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ABSTRACT

Random coefficient regression models are important in modelling heteroscedastic
multivariate linear regression in econometncs. The analysis of panel data is one exam-
ple. In statistics, the random and mixed effects models of ANOVA, deconvolution
models, and affine mixture models are all special cases of random coefficient regres-
sion. Some inferential problems, such as constructing prediction regions for the
modelled response, require a good nonparametric estimator of the unknown coefficient
distribution. This paper introduces and studies a consistent nonparametric minimum
distance method for estimating the coefficient distribution. Our estimator translates the
difficult problem of estimating an inverse Radon transform into a minimization prob-
lem.
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1. Introduction. Research in statistics and in econometrics during the past -two
decades has called increasing attention to random coefficient regression models of the
form

(1.1) Yi = Ai + XiBi i.1.

Here Yi and Ai are p x I random vectors, Bi is a q x 1 random vector, and Xi is a
p x q random matrix. The triples ((Aj,Bi,XXj): i 2 1) are iid and (Ai, Bi) is indepen-
dent of Xi. The distribution of (Ai,Bi,Xi) is not known, though it may be restricted
further in some applications. The sample Sn that we observe consists of the n pairs

((Yi,XX) 1 < i < n).
This model articulates three ideas about the data. First is the assumption that the

ith response Yi depends linearly on the ith set of covariates Xi. Second is view that
the coefficients (Ai, Bi) of the linear response function vary with i. Third is the suppo-
sition that the data behaves like a simple random sample from a large population.
Thus, Yi is the response and Xi is the covariate matrix associated with the ith indivi-
dual in the sample. The first two modelling ideas are expressed by equation (1.1).
The third idea corresponds to the i.i.d. assumption on the {(Yi, Xi, Ai,Bi).

In the statistical literature, several special cases of model (1.1) are well-established,
under various labels. When each Bi = b, an unknown constant vector, then (1.1)
becomes a multivariate linear model with random regressors and homoscedastic errors.
When the [Xi: 1 < i < n) are not observed but the distribution of Xi is known, then
(1.1) is an affine mixture model. When each Xi = x, a known constant matrix, then
(1.1) includes the random effects models of ANOVA (see Scheffe 1959, Chapter 7)
and the models studied in nonparametric deconvolution (see Fan 1991, van Es 1991).

If the first moments exist and if we write Ai = a + ai, Bi = b + bi with a = EAi and
b = EBi, then (1.1) can be put into the equivalent form

(1.2) Yi = a + Xib +E

where

(1.3) Ei = ai + Xibi.
This is a multivariate linear model with heteroscedastic errors possessing the structure
(1.3). In the econometric literature, such models have been used to estimate the vari-
ances of heteroscedastic regression errors and to test for homoscedasticity. See, for
instance, Hildreth and Houck (1968), Goldfeld and Quandt (1972, Chapter 3), and
Amemiya (1977). More recent surveys of work on random coefficient regression
models, their autoregressive analogs, and models combining both features includes Raj
and Ullah (1981), Chow (1983), Nicholls and Pagan (1985) and Newbold (1988).
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Let FAB denote the unknown distribution of (Ai, Bi) in model (1.1). The main
topic of this paper is the nonparametric esfimation of FAB from the sample
Sn= {(Yi, Xi): 1 . i < n). This problem is important if we wish to construct predic-
tion regions for response in random coefficient models, such as those used for panel
data (see Hsiao 1986). For instance, suppose we wish to predict the future observable

Yn+j in model (1.1), given the sample Sn and the condition that Xn+j = x. To simplify
the discussion, suppose that Y+j1 is scalar (p = 1). Let AX(( , FAB) denote the cdf of
Ai + Bix and let F",n denote an estimator based on Sn which converges weakly to
FAB in probability. Consider the prediction interval Dxn for Yn+j whose lower and
upper endpoints are respectively the estimated quantidles A-' [(1 - a) /2,FABn] and
A-1 [(1 + a)/2,FABn]. If FAB is absolutely continuous with strictly positive density,
then

(1.4) Pr[Yn+a e DxnIXn+1 = x 1 a

as n increases, for every support point x of the distribution of Xn+. The essential rea-
soning for (1.4) is Proposition 1 in Beran (1990).

