a]k/[b]k-

Remark. Imposing conditions to avoid cases A) and C) above gives two
characterizations of the beta family of distributions on (0, 1)

1) A r.v. Y with non-degenerate distribution on (0, 1) has beta(a, b) dis-
tribution for some 0 < a < b iff there exists Z with 0 < Z < 1 such
that (17) holds.

2) A r.v. Z with non-degenerate distribution on (0,1) has beta(a, c) dis-
tribution for some a > 0, c > 0 iff there exists Y with 0 < Y < 1 such
that (17) holds.

5 Concuding Remarks
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It is natural to look for some sequential procedure for generating the most
general distribution (P1, P2, . . .) that is ISBP, but it is not at all evident how
to describe such a procedure.

The constraint on (P1,P2) that G2 is symmetric is necessary but not
suficient for the existence of (P1, P2,...) that is ISBP with a prescribed law
for (P1, P2). The point is that the later constraints, e.g. that G3 is symmetric,
impose further restrictions on the allowed joint laws for (P1, P2). A trivial
example which illustrates this point is the degenerate prescription P1 = P2 =

c, that is W1 = c, W2 = c/(1 - c) for a constant c. This (W1,W2) is an
acceptable pair for any c < 1/2. However, it is obvious without calculation
that there exists a (P1, P2,...) that is an ISBP extension of this prescription
iff c = 1/n for some integer n > 2.

Thus to the question "what laws for P1, or for (P1, P2), are the start of a
law for (P1, P2, P3, . . .) that is ISBP?", the present paper offers no satisfactory
answer without the side condition of independence of the ratios W1, W2, ...

A Necessary Condition on P1.
According to Theorem 4, if P1 is the first atom saimpled from a random

discrete distribution, and (X, Y) are r.v.s with

P(X E dx,Y E dy) = P E(P ), P (25)E(P1)
then (X, Y) is exchangeable with X > O0 Y > O0 X + Y < 1. (Assume
that P(P1 < 1) > 0, so E(P1) > 0.) Now it is easy to see that given
some distribution for X with 0 < X < 1, there exists an exchangeable joint
distribution for (X, Y) with X + Y < 1, and the given X-marginal, iff X is
stochastically smaller than 1 - X, i.e.

P(X < a) > P(1-X < a) (26)

for every 0 < a < 1 (or, equivalently, every 0 < a < 1/2). Now from (25)

P(X < a) EPA1(Pi . a)
P(X < a) EPA1(PA < a)'

so the constraint on the distribution of P1 is

EP1(Pi < a) > E(P1(Pi < a)) (27)
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for every 0 < a < 1/2, or 0 < a < 1.

Problem. Find a necessary and sufficient condition.
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