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ABSTRACT

A second-order asymptotic approximation is developed for adiabatic non-
radial p-modes of a spherically symmetric star. The exact solutions of adia-
batic oscillations are assumed in the outermost layers, where the asymptotic
description becomes invalid, which results in a eigenfrequency equation with
model-dependent surface phase shift. For lower-degree modes, the phase shift
is a function of frequency alone; for high-degree modes, its dependence on
the degree is explicitly taken into account.
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I. INTRODUCTION

The asymptotic theory of stellar acoustic oscillations is attracting in-
creasing interest in recent years due to the rapid progress in solar and stel-
lar seismology. In studying the solar interior with a large number of accu-
rately measured oscillation frequencies, the asymptotic theory serves as a
basis for the effective techniques of nonlinear inversion of observational data.
(For reviews of helioseismology see Deubner and Gough 1984; Christensen-
Dalsgaard, Gough and Toomre 1985; Libbrecht 1988; Vorontsov and Zharkov
1989). With the simple first-order asymptotic approximation usually used,
inversion of the accurate observational frequencies that are now available is
limited by the accuracy of the asymptotic description itself. This situation
motivates a development of the second-order asymptotic theory for acoustic
modes in a wide degree range.

For low-degree modes, the second-order asymptotic theory was developed
by Tassoul (1980, 1990) and Smeyers and Tassoul (1987). The Cowling ap-
proximation was used, which neglects gravity perturbations. For a wider
range of low- and intermediate-degree modes, the second-order asymptotic
theory was developed by Vorontsov (1990, 1991). The gravity perturbations,
especially significant for low-degree modes, were taken into account by study-
ing the asymptotic solutions for a complete fourth-order system of governing
differential equations.

Unlike the treatment of Tassoul (1980, 1990) and Smeyers and Tassoul
(1987), the eigenfrequency equation was derived by matching asymptotic so-
lutions in the interior with exact non-asymptotic solutions near the surface,
thus allowing the quantitative description of the outermost solar layers of
complicated structure, where the reflection of the trapped acoustic waves
occurs and asymptotic approximations become invalid due to the rapid vari-
ation of seismic parameters on a scale short compared with radial wavelength.
The non-asymptotic solutions in the outer layers are described in the result-
ing eigenfrequency equation by model-dependent surface phase shift. This
phase shift can be considered as a function of frequency alone for low- and
intermediate-degree modes (when the curvature of the ray paths in the non-
asymptotic region can be neglected). For higher degree modes (E > 100)
the dependence of the phase shift on the degree e becomes significant. The
present paper extends the theoretical description for high-degree modes. Be-
cause the gravity perturbations are negligible for these modes, our present
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analysis uses the Cowling approximation.

II. ASYMPTOTIC SOLUTIONS

Linear adiabatic oscillations of a spherically-symmetric star can be de-
scribed in the Cowling approximation by the second-order system of ordinary
differential equations (e.g. Unno et al. 1989)

d h[e(e +) r2] ()

dr r2h
Boundary conditions for the equations (1) are

7(r) and ((r) are bounded in the r = 0, (2)

Cig(R) + C277(R) = 0. (3)
Here R is the radius of the surface of the Sun and C1 and C2 are constants
which will be chosen later. They depend on a physical model we use, but
the asymptotic solutions in the interior of the Sun we will study do not
depend on these constants. In the equations (1) w is angular frequency, ((r)
and 71(r) determine the distributions of radial displacements and Eulerian
pressure perturbations p'; in spherical coordinate system r, 0, q we have:

'0 hi(r)
&r ZE 2 )&m (r)Yem (0,I$) I

C=O m=-C

00 I

p'i=E E po(r)h2(r)rem (r)Yem (9,q),
1=0 m=-

we omit the indexes £m in the equations and expressions for ,tm and T71m;
po(r) is the equilibrium density distribution,

r__r_r_2r h2(r)
hrr, h2(r) = exp dr, h(r) = ) (4)

c ~ ~ ~~og(r) hi(r)' (4

g(r), c(r) and N(r) denote gravitational acceleration, adiabatic sound speed
and Brunt-Vais5i1i frequency in the equilibrium model.
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In the solar interior, there is an inequality w2 > N2 for the acoustic
oscillations, and we can reduce the equations (1) to the single second-order
differential equation for y7(r):