To better understand the problem of estimating the coefficient distribution FA,
consider the simplest case, where Ai,Bi,Xi are random scalars and (Ai,Bi) has Lebes-
gue density fAB. Then the conditional density fyIx of Yi given Xi = x is

(1.5) fy Ix (Y Ix) = JfAB (y-x,P)dJ3,
the integration being over the real line. The right side of (1.2) is the Radon ransform
T (fAB) of the density fAB (cf. Deans 1983).

In a seminal paper, Radon (1917) proved that, under tail conditions on fAB, there
exists an inverse transform 71 such that

(1.6) fAB = r1 (fYIX)
and gave an explicit formula for TQ. Radon's result suggests estimating fAB by
fl(fyXn), where fYIXn is a consistent nonparametric estimator of the conditional

density fy,x. Unfortunately this plausible approach need not yield a consistent estima-
tor of fAB. Like the differentiation operator, the inverse Radon transform is not con-
tinuous in familiar metrics on nonparametric density estimators.

The extensive study of tomographic reconstruction (cf. Devaney 1989) has gen-
erated several algorithms for numerical inversion of Radon transforms. These results
do not solve the problem of estimating the density fAB consistently, for two reasons:

a) In tomography, the measurement process provides an accurate discretized version
of the function analogous to fylx- In our problem, we begin with only a sup-
norm (say) consistent estimate of fylx-
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b) The tomographic algorithms handle projections of a 2 or 3 dimensional object. In
model (1.1), FAB is a distribution on RPq, where p + q is often much larger than
2 or 3.

These considerations suggest that estimating FAB consistently differs from tomographic
reconstruction and requires new ideas.

If the support of FAB is compact, then the moments of FAB deternine the distribu-
tion uniquely. Thus, we might estimate r. moments of FAB from the data, where r.
tends to infinity slower than n, and then devise an estimate of FAB whose moments
match the estimated moments well. Beran and Hall (1992) pursued this strategy in the
special case where Ai and Bi are independent random scalars, thereby constructing
consistent nonparametric estimators of the marginal distributions FA and FB. It seems
very difficult to extend their moment-method and its consistency result to the general
case of model (1.1), where Ai and Bi are not necessarily independent and p or q may
exceed 1. Too many moments are then required to approximate FAB reasonably.

This paper proposes and studies an entirely different nonparametric estimator for
FAB in model (1.1) - a minimum distance estimator that overcomes several of the
difficulties just described. Let Fx denote the distrbution of Xi, let P (FAB, FX) denote
the distribution of (Yi,Xi) under model (1.1), and let FXn denote the empirical distri-
bution of the observed (Xi: 1 < i < n). The key idea is to choose the estimator FABn
so that theJfitted distribution P FAJ,nFX,n) under model (1.1) is close to the empirical
distribution of the sample Sn. Closeness is measured in any metric d for weak conver-
gence of probabilities on RP+Pq.

The consistency of the nonparametric minimum distance estimator FABn under very
general conditions is the main subject of section 2.1. Section 2.2 narrows the choice
of the metric d, on various theoretical and computational grounds, to metrics generated
by L2-norms on characteristic functions. Section 3 presents an explicit numerical algo-
rithm for FABn, The consistency results in Section 2 finesse the estimation of an
inverse Radon transform in dimension p + q. The intrinsic difficulty of this task, dis-
cussed earlier, does not entirely vanish: the numerical minimization of the distance cri-
terion may encounter many relative minima. Nevertheless, our minimum distance
approach translates an unfamiliar problem - consistent nonparametric estimation of
FAB- into a mnimization problem for which numerical methods, such as simulated
annealing, already exist.

