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Abstract

We provide an introduction to and overview of the use of stochastic models
and statistical analysis in the study of ion chanels in cell membranes. An
extensive bibliography is induded.
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1 Introduction
Ion chanels are large proteins that span cell membranes; in certain con-
formations these macromolecules form pores, allowing electric current in the
form of ions to pass across the membrane. The current through a single chan-
nel is quite small, on the order of picoamperes. The structure and function
of these fundamental units of the nervous system are only partly understood.
There is a large variety of such channels, including calcium channels, sodium
channels, and acetylchoijne receptors, to mention but a few. Their inter-
relationships shape the electrical signals of the nervous system. The open-
ings and closings of some types of channels ("agonist gated" channels) are in
response to binding and unbinding of stimulatory molecules; other types of
channels open and close in response to changes in the transmembrane poten-
tial and are termed "voltage gated.' Hille (1984) provides a broad review of
ion channels.

Patch damp recordings are one of the principal sources of information
about ion channels. A glass micropipette with an extremely narrow tip is
placed agaiInst a cell membrane and suction is applied to form a high resis-
tance seal around the edge of the tip. Current flowing across the tip can
then be recorded. In the case that only a single channel or a small number of
channels are present in the portion of the membrane surrounded by the tip,
the measured current typically has a quantal character, alternating seemingly
at random between a small number of levels as the channels open and close.
Many channels have only two levels-conducting and non-conducting.

The quantal nature of the underlying signal im a patch clamp recording
is obscured by noise and by low-pass filtering which is applied before digiti-
zation. The signal to noise ratios vary considerably depending on seal resis-
tance, electronics, and channel conductance. The durations of some quantal
events may be short relative to the sampling rate or to the impulse response
function of the low pass filter and will thus appear as transitions of less than
full amplitude in the experimental record. Transitions between openings and
closures are also rounded off by the filtering. Typically, the sampling interval
is of the order of 100 microseconds and durations of openings are of the order
Of milliseconds. A good experiment can last several minutes, thus giving rise
to a large quantity of data. Depending on the type of channel and the exper-
imental preparation, the channel's activity is recorded in equilibrium or in
response to perturbation such as a voltage jump. Discussions and examples
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of patch damp recordings can be found in Sakmann and Neher (1983).

2 Models
Stochastic models are used extensively in the study of ion channels. A model
can serve a number of functions: it can provide a conceptual framework, it
can explain specific observations, it can stimulate and direct measurements,
and it can provide a framework for data summary and analysis. The most
commonly used models of channel dynamics are Markovian. The channel
makes transitions between a small number of states (corresponding to hy-
pothetical conformational states of the protein) as a Markov process. As
an example, a tentative model of the acetylcholine receptor might consist
of three dosed states (resting, one agonist molecule bound, two agonist
molecules bound), one open state, and allowable transition pathways be-
tween the states as indicated by the diagram Co v Ci - C2 - 0. An
alternative model might allow opening with only one agonist bound and one
might wish to judge the relative plausibilities of these models on the basis of
experimental data.

Predictions generated from such a model can be compared to expenrmen-
tal observations, leading to its validation or modification. Those aspects of
Markov models which have been most extensively used are predicted stochas-
tic properties of the sequence of open and dosed dwell times (sojoums) such
as marginal and joint probability density functions and correlation functions
(e.g. Colquhoun and Hawkes, 1981; Fredkin et al., 1985). Questions of sta-
tistical inference are discussed in a later section.

An important feature of such a model is that the underlying Markov
process is not directly observable. Thus, in the example mentioned above,
the patch clamp recording can at best reveal only at what times the channel
was open or dosed (current or no current) through the course of the recording,
but cannot reveal the sequence of dosed states actually visited. The basic
observable data is thus a function of a finite state Markov process, gving rse
to a number of related questions concerning identifiability: In general what
can be learned about a Markov process from observations of a function of
it? For example, what aspects of the graph structure (states and pathways)
of the Markovian model can in principle be determined? Can the number of
dosed states and the number of open states be determined? Can the number
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of pathways joining open and dosed states be determined? How can dasses
of indistinguishable models be characterized? Can all the transition rates of
a given model be estimated?