.t+ C(r, D(r,w)qr = 0, (5)

where
C(r,w) = ln'(hr2) -ln'(l- N2) (6)

and
D(r,w) = (1 2) 2 2

] (7)

Here prime denotes the radial derivative.
Studying the oscillations of different degree X, we define

w2= (t + 1/2)2 ,V2 = (e+ 1) (8)

In the asymptotic expansions where 1/w is a small parameter, we will use w
to denote an independent constant parameter. In the first-order asymptotic
approximation, the value of w determines the position of the turning point.
The use of (e+1/2)2 instead of t(e+ 1) is needed for the asymptotic expansions
to be regular at r -O 0 (Langer, 1934).

We look for uniform asymptotic approximations to the solutions of equa-
tion (5) in terms of Airy functions:

1 1
77 = (Yo + IY1 + 72Y2 + .. . ,)* G (9)

with two-component vector functions Yi and

(Ow16 Ai(-_w2/3~0)G= w 1/6 Ai(-w2/3p3) (10)

where Vp(r) is an unknown function; Ai denotes the derivative of Airy func-
tion with respect to its argument. Here and below we omit argument r of
dependent variables. We expand the coefficients of equation (5) are expanded
in even powers of 1/w:

C=CO+72C2+..., D=Do+ 2D2 (11)
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We substitute the expansions (9.11) into the equation (5) and collect
terms of the same order in 1/w. Using

d G ' ) 92 ((- 9)2 ° )=, (12)dG=w G, ( op) 00 N

we obtain the system of vector equations

(9,(I)2 + Do)Yo = 0, (13)

(9(9/)2 + Do)Y1 = CoYoQ + YOQ' + 2YJQ, (13.1)
W(WI)2 + Do)Y2= Co(Yoj + Y1Q) + Yo0 + 2Y11Q + Y1Q' - D2YO, (13.2)

(W/)2 ±Do)Y3 = CO(Y1'+Y2Q) + C2YOQ + Y1"+ 2Y2'Q+Y2Q'-D2Y1 (13.3)
In solving this system, we will use

Co = ln'(hr2), (14)
w2 1

Do = r - -

-I(15)

and

D2=-N (2 __ (16)

The solutions will admit arbitrary normalization. The vectors Y1, Y2, ... are

determined by the equations (13) with an accuracy of an arbitrary constant
multiplied by Yo, so that the solutions will admit additional constraints.

We solve the equations (13) successively beginning with equation (13.0).
For this equation to have a non-trivial solution, we must set

-1 w2W(WI)2. _ W (17)

so that the left-hand sides of all the equations (13) are zero. Define

2 1 W

c2 r_ (18)

The root of the equation s2(r) = 0 is the turning point: we denote it by r1.
We will assume further that there is only one turning point in solar interior,
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which is equivalent to the assumption that the function of c/r is a monotonic
function of the radius. This assumption is satisfied in standard solar models
(the appearance of a second turning point corresponds to the appearance of
a wave guide and requires special study). The unique solution of (17), that
is regular at r = rl, is

o = sgn(S2)L3,j is21112dr1213 (19)

Since o - -oo as r -+ 0 and the functions Ai(z) and Ai(z) tend to 0 if z
oo, boundary condition (2) is satisfied by a solution (9). The next equations
of the system (13) are solved separately for their vector components. Using
the condition of regularity at r = r1 and fixing the normalization of the
resulting solution, from the equation (13.1) we have

Yoi = (hr2p/)"-/2 Y2 = 0. (20)

Here and below we denote Yi = (Yil, Yi2)
Equation (13.2) gives a homogeneous first-order differential equation for

Yll with general solution Yll = const -Yol. We set the constant to be zero, so
that

Yii = 0. (21)
The equation for Y12 is

2fp'Y12 + (PP')'Y12 + ypp'ln'(hr2)y12+
+ ln'(hr2)yo1 + Yo - D2yO1 = 0. (22)

The unique solution of this equation, that is regular at r ri, is

Y12 hr2 11,'-1/2XY12 = 2 O~

rlx jsgn ~'(hr2)"12 p(Pt'j"2[yg1 - ln'(hr2)y11 + D2yol]dr. (23)

Equation (13.3) and the condition of regularity at r = ri give

Y22 = 0. (24)
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The solution for Y21 can also be obtained from the equation (13.3), but we
will not use it. We notice only that y21(r) has no singularities on the interval
[rl, R].