Section 4 treats semiparametric estimation of FAB. In the semiparametic version
of model (1.1), the unknown distnrbution Fy of Xi is unrestricted but the unknown dis-
tribution of (Ai, Bi) belongs to a parametric family [FAB (0) : 0 E ). We give condi-
tions and examples under which the minimum distance estimator of 0 is n112-
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consistent.

2. Consistent nonparametric estimation. This section defines the minimum distance
estimators for the unknown distribution of (Ai,Bi) in nonparametric model (1.1), estab-
lishes the consistency of these estimators, and then narrows the choice of the distance
on computational and theoretical grounds. Proofs are deferred to section 5.

2.1. Definitions and consistency. In model (1.1), let us introduce the following nota-
tions:

FAB for the joint distribution of (Ai, Bi), which is restricted to a nonparametric fam-
ily of distributions FAB on RPq;

Fx for the distribution of Xi, which is restricted to a nonparametric family of distri-
butions Fx on RPq;

P (FAB, FX) for the joint distribution of (Yi,Xi) under model (1.1);

d for any metric that metrizes weak convergence of probability measures on RPq.
A sequence of distributions for (Ai, B) shall be indicated by {FABn}, and similarly for
distributions of Xi.

The functional P defined above has two interesting properties that are important for
understanding the minimum distance technique to be introduced shortly. The first of
these is "continuity".

PROPOSITION 2.1. (Continuity). Suppose, as n - oo,

d (FAB. FAB o) -4 0

d (Fxn, Fx,o) 4 0.

Then

d [P (FAB,n Fx,n), P (FAB,O, Fx.o)] 4 0.

The second important property is "strong identifiability". Simple identifiability of
FAB, in the usual sense employed in statistical inference, would assert that if
P (FAB,1, Fx) = P (FAB,B' Fx) then FA3,1 = FA3,0. Strong identifiability is a locally uni-
form version of simple identifiability, described in the next Proposition. Let C* denote
the adjoint of any matrix C and let supp (G) denote the support of any distribution G.

PROPOSITION 2.2. (Strong identifiability). Assume that

(2.1) FAB consists of probabilities supported by a fixed compact and
(x*t: x E supp (Fx,o)) contains an open set in Rqfor every t * 0 in RP.
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If

d [P (FAg,n, Fx,n), P (F 0B, Fx,o) ] 0

then

d (FA,n,FAB.O) -e 0.

When p = q=1, so that Yi, Xi, Ai, Bi are all real, a stronger variant of Proposition
2.2 is available. Let FB denote the possible distibutions for Bi when FAB is in the
family FAB.

PROPOSITION 2.2'. Asswne that p = q = 1 and

(2.2) FAB is tight; FB consists of distributions all supported within a fixed compact;
and Fx,o has a cluster point within its support.

if
d [P (FAB,n Fxn), P (FAB,O Fx,o)] - 0

then

d (FABn, FAB o) -°0.

To state the minimum distance method and its consistency, we require further nota-

tions. Let

Pn be the empirical measure of the sample which gives mass nif to each of the

{(Yi,Xi): 1 < i < n};

Fx,n be the empirical measure of the [Xi: 1 < i < n).
Define FABn to be the nonparametric minimum distance estimator of FAB that is,
any distribution in FAB that satisfies

(2.3) inf d[P(FAB),Fx,n),P = d[P(FABn, Fxn),Pn] +
FeFAB

We shall henceforth write this definition of FAB1 in the following shorter form:

(2.4) FABn = arg infd [ P (FAB, FX,), Pn]
FAieFB

PROPOSITION 2.3 (Consistency of FAB\). Assume (2.1), or (2.2) in the case

p = q = 1. Suppose that the true distributions in model (1.1) at sample size- n are

given by FAB,n and Fxn, where d (FABn, FAB,0) -+ 0 and d (Fx,w FX,0) - 0. Then

d (FAB, FAB,0) -e 0 in probability.
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The tail conditions (2.1) or (2.2) in this Proposition are not surprising because
Radon's (1917) inversion theorem already requires tail conditions. The tnangular
array formulation of Proposition 2.3 entails that the convergence in probability of

FAB,n to FAB is uniform over every compact subset (in metric d) of FAB. Moreover,
by an obvious change in the proof, the pointwise convergence of FABn to FAB0 is
almost sure.

