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THE LEVY LAPLACIAN AND THE BROWNIAN PARTICLES

IN HILBERT SPACES

Zhang Yinnan

1. Introduction

Since L.Gross studied the abstract Wiener space valued Brownian

motion,a lot of infinite dimensional Markove processes have appeared

and become a useful tool for analysis on infinite dimensional spaces

(see [1],[2],[3]).It is well known that their generators provide

many elliptic differential operators on infinite dimensional spaces

as is made quite clear in [1].

But this procedure can not be applied to some important cases.

For example if we hope to have an analogy of Laplacian on Hilbert

space H,we could not use the abstract Wiener space (E,H, F) and

the Gross Laplacian given by the E-valued Brownian motion because

many regular functionals on H do not belong to its domain.So we

seem to need a renormalization procedure for the Gross Laplacian

to help us construct the Laplacian on H.

In [4],the authors discovered a wonderful relation between the

Levy Laplacian and the Gross Laplacian.The basic ideas of this paper

are a combination of their result together with infinite dimensional

stochastic processes.First we give a renormalization procedure for
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E-valued Brownian motion and propose the concept of Brownian particle

in Hilbert spaces,then we have the Levy Laplacian through the sto-

chastic calculus of Brownian particles and a double limit method (see

Section 3 below).This probability approach can be applied to many

infinite stochastic processes,that means we will have a variety of

Levy Laplacian

The purpose in the present work is to study the Levy Laplacian and

related problems based on this idea.This paper is organized as fo-

llows.In Section 2 we will present the concept of Brownian particle

in Hilbert spaces and discuss its main properties.In Section 3 the

Levy Laplacian will be constructed by Brownian particles.The Section

4 is devoted to the harmonic functionals on Hilbert spaces.Finally

we would like to give some remarks about the generalized Levy La-

placians.

2. The Brownian particles

in Hilbert spaces

Throughout this Section (E,H,AL) will be an abstract Wiener space

in the sense of L.Gross.That is,E is a separable Banach space and

(H,B I) is a separable Hilbert space,H is a dense subspace of E and

the inclusion map is continuous,and P is the probability on E with

the property that
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exp[ i(,x]> d #(x) - exp[-IJXQ], XrEE,

where we have used the fact that the dual space E of E becomes

a dense subspace of H when we make the natural indentification

between H and H itself.Let ( en ) be a complete orthonormal

system (CONS) of H.Now we start constructing the E-valued

Brownian motion W(t) by ( en )

Lemma 2.1. Let W(t) be the E-valued Brownian motion (see [2]),

then we have the identity in law:

W(t) = Zen ak (t)Gn,k
n. k

where ( ak ) is a CONS of the Sobolev space H ([0,1]) and Gflk

is a sequence of i.i.d. Gaussian random variables with mean 0

and variance 1. This series converges in C([O,1]) almost

everywhere.

Proof. For h E E and t E [0,1], we have F E C([O,1],E ) such

that F(u) m <h,u(t)> for u E C([O,1],E ).The functionals of the

form generate a dense subset in C([O,1],E ) . Let

sN Eenak(t)Gn,k
n ,KsN
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for N - 1,2,... .It is easy to show that

lim E( exp[ i< F,SN> I uJexp[icF,x >]dW,

where dW is the distribution of (W(t)) on C([O,1],E) and E(-) is

the expectation on some probability space where ( Gn,k ) are

defined and F is the linear functional bf the form mentioned above.

Because ( en ) is a CONS of H,from [2] we see

supIL en ak(t)Gn kcI
E

M a.s.

where M is a finite constant for all N.

By using Ito-Nisio theorem for the independent symmetric random

sequence in C([O,1],E),we deduce this lemma.

Q.E.D.

Let G (t) = ,we know that ( Gn(t)) is a sequence

of independent Brownian motions and the identity in law

W(t) X en Gn(t)

Corollary 2.2. Let A is in B(H),i.e.,A is a bounded linear

operator on H,then the series £AenGn(t) converges in C([O,1],E).
n

almost everywhere.
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Proof. This is immediate from Lemma 2.1. and the Gross theorem

which says thatfhtl1 -IIAhlIH ph 6 H, is a measurable norm.