The final asymptotic solution for r(r) can thus be written as

= Yol,w6Ai(-w2 3p)+ !y12w_1/6Ai(_w2/3s)+ (25)

+ W-2+1/6y2Ai(-w2/3p) + o(Lw-3-1/6)

The eigenfrequency equation will be constructed in the next section by
matching the asymptotic solutions in solar interior with the exact solutions
in surface layers. Near a matching point rm, sufficiently far from the turning
point, we can replace the Airy function and its derivative with their asymp-
totic expansions in terms of trigonometric functions (Abramowitz and Stegun
1965). Using the solution (19) for the phase function, we obtain

7= Yoi 4 [Cos(w j sdr - 7) + 1(5((3/2 + Y12lp/2) sin(r sd-_- )

+.-~os(4Isr T) Y21 7 Y12 5 .7 .1 1/-'+2cos(W, sdr - )[y + 48*4 O- 9 ] +0(3 (26)4LYo1 48 p*-yo, 9.-29p3JJT KJ

(The factor 7r-'/2 in the standard normalization of Airy functions was omit-
ted). Here and below the subscript 1 denotes asymptotic solutions in the
interval (r, + ro, rm) near the matching point r,, where s > 0 is (s2)1/2 for
S2 > 0 rO > 0.

The exact solutions in the outer layers will be determined using the corre-
sponding second-order differential equation for ((r), because equation (5) for
r7(r) has singular point at N2(r) - w2. Therefore, we transform the asymp-
totic solution (26) for i7(r) to ~(r) using the second equation of the system
(1) and obtain

~=r2h2N2d7 r2h d7

( w-N2d- w2dr [1±0(w4)]

In the interval (r1+ro, rm) the asymptotic solution (26) has uniformly bounded
remainder term (Fedoruk, 1983); that is why we can differentiate iq(r). Af-
ter differentiation the order of the remainder term will increase toO ( 1)2
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Representing the result with a single trigonometric function, we obtain

___2 __ 1 B2 B' 1 1r

rhls 1 (11 7
i1= - 1 (N2+K+-2 --+2 (- ln'(rh1/2s81/2))2)] sin{ sdr_ 7r

- -[B - -ln'(rh1/2s"/2)]} + 0 ( 1 (27)

I()_Y21 + /8 Y12 _5 *7 * 11K(r)=Y + 7/48. -1 *71
Yoi (P Yoi 9 * 29P3
)5 _3/2 + Y12 l/2irj=48 Yoi

We will now substitute the explicit expressions for Yol, Y12 and the phase
function p. For the term with Y12 we have

Y12~i r 1 2
v1/2= s-i ( -1 In" h- In'2 h-- In' h-

Yoi 2 ]r2 4 r

llIfll 2 2N2 1-in" + -ln' ts N + 2)dr. (28)
2 (28)2

Terms without the phase function O in the right-hand side of the expression
(28) have an integrable singularity at the turning point, because in the vicin-
ity of r = r1 the function s(r) behaves as (r - ri)1/2. The terms with phase
function p have an integrable singularity at the point r = r1 because in the
vicinity of rl, p(r) (ao + a2[r - ri])(r - r1), ao 780 and therefore

1[1(In'(v'))2-2 ln"(V')] = K(r - ri) 1/2 + 0((r - ri)1/2);
s 4 2 iO(

ao, a2,IK are constants.
Substitution of the expressions (19, 20, 28) into the asymptotic solution

(27) and integration by parts leads to the expression (in a vicinity of the
matching point rm)

rhl12'/ *r r1 1 12KB261 =--s sin[ sdr--+-D(w,r)+-xlil(w,r)][1+72(N2K 2

B 1 (ln(rhsl/2))2) + O(-)]($ 2s wl 29
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(b(w,r) = 1 s (ln h ln'h- [r 2/ 2)1ts1Nj}dr,2 J1 {2h 4( r 12r (r/c)

'Ii(w, r) = _ 5 (r2/C2)' + 1 (r2/C2)1" 1 1 3/21/2)(48r2s3 24s (r2/C2)' 24rs $

1 ln'(rhl/2s"/2) - B(r) = 4.(w,r) + Il(w,r).
S

Let us define now a new independent variable T
jR d R( w2al

= sdr = R )1/2dr

and a function V(r)

