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Abstract

This paper addresses the problem of constructing a correlation type measure of associ-
ation between a response variable Y and a covariate X (possibly vector valued) which is
suitable for models where E (Y IX = x) is not linear in x and Var (Y IX = x) is not con-
stant in x. A simple local measure is constructed by making use of Galton's ideas that
led to the invention of the usual Galton-Pearson correlation coefficient. This measure is
justified on several grounds and a related global measure is introduced. The local meas-
ure is illustrated on income-potato expenditure data and shows that in low income groups
income and potato expenditure is positively correlated while in high income groups the
correlation is negative.

1. INTRODUCTION

In this paper I report on some recent results on new measures of correlation. The
ideas and results have been developed jointly with Steinar Bjerve (Bjerve and Doksum
(1990)), Stephen Blyth, Eric Bradlow and Xiao-Li Meng (Doksum, Blyth, Bradlow and
Meng (1991)), as well as Alex Samarov (Doksum and Samarov (1991)). The new meas-
ures are designed to measure the strength of the relationship between a response variable
Y and a covariate X for experiments where the strength of association between X and Y
is different for different values of the covariate X. These dependence measures are exten-
sions of the Galton-Pearson correlation coefficient p to the case where E (Y IX = x) is
non-linear in x and Var (Y IX = x) is non-constant in x. Since the measures are between
-1 and 1 and satisfy the invariance properties of the correlation coefficient p, we refer to
them as correlation curves. We also consider global correlation measures obtained by
averaging out x.

In linear statistical inference, regression and correlation are treated as complementary
topics. Regression measures the average relationship between a response variable Y and
a covariate X while correlation measures the strength of the relationship between X and
Y as well as the amount of variability that can be explained by regression. In non-linear
statistical inference, the regression curve t (x) = E (Y IX = x) takes the place of the
linear regression line; however it is not as obvious what should take the place of the
Galton-Pearson correlation coefficient p. The problem is that if we apply the usual
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correlation formula to the conditional distribution of Y given X = x, we get the value
zero. To see this recall that p2 < Tj2, where T)2 = Var (g (X)) / Var (Y) (e.g. Kendall and
Stuart (1962)). In the conditional distribution L (X,Y IX = x), Tj2 reduces to zero since
Var (g (X) IX = x) = 0, while (except in trivial cases) Var (Y I x) = Var (Y IX = x) > 0. If
we instead of conditioning on X = x condition on X in a neighborhood of x, the condi-
tional versions of p2 and i12 will be positive but close to zero even when there is a strong
relationship between X and Y.

Our approach is to construct a local measure of correlation by combining ideas from
nonparametric regression and Stigler's (1986, 1989) account of Galton's (1888) invention
of the correlation coefficient p. According to Stigler, Galton realized that in the linear
model case the regression slope (3 is not an appropnate measure of strength of association
because of its dependence on the measurement scales selected for X and Y, and because
the slope when regressing Y on X is different from the slope when regressing X on Y.
Thus, as a measure of the strength of the co-relation between X and Y, Galton proposed
using the regression slope computed after X and Y have been converted to the standard-
ized scales X' = (X - Pil) / a, and Y' = (Y - g2) /a2, where (P.l, a) and (p2,a2) are loca-
tion and scale parameters for X and Y, respectively. In other words, Galton considered
correlation to be the rate of change in the expected value E (Y I X = x) measured in units
of the Y scale C02 as x is increased in units of the X scale 01. By defining correlation this
way Galton had invented a measure which is independent of the original scales selected
for X and Y and which gives the same measure of co-relation when Y is regressed on X
as when X is regressed on Y.

To apply Galton's ideas in non-linear models our approach consists of rewriting p in
terms of the regression slope (3 and the residual variance a2 and then replacing the
regression slope ( by the curve (x) = p' (x) = dp(x) / dx and the residual variance oa2 by
the local residual variance a2 (x) = Var (Y I x). More precisely, consider the linear model

Y = a + OX +OCE., E(e) = 0, Var(e) = 1 (1)

where X and £ are independent. We now specify ca?2 = Var (X) and cY22 = Var (Y), as did
Pearson, and using p = a,(/02 and a2 = Var (,X) + Y2, write the Galton-Pearson corre-
lation coefficient p as

P (CY,53+ o})/2 (linear model)

To obtain our measure of dependence we replace , in the above formula by 3(x) and oy2
by c& (x). That is, we define our correlation curve p (x) as

p (x) = (+0 (x)
(y232(X) + 072(X) 11/2
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Note that p (x) is a local measure of dependence. It is large and close to one for a partic-
ular covariate value x when the regression slope [ (x) is positive and large relative to the
residual standard deviation a (x). In particular, for the example where X and Y are treat-
ment and response levels, respectively, it is often the case that p (x) starts out near zero
and increases towards one as the treatment level is increased.