Q.E.D.

Denote the set of whole Hilbert-Schmidt operators on H by H.S.
(H) adwiercKK , H..)2(H) and write trace K K ='ZIJKeI ,1K E H.S.(H).

n'

Definition. A family of Hilbert Schmidt operators ( Ks , )

is called a renormalization procedure (RP) on H if they satisfy

the following

lim (Kx - x || = 0, for all x E H.
E o

For a RP of H,we define the renormalization factors

Z(E) = ( trace K Ke)K 4 e > O,

and the renormalized E-valued Brownian motions such that

W(E , t ) = Z(6) . KeenGn(t),

which is called a Brownian particle in H.

Throughout this paper we will omit E in these notations when

we do not need to show that K and Z and W are depending on e ,
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and set I- KE / Z(E).

Note that Z(E ) -- ( dimension of H )I as E 4 O,so when H is

a finite dimensional space,the Brownian particles converges to

N IW(t),N = dimension of H.Obviously it is nonsense to investigate

the limit when H is infinite dimensional space,but the Brownian

particles behave very well.

Lemma 2.3. The Brownian particle W(t) has the following properties.

a. W(t) is a H-valued continuous martingale.

b. E(IIW(t)112 ) = t.

c. For h EH,the process ( h, W(t))H is a Brownian motion which

has the decomposition

(h,W(t)) F ( h, Ken) G (t).
n n(t

n

The proof is straightforward.Now we turn to the Ito formula with

respect to Brownian particles.

Lemma 2.4. Suppose that F b( H) (in the sense of Frechet

such that its second derivative is continuous and bounded on H )

and W(t) ia a Brownian particle with respect to a RP of H,( KE),

then we have the Ito formula

F(x+W(t)) - F(x) + Z fF (x+W(s))( Ien)dGn(s) +

n~~~~~
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t

+ 2 |(F''(x+W(s))Ie ,Ie ) ds.
0

Proof. Let

N N

N ,nGn(09 Q(xl9x2,.,xN)N F(x+ Ie xn

where ( x1,...,XN) E RN.For Q use the Ito formula,we have

Nt
N t*

F(x+W(t)) = F(x) +2i1¶i(x+WN(s))(Ien )dGn(s) +

+iLJ(F''(x+WN(s))IenIen)ds.

By the facts that I E H.S.(H) and F E Cb(H),we can complete

the proof with an approximation argument.

Q.E.D.

3. The Levy Laplacian

In this Section we will construct the Levy Laplacian by the

Brownian particles with respect to a RP of H.from now on we set

14WDN(t) IenGn that=o i

Definition. Suppose that H is a dense subspace and it is a
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topological vector space and the inclusion map is continuous.

Let ( KR) be a RP of H such that KR(H) C Ho, E>O,and W(f,t) be

the Brownian motion corresponding to ( k ) and WN(E,t)=u IfenGn(t).
If F (Cb(U),U is anopen subset of Ho,such that for every x SU there

exists 8 0 such that when OXstsSg and 0 <E6,c we have x+W(E,t)

E U for all N and E(F(x+WN(E,t)) converges as N-0 0,at this time

we denote the limit by E(F(x+W(E,t)) and say that F is admissible

with respect to RP of H,( KR).

Remark 3.1. Let H m L2[0,1] and ( K>) be the convolution ope-

rators mentioned in [4].We can prove that the normal polynomials

(see [4]) are admissible with respect to Ke().

When FE Cb(H),then F is admissible for all RP of H.

Remark 3.2. For each Hilbert space H,we have a simplest RP of

H as follows. Choose a CONS ( en ) of H and set

KEu = z (u,en )en , for (N+1) < ' N1

This RP of H is due to P.Levy.Every bounded continuous functional

( on H0) is admissible with respect to it.We call this RP of H

Levy RP of H.

Remark 3.3. For every sphere O(x,r)C H,we can find a Q E Cb(H)
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such that Q(y)- 1 when y E O(x,r) and Q(y) - 0 when yE O(x,2r).