[dln(rh /2s1/2) 2 d2 ln(rhl /2s1/2)

We will now reduce the asymptotic solutions (26,29,30) to the correspond-
ing expression for (r), ((r) and bring it into a form convenient for matching
with the exact solution for outer region. The phase of the asymptotic so-
lution (30) is determined by the integrals from the turning point r1 to the
matching point rm. We add and subtract the same integrals but taken from
matching point rm to the surface R. We transform the integrals that are
subtracted to the new independent variable r and obtain

1 7r1
7ql = rh1/2 1/2 cos{wF(w) - - - wr + -[4(w, R) + @I(w)]+s ~~4 w

1 (r 1 )d + 1 dln(rhl/s1/2) 1(K + B2 ) + 1
2w Jo r2s2 w dr W2 +2 +

=1=- sin[wF(w)- - --w + -[b(w, R) + @(w)]+ (31)4 ~w
lrr 1 ~~~~~1B2 1 1

+ -](V- 2 2)d][1+ (K± 2 )

1 d2ln(rhl/2s'/2) 1 (dln(rh1/2s1/2) )2
-2 dT2 +o2 dr

Here
F(w) = sdr,

r1
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@1(w) = [- in' h + - ln'(r2s2)' + - ln'(r2s2) + 3] Ir=R (32)
2s 24s 48s 24-rs-

III. EQUATION FOR THE EIGENFREQUENCIES

In the outer solar layers, we reduce the oscillation equations (1) to the
equivalent second-order differential equation for g(r):

d J 1 d1 1 N2>2 -0
dr lh [(+ - r2] dr -r h

In the outer solar layers we have

r2 £(e+1)
C2 W2

and the equation (33) has no singularity. However, we cannot use an asymp-
totic approximation, that is similar to the one used in the solar interior, in
this interval. Gradients of the functions determining the equation are large.
That is why we will use exact formulae for solutions.

Reducing the equation (33) to the new variables ' and (,

fR(r2 21/2drfR t2(e + 1) (1 tP21/2
T =]J,(2-W2)7 =Jr sdr; W S

= 2 - 1/4
=(rh) /2 w2. rhl (34)2<

We obtain the Schr6dinger-type equation

dT2+ [ V(T) c = 0 (35)

with "acoustic potential" V(T()

V=N2+ r[dln 12 ld2ln4L~(r h)S-) -j.(rhs). (6
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For constant values of wi and w, we are looking the exact (non-asymptotic)
solutions of the equation (35) in the form (Babikov 1976)

=2= A(T) cos[wT- - -7t()] (37)4

with the additional requirement that the amplitude function A(T-) satisfies

d 7
-(2 = -WA(T) sin[w - - - 7ra(c)]. (38)4

The phase function c(f) is then determined by the first-order nonlinear dif-
ferential equation

d(7ra) V 7

dif= -Cos[WT - I - 7rac('T)] (39)
with corresponding surface boundary condition at T = 0. Subscript 2 is
introduced to denote the solutions in the surface layers.

These non-asymptotic solutions in the outer layers represent the direct
generalization of the solutions applicable for low- and intermediate-degree
modes (Brodsky and Vorontsov 1988, Vorontsov and Zharkov 1989, Vorontsov
1991). Both the "acoustic potential" V and "acoustic depth" ' are now ex-
plicitly dependent on the value of w = ((f + 1)f)'/2/w, thus accounting for
the curvature of the ray path in the reflecting layers. The surface boundary
condition for the phase function al(T) can be taken to be that correspond-
ing to the standard boundary condition in the adiabatic pulsation problem.
Our boundary condition is established in the vicinity of the temperature
minimum; the acoustic potential is approximately constant there and the
reflection condition given by the equation (35) is

-- 7ra(O) = arctan 1 , (40)4 W

(this boundary condition is a condition of the type (3)).
To match a solution of the system (1) from the interval (0, rm) with a

solution of (1) from the interval (rm, R) we have to equate the logarithmic
derivatives dC and dj in the point 'm corresponds to rm and Tm

Tm ]mrsdr-Tm+ ]2 8 dr+ O(-4)
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Let us note that