Identifiability problems can be dassified broadly as (i) structural; (ii)
over-parameterisation and (xii) time interval omission induced. Structural
unidentifiability arises from the fact that two or more distinct underlying
process can yield aggregated processes with identical probabilistic properties;
see Kienker (1989) who, following Gilbert (1959), provides necessary and suf-
ficient conditions in terms of the generators of the underlying processes. As
an example of a structural identifiability problem, it can be seen fairly easily
that the two models C1 v C2 v 0 and C1 v- 0 C2 are indistinguishable.
(However, by varying experimental conditions such as voltage and noting the
effect on estimated rate constants, it may be possible to distinguish between
these models by a series of experiments) Some single channel models depend
on many unknown parameters and dearly there are likely to be problems in
their joint estimation. Fredkin et al. (1985) showed that for a two level chan-
nel a model is not identifiable if it depends on more than 2n0n, independent
parameters, where nO and n, are respectively the numbers of open and dosed
states in the underlying process. This can be sharpened to nonc + nO + nc -1
if the underlying process is time reversible. This result can be generalized to
channels having more than two levels and, further sharpened if the number
of pathways between open and dosed states are taken into account (Fredldn
and Rice, 1986). Finally, time interval omission (discussed below) can induce
identifiability problems. This has been explored by several authors within
the context of a two state Markov model; see Yeo et al. (1988) for a detailed
investigation.

Several alternatives to Markov models for ion channel gating mechanisms
have been proposed recently. The two that have received the most attention
are fractal models (Liebovitch et al., 1987) and diffusion models (Millhauser
et al., 1988). Fractal models are actually alternating renewal processes with
Weibull sojourn time distributions. Liebovitch and his co-workers found that
fractal models provide an improved fit to some single channel recordings,
for example from the corneal endothelium. However, subsequent analyses
have shown that this is not generally the case (eg Kom and Horn (1988),
McManus et al. (1988) and Sansom et al. (1989)). Moreover, the results
of analyses based on fractal models are difficult to interpret as the models
have no dear physical basis. In contrast, diffusion models attempt to model
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the dynamics of the channel protein more directly. They are in fact still
Markov models, usually with one open state and a large number of closed
states with very similar kinetics. The simplest such model (Millhauser et al,
1988) contains a linear array of dosed states with constant transition rates
between neighbouring pairs of states. More complicated models are based, for
example, on a three-dimensional cubic structure of dosed states. Although
comparative studies that have been carried out to date (eg Sansom et al.,
1989) suggest that these diffusion models do not fit observed channel data as
well as the traditional Markov models, it is dearly of upmost importance to
develop models that aid our understanding of channel gating at a molecular
level.

3 Time Interval Omission
Limitations in the electronic recording system and the need for filtenrng result
in very bnref (typically less than ca. 100 microseconds) open and dosed
sojourns being absent from experimental data. This phenomenon is known
as time interval omission, or limited time resolution. It is usually modelled
by assuming that any sojourn of length less than some critical value, r say,
fails to be detected. Thus an observed open sojourn will consist of an actual
open sojourn of length at least T, followed by a number of pairs of dosed
and open sojourns with the dosed sojourns all having length less than r,
and terminates as soon as there is a dosed sojourn of length at least r. An
observed dosed sojourn is defined in the same fashion.

A general semi-Markov framework for analysing single channel data in-
corporating time interval omission was developed by Ball et al. (1991a,b).
This framework indudes Markov, fractal and diffusion models as specal cases
and generalises previous approaches based on Markov models (e.g. Roux and
Sauv6 (1985), Ball and Sansom (1988) and Hawkes et al. (1990)) and alter-
nating renewal processes (Milne et al, 1988). It is based upon an embedded
semi-Markov process that records the lengths and entry states of successive
observed open and dosed sojourns. The properties of the observed single
channel record incorporating time interval omission are then completely de-
termined by the assocated semi-Markov kermel. Unfortunately, only the
Laplace transform of this kemel is readily available. Although several ob-
served channel properties, such as moments and correlations of observed
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sojourns, can be denrved from this Laplace transform, the kernel itself is re-
quired to calculate probability density functions of observed open and dosed
sojourns. It is also required for most likelihood based parameter estimation
procedures.