So for every FE C2(U),U is anopen subset of H,and xE U we can

find a F1( C2(H) such that F - F on O(x,r)C' U,r> 0.1b ~~~~~~~~1
Lemma 3.4. Suppose F and F2 are in Cb(H) and F1 - F2 on the

sphere O(x,r),then for all RP of H we have

lim t 1[ E(F (x+W(t))-E(F2(x+W(t))] - 0

Proof. Because

E( LJW(t)n4 ) ' 3 t2 t> 0
H

so

E( F.(x + W(t); H - O(x,r)) O(t) , for j = 1,2.

Q.E.D.

Now we are in the position to construct the Levy Laplacian

by Brownian particles.

Definition. Suppose Ho is a dense subspace of H and it is a

topological vector space and the inclusion map is continuous.

Let ( K6) be a RP of H and W(E ,t) be its Brownian particles.If

9



FECb(U),U is an open subset of Ho,such that F is admissible with

respect to ( KE).The Laplacian corresponding to ( Kt) is defined

as follows

F(x) =21im lim t1l[E(F(x+W(C- t))-F(x)],x eU.
E4o t4o

We will see that for many important functionals this Laplacian

is not anything else,but the Levy Laplacian,so we will call it

Levy Laplacian of ( K).

Remark 3.5. Let Fe Cb(U),U is an open subset of H,From Remark

3.3. we know that for every xE U there exists F1e Cb(H) such

that F = F1 on O(x,r),r)PO.So we can defineA F(x) =A F 1(x),if
the right hand has meaning.

Theorem 3.6. Assume that H0 is a dense subspace of H and it

is a Hilbert space with respect to its own inner product and

the inclusion map is continuous and ( K) is a RP of H and

Fe Cb( H0 ) which is admissible with respect to ( K6).If for

every xs6H0 the Frechet second derivative F''(x) corresponds to

a bounded operator on H such that

lim sup[IE(F''(x+WN( ,t))-F''(x)§ :N 1] = 0
t B(H)

then
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4 F(x) . lim Z(E)2 [trace K F''(x) KR], xE-HO

Proof. We first recall that

M t

F(x+WN(E,t)) - F(x) +£F'(x+WN(E,s)( IEe ) dG (s) +
C

A t
+ ( Fll(x+WN(E,s))( en),k en)ds

0

where km Ke /Z(e). Note that the second term in the right hand

is martingales,hence

E(F(x+WN((,t)) = F(x) + (E(F''(x+WN(E,s))(I(e ),Ike )ds
0

where E(F''(x+WN((,t)) is the Bochner integral.

By the assumption and trace IfIe = 1,we have

E(F(x+W (6,t)) = F(x) + I traceK F''(x)K /Z(()2 +O(t)

where O(t) depends onE-. Because F is admissible,let N-01,through
the double limit procedure we complete the proof.

Q.E.D.

Now we are investigating the Normal polynomials.Let H be a

nuclear space of all C - functions with periodic boundary on T

- [0,1] and assume that H0 is a dense subspace of H and the in-
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clusion map is continuous.We then have a Gelfand trip HQCHCHQ.

Following with [4],a finite linear combination of functionals

of the form

F(x) = J b(t,t2,...,tn) x(t) ... X(tn) dt dt 2 dtn
T"

where bEL( Tn) and xE Ho and P1,p2,*,pn ^ l,is called a normal

polynomial ( see [4],section 3 ).

Let KE, (EO,be a C - function satisfying the following condi-

tions:

a. supp[ K6] C (-j,4),
b. lim fu(t)KE(t)dt = 1.

We define

Ku(t) =JKE(t-s)u(s)ds, u EH,

where we consider K as a C - function on real line with period

1.(this operator K has been used in [4]).

In [4],the authors revealed a wonderful relation between the

Levy Laplacian and the Gross Laplacian by using ( KR).Now we

start to explain their result. Of course K() is a RP of H and

this RP of H has very special properties.For example, if ( en )

C Ho is a CONS of H,then for every tCeT,
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Z(E)-2 KEe (t)22 Z()..)-2 [FKE(t-s)en(s)ds]
n n~~~r

Z(E)-2 K (t-s)2 ds - 1.