1 dh =_ 1 ldg_ d /2s-/2)]-.-- - -[--- -ln(rhl/.") =~~di 8 6 - dr

1 ~~12 1+ d(h /2S1/2) + 1 (1
[+ 282z 2S + ° 4)][r hse+ _ ln(rhl/2sl/)+o(72) ] (41)8rw w ~~sdr

Using (31) in (41) we obtain

dr Ir=rm = -wcotan[wF(w) - WTm + [4'(w, R) + qI(w)]+

+1wr i2)dr]X [1 - 22V + (3)] (42)[Tm -4r2s2)T X 2w2 W

Finally from (37,38) and (42) we have the equation for the eigenvalues of the
system (1) with the boundary conditions (2) or (40)

cotan[wF(w) - wr,,- + -[4(w, R) + @(w)] + (V )dr] X4
w Jo -4r2s2 )r

x [1-22V] +°0( 3) = (43)

ir 1 fm 1 1
= tan[wrm - +- 82 2dT - 7rC(Tm) + 0(73)]

After solving of the trigonometrical equation (43) we obtain

1 7~~r[n + a{i~m)] _ 1fm
F(w) + A4b(R, w) = [ +(f Vdr + '11(w)]-

V(,r,1) 2
ir 144- 4w3 sin2[wrm - - -7rca(m)] + O(4). (4)

Here 4(R, w) and 'I'(w) are determined by (30) and (32); n is radial order
of a p-mode. This number is the number of nodes of the related radial
eigenfunction and can be calculated as described in (Vorontsov and Zharkov,
1989).

The function a(Cr-) can be calculated for particular values of w and w using
the equation (39) with boundary conditon (40) if we know the potential V(T)
in the outer region. In the inverse problem a(T) is the information we use to
reconstruct V(1).

12



Let us introduce the "phase shift" function &(w, w)

1[Tm 1 ~~~V(Tm.)a(w, w) = a(Vdm)- Vd- -_@(w)- 42 sin2[wm- -7ra(m)].
27rw 7W4r24

(45)
This phase shift in equation (44) is a function of both e and w, while for
low- and intermediate-degree modes it is a function of frequency w alone.
The phase shift in equation (44) absorbs the deviation of the exact solution
of the wave equation in the outer layers from the asymptotic solution. The
function & depends on the matching point, but the particular values of rm
or Tm in expression (44) are not very significant. The eigenfrequencies of
the solar oscillations almost do not depend on the position of the matching
point if this point is chosen sufficiently deep in the region where the second
order approximation is good enough. Direct computation of &(w,w) as a
function of depth (for a standard solar model and low-degree modes) show
that this function becomes almost constant just below the hydrogen and
helium ionization zone. For the oscillations with cyclic frequency of 3 mHz,
below the depth of 4 percent of solar radius this function is a constant with
the accuracy better than 10-4.

IV. APPROXIMATION IN SURFACE LAYERS

The eigenfrequency equation (44) differs from those appropriate for low-
and intermediate-degree modes by the phase shift, which is now dependent
not only on the oscillation frequency w, but also on the degree e. For low
values of £, the phase shift &(w,w) become a function of frequency alone.
Note that the definition of the phase shift differs from that resulting from
the first-order asymptotic theory (Brodsky and Vorontsov 1988, Vorontsov
and Zharkov 1989), where the phase shift described the difference between
the exact solution of the wave equations and the asymptotic solution given
by the first-order approximation.

When the degree e is sufficiently low, e(e + 1)lw2 can be neglected com-
pared with r2/C2 in the surface layers because of low values of the sound
speed. To generalize the theoretical description for high-degree modes, the
dependence of the solutions in the surface layers on the degree e will be now
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explicitly taken into account by using a new small parameters S and 6:

-It(e+ 1) c(R) (i + 1/2) c(R)
S R; 6 S * R ~~~~~~(46)wR wo R

We assume that in the surface layers or in the vicinity of r = R the function
c(r) is small enough to use 6, S as small parameters. It means that the
horizontal wave number is small compare to the full wave number in this
area. At frequency of 3mHz, and with R taken to be the solar radius at
the level of temperature minimum c(R)/wR - 5.10-4. At degree £ = 1000,
which is approximately an upper limit at which accurate observational data
are available, the value of small parameter 6 achieves 1/2.