The correlation curve p (x) is between -1 and 1 and it satisfies all the equivariance
properties of the correlation coefficient p. These are properties that R6nyi (1959) and Bell
(1962) have argued that global correlation measures should have. It reduces to the corre-
lation coefficient p in the linear model case.

2. VARIANCE EXPLAINED BY REGRESSION
Next suppose we try to use the coefficient of determination (R2) idea to motivate a

local measure of dependence. This leads to R2(x) = 1 - [Var (Y I x) / Var (Y)], which
works well in linear heteroscedastic models where the regression slope ' (x) is a constant
while Var (Y I x) changes with x. However when P (x) = ' (x) is not constant, it takes the
same value at values of x where [ (x) is zero as where I [3(x) I is large. This conflicts
with the idea (Galton (1888), Stigler (1986, 1989)) explained above that a measure of
co-relation should measure the rate of change in the mean of Y /c2 as x is increased a
certain number of cya units. Thus R2 (x) is not adequate as a measure of local correlation
since it does not depend on the local values of the slope P[(x). However, our squared
correlation curve p2 (x) does have an interpretation as a local coefficient of determination.
To see this suppose that p (x) is smooth so that near the point x0, p (x) is nearly linear
with slope [ (x0). Suppose also that for X close to x. we can, to a close approximation,
write

Y YO = a. +[3(xo)X +Ca(xo),
where £ and X are independent and £ has variance one. For YO, the coefficient of deter-
mination is

1- Var (YO IX = x) 12 (x) = p2
Var (YO) [2 (xe) a?2 + a2 (xe)

Note that p2 (x0) is just the squared Galton-Pearson correlation coefficient, or
equivalently the coefficient of determination, between X and YO. This is the key to over-
coming the problem that the naive definition of local correlation in terms of conditional
correlation always gives the value zero: We use the conditional distribution given X = xo
to compute the slope [3(x0) and variance a2 (xo). Then we compute the correlation for
the linear model where [3(xo) and a2 (xo) are the slope and variance, respectively. In
other words, the local correlation curve p (xo) is the correlation coefficient for the virtual
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linear model based on the local regression slope and the local variance.

3. A SIGNAL-NOISE INTERPRETATION OF LOCAL CORRELATION

Consider the linear model (1) with Var(X) = 1. The OX part of the model is the part
that relates X to Y and it is called the signal part of model while the disturbance term
oSr£ is called the noise part. We can think of [dE (Y I x)/dx]2 = j2 as a measure of the
strength of the signal and [dE (YIx,e)/de]2 -cy£2 as a measure of the strength of the
noise. With this terminology, we can write the usual correlation coefficient as

p2 = signal
signal + noise

Next consider the nonlinear heteroscedastic model

Y = p.(X) + a (X)e, E(e) = 0, Var(e) = 1 (2)
where X and e are independent and Var (X) = 1. In analogy with the linear model case,
we use [ dE (Y I x) / dx ]2 = p2 (x) as a local measure of the strength of the signal, and we
use [ dE (Y Ix, ) d]2 = c02 (x) as a local measure of the strength of the noise. Thus we
can write

= local signal
P1(x) = local signal + local noise'

When X does not have variance 1, the map X -e X/cl, will give the formula of the pre-
vious sections.

4. WHY CORRELATION?

Is there a place for correlation methods in nonlinear analysis? Why not use the
regression slope ,3(x) = j' (x) and the residual standard deviation c (x) separately rather
than combining them into a correlation measure p (x)? To answer this, we can ask why it
is that Galton, Pearson and Fisher, as well as a great number of researchers and statisti-
cians since their time has put such a great emphasis on correlation? Moreover, why is it
that correlation plays such an important role in the scientific disciplines that use statistics?
The answer is that relating variables is one of the most important and interesting activities
in scientific disciplines and correlation provides a universal scale-free measure of the
strength of relationships between variables. Thus, in linear models, 100 p2 gives the per-
centage of the variation of the response variable that can be explained by the regressors.
Or equivalendy, it gives the percentage of the signal plus noise sum that comes from the
signal. This notion is universal and scale free. It can be used to compare the results of
two laboratories using different scales when studying the same phenomena and it facili-
tates communication between researchers in different fields as well as between statisti-
cians and other scientists. We are suggesting that the concept of correlation similarly can
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play an important role in nonlinear analysis. Our attempt at providing a correlation meas-
ure in the nonlinear case is such that 100p2 (x) gives the percentage of the local signal
plus local noise sum that comes from the local signal.