We now concentrate on the case when the underlying single channel pro-
cess is Markovian. Then an exact recursive expression for the time interval
omission kemel has been derived by Hawkes et al. (1990). However, there
may be numerical problems in implementing it for large sojourn times. Sev-
eral approximations to the kernel have been considered in the literature.
They include (i) ignoring the lengths of undetected dosed (open) sojourns
within an observed open (dosed) sojourn (Roux and Sauve, 1985); (ii) ig-
nonng undetected open (dosed) sojourns that occupy more than one open
(dosed) state (Blatz and Magleby, 1986); (iii) assuming that the length of
minimum detectable sojourns, T, follows a negative exponential or a gamma
distribution with integer shape parameter (Ball, 1990); (iv) the use of virtual
open and dosed states corresponding to undetected sojourns (Crouzy and
Sigworth, 1990) and (v) the use of Tauberian theorems (Jalali and Hawkes,
1991a,b). Approximations (i)-(iv) essentially model the observed process by
an appropriate continuous time Markov chain so methods developed in the
absence of time interval omission can be applied. Some of these approxi-
mations are compared in Hawkes et al. (1.990). Numerical inversion of the
Laplace transform of the kernel has been considered by some authors, e.g.
Roux and Sauve6 (1985) and Wilson and Brown (1985). An alternative ap-
proach based on numerical solution of a system of renewal type integral equa-
tions, derived by exploiting a regenerative structure in observed sojourns, is
described in Ball and Yeo (1991).

4 Inference
Statistical inference for ion channel gating mechanisms usually proceeds in
two distinct stages. Firstly, the forms of open and dosed time probability
densities and auto- and cross-correlation functions are used, together with
biophysical considerations, to postulate an underlying model. Secondly, the
parameters of that model are estimated in some fashion. Both stages are
thwart with identifiability problems and are affected by time interval omis-
sion. Structural inferences based on correlation functions are robust to time
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interval omission (Ball and Sansom, 1988), whilst those on probability den-
sity functions are less so (Ball, 1990).

When time interval omission is ignored it is relatively straightforward to
derive the likelihood of a sequence of sojourn times (Fredkin et al., 1985),
which can then be maxidmised numerically (see eg Horn and Lange (1983),
Chay (1988) and Ball and Sansom (1989)). This has been applied successfully
to even quite large state space models (Bates et al, 1990). Yang and Swenberg
(1988) consider an alternative to maximum likelihood which can be more
efficient computationally. The difficulty in extending maximum likelihood
to incorporate time interval omission is that it is no longer easy to compute
the likelihood, owing to the absence of a simple form for the associated
semi-Markov kernel. Thus it seems sensible to consider approximations to
the likelihood based upon various approximations to the kernel described
earlier. Alternative methods of inference, such as Laplace transform based
inference (Feigen et al, 1983) and deriving parameter estimates from the
forms of observed two-dimensional (open-closed and dosed-open) sojourn
time probability functions (Magleby and Weiss, 1990a,b) are very attractive.

Recently approaches to inference based on the theory of "Hidden Markov
Models" (Baum et al., 1970; Rabiner and Juang, 1986) have been developed.
These approaches are based on the digitized data rather than on the restored
sequence of sojourn times and, if filtering is taken into account, thus avoid
the problems of time interval omission. Fredkin and Rice (1989) and Chang
et al. (1990) use these techniques to restore sojourn sequences from digitized
data. Fredkin and Rice (1991) go further and compute maximum likelihood
estimates of kinetic parameters directly from digitized data.

5 Multiple Channels
Patch damp recordings often reveal the presence of more than one channel,
as the currents through the channels superimpose. In such a record one
cannot always tell when a particular individual channel opens and doses,
which complicates the analysis. There may be multiple channels of a given
type present in the record or mixtures of different types of channels. The
constituent channels may not operate independently (Yeramian et al., 1986).

Kijima and Kijima (1987b) derive the density functions of sojourn times
at different conductance levels under the assumption that the constituent
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chanels follow independent and identically distributed Markov processes;
see also Jackson (1985). Yeo et al. (1989) and Fredkin and Rice (1990)
consider this problem when the constituent channels follow more general
stochastic processes. In particular, Fredkin and Rice (1990) show how to
extract the open and dosed time distributions of an individual channel.

If more than one channel is believed to be present, it may be of interest to
estimate how many channels there are and to test whether they are indepen-
dent (Dabrowski et al., 1989; Dabrowski and McDonald, 1990; Horn, 1991).
Although there may be no direct evidence of more than one channel (no su-
perpositions being observed), it may be difficult to rule out the possibility
that different channels are active in the record at different times, as many
types of channels are known to go through states of sustained deactivation
(Colquhoun and Hawkes, 1990).

6 Concluding Remarks
We have attempted to give an introduction and overview of the facets of this
fascinating area of research. Only a few illustrative references to the literature
have been made in the sections above. In compiling the more extensi've
bibliography that follows, we have categorized the literature according to the
section headings above; in doing so we have had to make some arbitrary
decisions, as many of the papers touch on a variety of subjects. We do hope
that this categorized bibliography will aid those who wish to read further
in this area. We are undoubtedly guilty of oversights and we apologize in
advance to those researchers whose work we have inadvertently slighted.
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