To make our results more clear we would like to point out that

cw-;6=wc(R);
WR R'1

furthermore as we know from (45) and definitions of r and ~, V and V the
parameters S and 6 can arise in our formulas only in the expressions for s
and s. It means for example for s

,1w2 1 1 [ (c2(r) R2'\ 1/2
c= -W)2'= _L\ C2(R).r2r
1 1 _ __)R-[1 - 62 2(R)r2 + O(64)] = (47)

c 2 c(Rr

_

[1- !W2 c2(r) + o(W4 C(r))]

We can formally think that w2 and t2 are new small parameters after appro-
priate normalization of the function c(r)/r by the factor C(R)/R. The result
will not depend on this simplification because in all expressions we have only
combination w* c1(r). Below we will describe formula for w, rand V, but will
remember that formula for wz, I and V are the same.

Now both the acoustic potential V and the acoustic depth 7 (as a new
independent variable) can be expanded in powers of w2. The resulting ex-
pansion for the phase shift is

(w,w) =ao(w) +&2(w)w2 + .. ., (48)
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where 4o(w) corresponds to low-degree modes. Our aim is to calculate 4o(w)
and&2 (W). So we have

1 1 2+ W
= --[1 - -w -_ + 0(w4)];

c 2 r2 (49)

T = 70 + T2W2 + O(W4),
=R 1

rr= Cdr T2 =

dTr
- = 1-
dTo

d r2h
r hs) = ~-(In )-)dT0 C

j R C 1 'To c2

2 rdr= -2J dro;

2 2
W7 (TO) + 0(W4).

27[r2 dro dTh(r2)]+O(W4).
V(T) = Vo(ro) + w2V2(To) + Q(ziw4),

Lid.lrhl \2 d2 rh" 2VO = N2 + Idl 1/2 ) - r- ln( cl/2

V2 = [-(in 1/2)]2 2-dTln( CT)222
d2h rh2 c2 1 d2 c2
Cl 2( ) dTo1/2 rdT0 c r 4dT02r

a(i) = o(ro) + W2a2(70) + Q(WV =

= ao(ro) + w a2(T0) - 2(TrO) + 0(w4) +

(51)

(52)

(53)

(54)

Using equation (39) and expressions (51-54) we collect terms of the same
order in tw3 and obtain equations for ao and a2

[1 + sin(2wTo - 27rro)] =- cos2(wTo
2i7rw irw

7r
- rao);

4
(55)

dTo -
a2Vcos(2wTo - 27rao) + -VOT2 cos(2wTo - 2wao)+

d1ro Sw

+ -[1 + sin(2wTo - 2rao)]( 2
7r 2

V_
.

4w r2.
(56)
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Nonlinear equation (55) has boundary condition

1 (V(O)ao(O) - arctan (57)
ir w4

and the equation (56) has boundary condition

a2(0)= 1 coS2(rao + 1) . V2(0)* 1

2 dro V((o) 7(0) w (58)

The equation (55) is nonlinear equation for ao(ro). The solution of this
equation and application of the information about ao(rom),

R 1
TOm -dr,

rm C

will be subject of future papers. Here we notice that after solving (55),
the equation (56) is a linear equation for a2(7ro) which can be solved by
quadrature. We obtain the result

1 IrroVOa2 (7o) = a2 (0) + -exp[-| -cos(2wro - 27rao) dd] x

x V2 Voc
x ]{1l7o2 cos(2wro - 27rao) + [1 + sin(2wro - 27rao)][j2- *] x (59)

x exp[] -cos(2wro-27rcao) dg]}d.

Here g is a variable of integration.
For the eigenfrequency equations (44) we need information about a(T-)

only at the point T- = Tm. It means we need knowledge of ao(Tom) and
Q2(TQm). Both these values are functions only of w.

To obtain the final result in the surface layers we have to find the main
terms of the decomposition of the phase shift a (w, w) in the series on powers
of w. We obtain from (32)

@()13+2l h + 241(r2+ c(ln' 27 X
24 r 2 24 C2)]48ln -)
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+
2C2 X[

w2c2(r) 4X (1 w22)] X [1+2 2 ]lr=R+ O(w4) = (60)

w2c2(R) 7 ~c3 r2
=0)1+ 2 ( ] +W247(- In' )lr=R + O(W4).