Remark 3.7. Every normal polynomial satisfys the assumption

of Theorem 3.6. and when F is of the form

F(x) - b(y) x(y1) x(Y2) p2,0 x(y n dy,

where y = (y1,... Yn),dY - dyldy2... dyn and bE L( Tn )

In that case,F belongs to the domain of the Levy Laplacian

given by ( Ke) and

F(x) = fp.(p.-1)x(yj) i b(y) U x(y-)Pi dy (*)

It is just Lemma 4.2 of [4].

For simplicity we take n = 2,then

F c~i P1 p-
F(x+WN(t)) =jb(Y) [ ( i )X(y1) WN(t) ]

2 ~~~2 j
)x(y2) WN(t)3 ] dy,

Since WN(t)(yj) is Gaussian random variable and
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E(WN(t)(yl) WN(t) (Y2)) = Z(e)2 6(yl-sl)en(sl)dsl)(S y2-s2)en(s2)ds2)

Through the double limit,it is easy to see F is admissible and

(*) holds.Now we examine F''(x).It is sufficient to prove that

n
lim sup[ lE( T
t-. eo _=

WN(t)(Yj) )I : N AZ l(Yl9Y29**9Yn) Rn] 0

where Pl+p2+. .+pn 5 2. This is immediate from the following

E(WN(t)(y)2) ' (2q)! tq/2qq!, for all N and y.

Combine these facts and Theorem 3.6. we have the Lemma 4.2. of

[4].

4. The harmonic functionals

on Hilbert spaces

Now we turn to study the harmonic functionals on H .Of course,

first we should study the spherical mean.Here we prefer to pre-

sent it with probability lanquage.

Definition. Let W(E ,t) is a Brownian particle and P,.t is its

distribution on H.Suppose FE Cb(H) such that for x& H and t> O
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SF(x+y) dP t (y) converges as E pO,in this time we say F

has the spherical mean over the sphere of radius t with center

at x,and we denote the limit by MF(x,t). Let U be an open subset

of H,we say that a functional F ( E Cb(U)) possesses the mean

value property on U if for each xE U there exists R - R(x) ; O

such that MF(x,t) = F(x) whenever t <R.

The following result has been noted in [7],here we give it in

our setup.

Proposition 4.1. Suppose functional F is reqularly analytic

at xOEH (see [7]).Then for each RP of H,there exists R.>O and

an extension F of F at x0(see Remark 3.3.) such that MF (x,t) =

F(x) whenever t< R.
0

Proof. For simplicity,let x*= O.According to [7],the regularly

analytical functional F admits an expression

F(x) - < aki xk> ak 6 5kH and 2i:Iak IR ,R> 0.

By Remark 3.3.,we can find a functional QE(Cb(H) such that

Q(x) = 1 when fxD ' IR and Q(x) = 0 whenlx di JR.We choose

Q(x)F(x) - F1(x) as the extenssion of F.Set a family of -fields

such that
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0=0[ Gn(s) : s 4 t and all n ].

Because ( Gn(t)) is an independent stochastic process sequence,

so for all n,Gc(t) is a martingale with respect to C j )t3tO* For
R> O,we define stopping time T such that

7I - inf [ t 11W(E,t)IH> R ],

where W(E ,t) is a Brownian particle with a RP of H. We have

F1(W(E,t)) = Q(W(E,t))F(W(E,t)) = F1(W(E,tAt))

=Q(W((6,tAIr)) < ak 9W((- .tAr) > .
K

Obviously Ii W( ,thT )IIH £ IR and eak, W(C,tAT) > is a finite

linear combination of functions of the form

H(b1,b2,...,b)- (b1,W((,tAt))...(bm9W((,tAT)),

where bE H, 1 £ j ' m <00.

Since (b1,W(C,tAt)) is martingale with respect to (Czt),invirtue
of Ito formula,we have

E(H(b .,..,b )) - E(C FT (b ,W(sAT))( Is b.,I b.) ds.1' m r,o r$j

"I I *'
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Then

-2*|E( H(b1,..,bm)) 1£ Z(E) 2M |E(KfKe. bi,bj)t

where M is a constant independent from (E.Combining this fact with

the assumption,dominated convergence theorem implies

lim E( F1(W(E,t)) - F(O).
E lo

Q.E.D.