5. STANDARDIZED REGRESSION

Consider again the idea (Galton (1888), Stigler (1986), 1989)) that a measure of co-
relation should represent the rate of change of E (Y I x) measured in units of Y-standard
deviations as X is increased in units of X standard deviations. When ca2 (x) = Var (Y I x)
is not constant, and local dependence near x is of interest, it makes sense to use the con-
ditional (Y I x) standard deviation a (x) rather than the overall Y standard deviation a2.
This leads to

(x) = 1, (x) / C (x)
as a local measure of dependence which has all the properties of correlation except it is
not between -1 and 1. Note that when a (x) > 0,

p (x) = sign ( (x)) [ 1 + -2 (x)-1/2.
Thus p (x) has an interpretation as the standardized regression slope E (x) mapped onto
the interval [-1, 1 ] in such a way that it coincides with the Galton-Pearson correlation
coefficient in the linear model. Moreover, the problem of estimating p (x) essentially
reduces to the problem of estimating 4 (x).

5. RELATIVE LOCAL CORRELATION
Another approach to overcoming the problem that the naive definition of local correla-

tion in terms of conditional correlation gives the value zero is to consider the ratio of the
two conditional correlations obtained by conditioning on two small neighborhoods
Nh(xo) = [x0-- ch, xo + cy1h] and Nh(xl) = [xl - c1h, xl + cyh], xo * xl. Even
though the conditional correlations tend to zero as h -+ 0, the ratio

Rh (xo xl) = corr((X, IX Nh (xO))
Corr((X.,Y)IX E Nh(X1))

will have a sensible limit. In fact, corr ((X,Y IX e Nh (xo)) is to first order
h a, [3(xo) /Fa (xo) = h 4 (xo) / 43. Thus this approach leads back to the standardized
regression slope of the previous section. This result holds whether we use the Galton-
Pearson p2 or the Pearson 12 = Var (p (X)) / Var (Y) to measure correlation.

Note that this approach is very similar to looking at the rate at which the conditional
correlation tends to zero. That is, we could consider

corr((X,Y IX e Nh (x)) Cy,a (xo)
h--+0 h/43 cy(xo)
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As pointed out earlier, p (x) is 4 (x) mapped onto [-1, 1 ] in such a way that it coincides
with the Galton-Pearson correlation coefficient in linear models.

6. REGRESSION DEPENDENCE

Lehmann (1966) analyzed the concept of regression dependence where Y is said to be
regression dependent on X if P (Y . y IX = x) is decreasing in x. It turns out that the
correlation curve p (x) measures the strength of regression dependence. To make this pre-
cise, let (X, Y1) and (X, Y2) denote two pairs of random variables, and let Y1 (x) and

Y2 (x) denote random variables with respective distribution functions P (Y1 c y IX = x)
and P (Y2 .y IX = x). Let cya2 (x) = Var (YI I x) and #22 (x) = Var (Y2I x). The pair
(X, Y1) is said to be more regression dependent than the pair (X, Y2) if Y1 (x) Icl (x) is
stochastically more increasing than Y2 (x) / 02 (x) in the sense that for 8 in some neighbor-
hood (0, £) of zero, [ Y1 (x + 8) - Y1 (x - 8)1 / CY, (x) is stochastically larger
[Y2 (X + 8) - Y2 (X - 8) ] / 2 (x). To make the meaning of this definition precise, we

need to specify what we mean by Yi (x + 8) - Yi (x - 8). One way to do this is to res-
trict attention to the model

Yi(X) = [4(X) + a1i(X)ei, i = 1,2, (3)
where X and (e1, e2) are independent and ei has mean zero and variance one. The joint
distrbution of el and &2 is otherwise arbitrary. Without loss of generality, we assume
that X has variance one. With this model we can write

Yi(x) = gi (x) + yi(x)F, i = 1,2.
Let 4i (x) = a7l (x)d gi (x) / dx denote the standardized regression slope for
(X, Yi), i = 1,2, and let

Z7(x,8) = [Yi(x+8)-Yi(x-8)]/28ai(x), i=1,2.