From (52) and (53) we find

Vrm =2 TOm+W2T2[Vm+O(W] 2 r2
Vd,r = - 2+0(W4)][1 W _(,ro)+O(W4 )]d7o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-{7o+Ow)]--

Jo 2~~~~~~1 2=-{ Vodro + 2[,; V2dro - -/ Vo-dTo] } + 0(4) (61)

= {R C d 1 jrOm C2
2 Jm r2. 2 J 2 °

From (52-54) we have

-V(Tm) L{OT)c 2T7-2r~orm]
sin 2[w7m - - 7ra(Tm)] = 4 JVo(Tom) COS[2wrom -27rao(7om)]+4LO3 44w3

+w 2([TOm) COS[2wTom -2raxo( rom)] -2WT2mVo(TOm) sin[2wrom -27rao(Tom)]+
(62)

+27ra2(Tom)VO(_TOm) sin[2wrom - 27rao(Tom)]]}
From (44), (54), (60-62) we can finally obtain the equations for the eigenfre-
quencies with accuracy 0(sL) and O(W4).

F(w) + 1i(b(R,w) - r1 o(om) Vodro + '(O)]+
W2 ~ ~ wW2 21

1
+ 3[Vo(rom) cos[2wrom - 27rao(rOm)] -7rCe2(T0m)]}

2{1 ( ) 1 fJtom lfJTOm C2- W2{-7r 2(7 Thm)OmV2dT0oVo 2d7o+ (63)
w 2w2J 2J r

+lI,(O)c(R) (-ln' )|Ir=R + T2mVO(rOm) sin[2wrom - raoo(hmo)]]+

+ [V2 ( om ) cos[2wrom-7rao(Tom)]+27ra2(7om)Vo(rom) sin[2wrom-7roao(rom)]]} =
T

4Lo3 ~~~~~~~~~~~~w
It is very important to notice that to obtain equation (63) for the frequen-

cies we used two small parameters - and w, but we used them in different
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regions and never together. To remain in the first region we assumed w was
not small, but finite. However, for low number e and sufficiently high fre-
quencies in the outer layers we can think w = 0 (this does not contradict our
assumptions) and obtain

F(w) +!D(R,w) - -aO(rOm) +2{2j Vodro +'(O)}- (64)

I3{Vo(mm) cos 2[Wrom - 7FO(TOm)] - 7ra2(TOm)} = -

V. CONCLUDING REMARKS

The equations (63) can be used for the solution of the inverse problem
of high-degree solar acoustics oscillations, in particular for the sound speed
inversion in the solar envelope. The logic of the inversion is based on the
functional type of these equations, which can be written in the form

F(w) + :!2-(w)(w )- -2( )w2 7r-. (65)

Four terms in the left-hand side of (65) can be determined separately from
observational data (represented by the right-hand side) using their different
functional dependence on w and w. This separation for real data is an im-
portant problem from our point of view. Some current steps in this direction
are described by Pamyatnykh, Vorontsov, Daippen (1991) and Vorontsov,
Baturin, Pamyatnykh (1991).

After separation, F(w) will give us the function c(r) and then rO, r2; the
function b((w) is sensitive to N2(r), the function a0(w) can be used to study
Vo(T7o) and &2(W) to study V2(ro). This is the logic of the solution of the
problem.

With the formula we can obtain bounds on high order terms to account
for effects of the approximation, in addition to stochastic errors, in deter-
mination the uncertaintly in sound speed in the solar interior; for example
"strict bounds" technique discussed by Stark (1992) can incorporate such
information about possible systematic errors.

A particular interesting application of (65) is connected with the study
of the second helium ionization zone (at depth of about 2 percent of solar ra-
dius), which contributes significantly to acoustic scattering (see e.g. Brodsky
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& Vorontsov (1988), Pamyatnykh et al. 1991, Vorontsov et al. (1991) and
references there in). The dependence of acoustic phase shift on w is already
seen in the data Vorontsov et al. (1991). More accurate frequency measure-
ments' will allow to use this additional source of information about helium
ionization zone to improve the determination of the solar helium abundance
and to study the equation of state.

During the work on this paper M.B. was supported by NSF grant DMS-
881992 and NASA grant NAGW-2516; S.V.V. was supported in part by
"Zodiac" Scientific-Methological Council and in part by a grant of the UK
Science & Engineering Research Counsil. We are grateful to Prof. P. Stark
for notices made after reading our paper.
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