Corollary 4.2. For every RP of H regularly analytical fun-

ctionals are harmonic on H.

The purpose of studying the Levy Laplacian aim at functionals

on infinite dimensional spaces. Naturally the harmonic functional

is very interesting object.In this subject we have

Proposition 4.3. If F Cb(H),then F-is harmonic with respect

to any RP of H,( Ke) if and only F''(x) is absolutely continuous

linear operstor on H for all xE H.

Proof. The only thing we to do is that if AC&B(H),then the

quadratic functional F(x) - (Ax,x) is harmonic for all RP of H

if and only if A is absolutely continuous on H.
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By Theorem 3.6.,

f F(x) - lim Z() 2[trace K6AKe]

- lim Z(s) 2[trace KE(A-S) KE],
6-4

where S is a finite rank operator on H.Since

trace[ KE(A-S) KEI] UA_SAB(H) trace KVKE

That means AF(x) = 0 when A is absolutely continuous on H.

On the other hand, ifA F(x) = O,but A was not absolutely con-

tinuous on H In this case,from the spectral theory of self-

adjoint operators we know that there is a positive number c>O and

an infinite dimensional subspace Ho such that for every yG H0
(Ay,y) X c >0.Choose a CONS of H and a CONS of H O HO, respectively
( u ) and ( vk ).We construct a CONS of H such that

k
en 6 Um ) when n* 2 ,k = O,1,...,

ken = Vk ,when n = 2, k p1,2,...

Using the CONS of H to construct the Levy RP of H,it is easy to

see that t F(x) X c)O0.This contradiction indicates A must be

absolutely continuous on H.
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Now we come back to the Gelfand trip H0CcHCH . It follows

that there exists a unique probability measure p on H0 such

that

lN.exp[-11 sxH I = exp[i <y,x> Id (y), x C- Hol

where <y,x> stands for the canonical bilinear form on Ho X Ho.
We will conclude this section by extending a well known fact

about the harmonic property of U-functionals (see [4] and [7] ).

Theorem 4.4. Let f(y,z) 6 LP( He X HO' d/(y) X d/ (z) ),

1 < p <o . Suppose that

F(x) - JJf(y,z) exp[< y+iz, x> I dp(y) dp(z), xE Ho.

If ( K( ) is a RP of H such that KEH C Ho for all E ,then

F is harmonic with respect to the Levy Laplacian given by ( Ke),

that means t F(x) 0 for all xeH0

Before giving its proof we are going to present some lemmas

which have their own interesting.

Lemma 4.5. Define

< y,x > <i ,y,en>(en,x ,for ye Ho,x EH,

19



where ( en ) C H0and it is a CONS of H,then the series converges

in L2( H* dP(Y) ) and

if exp[ r <y,x> ]df(Y) = exp[ir2
%

xI1 ],E H.

So we can extend F as follows

F(x) = Jf(y,z) exp[<y+iz,x >id(y) d(z), xEH.

Let WN(E,t) =
X

IE enGn(t),we have

- 0.

thats means F is admissible with respect to ( RE).

Proof. Since

JoN
limE[ I <Y,en>(e ,W(t)-W (t))l 2 dp(y) I = O

and for all r> 1 and all N

E[Jjjexp(<y+iz, WN(t)> )I rdf(Y)djA(z) 4 1.

We have

20
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lim E[Jflexp(<y+iz,WN(t)> ) - exp(<y+iz,W(t)>)lrdp(y)dp(z) 0.

The proof can be completed easily. Q.E.D.