Now it is clear that E (Z. (x, 8)) -* 4i (x) as 8 -+ 0. Thus, for the model (3) with p. (x)
differentiable, if (X, Y1) is more regression dependent than (X, Y2), and if we let Pi (x)
and P2 (x) denote the correlation curves for (X, Y1) and (X, Y2), respectively, then

P1 (x) . P2 (x) for all x.

7. GENERAL CORRELATION CURVES AND THEIR PROPERTIES
Earlier we defined a correlation curve in terms of p (x) = E (Y I x), ac2 = Var(X), and

a2 (x) = Var (Y I x). However, just as there are many measures of location and scale,
there are many correlation curves. These are obtained by replacing p. (x), aC?2 and c2 (x) by
other measures of location and scale. This may be desirable since p (x), a? and c2 (x) do
not always exist. Moreover, they are very sensitive to the tail behavior of the distribu-
tions of X and (Y I x). Thus, in our definition of the correlation curve p (x), we replace
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,u (x) and ca (x) by measures m (x) and X (x) of location and scale in the conditional distri-
bution L (Y IX = x) of Y given X = x. We assume only that m (x) and r (x) are location
and scale parameters in the sense that they satisfy the usual equivariance and invariance
properties. Similarly, we replace Ol by a scale parameter r1 for the distibution of X.
Our basic assumption is that m' (x) = dm (x) / dx, r1 and X (x) exist. Thus X has a con-
tinuous distribution while the distribution of Y may be discrete or continuous. Each time
we specify m (x),#r1 and t (x) we get a correlation curve whose formula is

p (x) = Pxy (x) = '[m '(X)

It will sometimes be convenient to write p (x) in the equivalent form

p(X) = + [ (X)/(X)]-2}1/2
where the sign ± is the same as the sign of m'(x). Under appropriate conditions, the
correlation curves satisfy the basic properties (axioms) of correlation (R6nyi (1959), Bell
(1962)). This is the case, for instance, if m(x) and r(x) are chosen as the median and
interquartile range of the distribution L (Y IX = x), respectively, and 'r2 is chosen as the
interquartile range of the distribution of X.

8. THE CASE OF SEVERAL COVARIATES. 8(a). THE LOCAL CASE.
Consider an experiment where on each of n independent subjects we can measure a

response Y and k covariate values X, ... , Xk. In a non-linear setting, a measure of
variance explained by regression (a coefficient of determination) is

12 = Var ( (X)) . 1 E(Var (Y I X))
Var(Y) Var (Y)

where p. (X) = E (Y I X) and X = (X1, . ., Xk) (e.g. Kendall and Stuart (1962, p. 196)).
As a local version of Ti2 we could try 1 - Var (Y I x) / Var (Y), however, as in the case of
one covariate, this is not sensitive to local changes in E (Y IX = x). Thus, instead, we
will consider first the linear model and then ask what the natural extension to the non-
linear case would be. Our notation for the linear model is

Y = a + XF3T +a£, E(e) =O, Var(£) = 1 (4)

where [ = ( . . .. , [,) and e is independent of X. Here X FT is the part of the model
that relates X to Y and it is the signal part of the model while a, e is the noise part. If
the covariance matrix £ of X is the identity I, then the X's are independent and have
variance one. Thus a measure of the strength of the relationship between Y and X is
11 dE (Y I x) /dx 112 = [(xT)'2 = [3 pT, where 11 II denotes the Euclidean norm. Similarly a

measure of the strength of the noise is [dE(YIx,e)Ide]2-=a2. If I* I, we use the
transformation X -o 2-1/2 (X - p.), where p is the mean vector of X, and find that the
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strength of the signal is 13T* This leads to the following interpretation of the
coefficient of determination:

p2 -signal _ _ _ _

signal+noise T + c2

Consider next the nonlinear heteroscedastic model

Y = j±(X) + a (X)e, E(e) = 0, Var(e) = 1 (5)
where X and £ are independent. Let [3(x) = (di (x) / dx) and suppose : = cov (X) = I =
identity matrix, then 11 dE (Y Ix) / dx 112 - [3(x) [T (X) is a local measure of the strngth of
the signal. Moreover a2 (x) = [dE (Y Ix, £) /]d£2 is a local measure of the strength of the
noise. If Z . I, we standardize X by mapping it tO =1/2 (X - p) and the local signal
becomes [3(x)I [T (x). This leads to the following local coefficient of determination for
the nonlinear heteroscedastic model (5):

p2 (X) = local signal _ (x) 2 [3T (X)
local signal + local noise [(x) oT (X) + a2 (X)

8(b) GLOBAL MEASURES OF CORRELATION IN THE NONLINEAR CASE

In experiments where Y denotes the response of a person and x is a set of covariates
for that person, p2 (X) will give the strength of the relationship between the response and
the covariates for that person. However, since p2(x) is a map from Rk to R, it may be
cumbersome to work with, and it may be useful to have a global measure of correlation.
One useful such measure is given by 112 as defined in Section 8(a). Another measure
which is more sensitive to changes in E (Y IX = x) is obtained by taking expected values
in the local signal plus noise sum expression of Section 8(a) preceeding. This leads to
the following global measure of association.

E(local signal) E[[(X) [T (X)]
E (local signal) + E (local noise) EE[t3(X)1[£T(X)] + E[ y2(X)]

9. LOCAL INCOME-POTATO EXPENDITURE CORRELATION

The concept of local correlation will be illustrated using the n = 7125 pairs of
income-potato expenditure values from the Family Expenditure Survey (1973) as
described by Hirdle (1990). Following Hirdle, we divide income by average income and
potato expenditure by average potato expenditure so that both variables x and y have
mean one.

Local weighted linear regression will be used to estimate the functions
L(x) = E(YIx), [3(x) = d,u(x)/dx and cy(x) =(E[X-(x)]21x)112. The methods for

p(x) and [3(x) used here are essentially from Fan (1991). They are similar to methods
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proposed by Stone (1977) and Cleveland (1979). The methods are as follows: Let
K (u) = 0.75 (1 - u2) I(Iu I < 1) denote the Epanechnikov kernel. Consider 100 grid
points along the x-axis. Let xo denote any one of the grid points and let
y = a (xo) + b (xo) x be the weighted least squares line computed from the data
(xl, Y), . . . , (xn, Yn) with weights wl, . . . , wn, where wi = K ((xi - xo) / h), h = 0.5s1,
and s, is the sample standard deviation of xl, . . . , xn, n = 7125. The estimates A (xO)
and r3 (xo) of p. (xo) and (3(xo) are now a (xo) + b (xo) xo and b (xo), respectively. Simi-
larly, to estimate a2 (xo) = E ([Y - ± (xO) ]2 1 xo), let y = c (xo) + d (xo) x be the weighted
least squares line computed from the data (xl, E2), (xn,e 2) with weights
w1, . . . ,wn as before, where e-= [Yi - g (Xi)] is the ith residual, i = 1,... , n. The
estimate 62 (xo) of c2 (xo) is now c (xo) + d (xo) xo and the estimate of the local correla-
tion p(xo) at xo is p(xO) = si3(xO)/(s?2(2(xO) +62(xo))1/2. Finally, the above pro-
cedures are repeated for the 100 grid points and the curves f1 (x), d (x), ,B(x) and P (x) are
completed by using standard software to "connect the dots".

Figure 1 gives the income-potato expenditure data together with the mean curve A (x).
Figure 2 gives the estimated standard deviation curve 6 (x). Both a(x) and 6(x) are
increasing for the lower income group, they level off at the middle income group and
become decreasing in the moderately high income group, thereby illustrating both non-
linearity and heteroscedasticity (compare Hardle (1990, pages 102-103))

Figure 3 gives the slope curve 5(x) and shows how the local regression coefficient
drops from about 1.4 for the low income group to about -1.2 for the moderately high
income group. Finally, Figure 4 combines 3(x) and d(x) into a measure of the local
strength of the relationship between X and Y in terms of correlation units on the interval
[-1, 1 ]. The local correlation starts out about .9 for the low income group, drops off to a
value close to zero around the middle income group and reaches the value -.6 for the
moderately high income group near x = 2.4. Thus income and potato expenditure is
strongly positively correlated in the low income group and it is moderately negatively
correlated in the higher income group.
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