Lemma 4.6. Let ( en ) C H0 and ( en ) be a CONS of H such that
*

Yf RK ene= e ,thennK n n

*
y,z E Hh,1r<y+iz, K.e )'I ) A n Yiz e '

and when r. 1 ,rt < *,we have

A -0( X"<y+iz,e 2 )r exp[-Irt
xc)"- n

2 2

I,+ z.en"> Id (y )dp(z)16

/ 22r ere (r+4)

Proof. Assume

B(y) =(Z....Iy,e>
n ~~n~

C(y) - exp[ -t 'A<y,e > 2I,
% n

w 2 ,where Z(E) trace KE K u trace kK = A- 2
n

and ( en ) is
n

depending on KE

21
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Since

A 2r[ JB(Y)rd(y) ][ 4 C(y)rd(y) ]w

and

Y)r N A[(j_N__
q)

)r
B(y)rd(y)=lim 4 _y__

RN2
exp( -4(yI2) dy I,

where Yl, 'N) C R and y 2= 2 ,dy =dyl.dy

Because 1-2tr,,X /Z(E)2 z 4 and

(1 -2tr z /Z((-)2) e

by Jensen"s inequality and 1 iA /z(s)2 - 1
n

(b y x )r

combining all facts,we have

B(y)rd y) ' 22r-1 e* r(r+j) , for t <-Ir

For C(y),we have JC(y)rdJ(y) t' e*.

Q.E.D.

22



We call a functional g on HoX H. cylindrical if g is of the form

g( <U1 9Y>9..<um qY>q<u19z>(..q<um9 z> ) ,m <eo and g) Cb( R and

u.E Ho 1 £ ; m.

* *
Lemma 4.7. Suppose g is a cylidrical functional on H.)HQ and

g le Lp(H*) H*,d#YdFl ) < p <0 and

G(x) |g(y,z) exp[<y+iz,x >]dA(y)d,4(z),

then G is harmonic with respect to all RP of H.

Proof. For simplicity we assume that g is of the form

g(<el ' y> * - . nem.My>,<e , z>. . . <em, z> )

where (en) is a CONS of H and ( e )C HO. In that case

G(W(t)) = g(y,z) exp[ <y+iz,e>(ej,W(t))dp(y)d(z)]
j=l i~2 23

E(G(W(t))) g(y,z)exp[-It llK eJll<y+iz,ei >/Z( )2]d/(y)d (z).

JJ~~~~~~~3:

Now we see that

23
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6 4(0) - lim lim 2 [E(G(W(E ,t)) - G(O)]/t - 0.
C4o t-',o,

In the similar way we can prove that 6 1(x) = 0 for all x 6HO.
Q.E.D.

The proof of Theorem 4.4.By Lemma 4.5.

2 ~~~2
E(F(W(Eqt)) =f(y,z)exp[-itXA<+Zn> d(y)dU(z),

II ~~~n COX

and using Lemma 4.6. to it,we have estimate

t'IE(F(W(E,t)) - F(O)I £ 2- e. r (r+4)l)flI -

Since the set of cylidrical functionals is dense in LP( H,X Ho,dpXd )

1( p <O ,and in virtue of Lemma 4.7.,we know that A F(O) - 0.

Consider f(y,z)exp[ <y+iz,x >] for x0EHo,we have F(,)= 0.

Q.E.D.

5. Some remarks of generalized Levy

Laplacian

In this section we give some generalized Levy Laplacians.FiVst
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if A(t,co) is bounded linear operator valued process which is adapted

with respect to ( ) -c'[ Gn(s) : s$<t and for all n ],and

E(i JJA(s) IB(H) ds )<C

we can define the stochastic integral with respect to Brownian

particle W(E,t) such that

t t

X(6Et) = ¶ A(s) dW(E,s) = A(s)(Ifen)dG-n(s)

obviously the series converges in H and

t

E(Cu X(E,t)lI ) e E( )[trac.e Ic A(s)Ie ]ds.

Second,if G(t,x,o) is a jointly measurable map from T xH ka
to H such that G(O,x,w) = 0 and for fixed uEX2 G(t,x,tv) is

continuous map from T XH to H,we set

X(E,t) - G(t,W(E,t),uw).

In these cases we can define the generalized Levy Laplacians

as follows.

A F(x) - 2 lim lim [E(x+X(E,t))-F(x)]/t,X~~~~-6o t--'O

25



if the limit exists.

Such kind of generalized Levy Laplacians corresponds to the

variable coefficient second order differential operators in

finite dimensional spaces (see [1]).
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