As it stands the definition of the nonparametric estimator FABn via (2.3) appears
computationally intractable, because the infimum is taken over a prohibitively large set
of measures FAB. Therefore, we next provide a feasible variant of (2.3) that is also
consistent. To understand the motivation, recall that the estiation of FA in model
(1.1) is hard because we observe only the {(Yi,Xi): 1 < i < n}. If we could observe
the corresponding {(Ai, Bi): 1 < i < n) directly, then their empirical distribution would
obviously be a consistent estimator of FAB- an estimator that is n12-consistent in
many metrics. This ideal empirical distribution is supported on at most n points- the
distinct values among the {(Ai,Bi): 1 < i < n) - with mass at any given support
point being an integer multiple of n7l. Perhaps, in constructing a nonparametric
minimum distance estimator, we need only minimize over such discrete distributions
FAB rather than over the full family FAB.

To set this up rigorously, let (fn-} be any sequence of positive integers that goes to
infinity with n and define

(2.5) C (mn) = ( all FAB E FAB that are supported on at most mn points, with mass
at each point being an integer multiple of mr 1 }-

Define the discrete nonparametric minimum distance estimator FABn to be

(2.6) arg inf d [ P (FA]B,FXn), PnI
FSe C(m£

by analogy with (2.4). The minimization in (2.6) is over a space of finite dimension
(p + q) mn.

PROPOSITION 2.4 (Consistency of PAB,n). Under the hypotheses of Proposition 2.3,

d (FAB,n FA,O) -+ 0 in probability
provided that mnn -+ oo°

Note that there is no rate in this Proposition on the convergence of mn to infinity.
The heuristic motivating the class C (mn) suggests that mn = n would be sufficiently

1/2large. According to the heuristic one might then get n -consistency from FAB,n.
Unfortunately, n1/2-consistency in general is impossible in this problem. See, for
instance, Fan's (1991) analysis of rates achievable in the submodel for nonparametric
deconvolution. On the other hand, Section 4 shows that n12_consistency is achieved
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by minimum distance estimators in a semiparametric version of model (1.1).

2.2. Choice of the metric d. The theoretical results of section 2.1 allow enormous
freedom in the selection of the metric d that determines the minimum distance method.
What is a reasonable specific choice of d? Here are several factors to consider:

(a) To ensure consistency of FABn or FAB,n, the distance d must metrize weak con-

vergence of distributions on RPPq.

(b) For the sake of feasibility, the distance d should be relatively easy to calculate.

(c) To facilitate theoretical investigation of FAB n beyond consistency, the distance d
should be generated by a norm on a nice linear space. This approach involves
representing Pn and P (FA, Fx) as elements of the chosen linear space. (See, for
instance, Pollard 1980 and Millar 1984).

(d) A Hilbertian norm is particularly attractive from the standpoint of both (b) and
(c).

These considerations led us to define d through an L2-norm on characteristic func-
tions. More specifically, suppose that P1 and P2 are any two distributions on RPPq,
with characteristic functions 4, (t, u) and ¢2 (t, u) respectively, where t e RP, u e RPq.
Define

(2.7) d(Pl,P2) = {f )i(t,u) - 42(t,u)12 dQ(t,u))12

- II(1)- I211, say,

where Q is a probability on RP+Pq that has full support. Obviously, d so defined
metrizes weak convergence.

The minimum distance application of this distance d requires the characteristic
function of Pn and of P (FAB, Fx,n). The former is just

n

n(t,u) = nfl £exp(i < t,Yj> + i< u,X;>)

where < ,-> denotes the appropriate inner product. The characteristic function of
P (FAB, Fx,n) is

n
,AX(,u=f1 £AB (t, Xj*t) exp (i< u, Xi >),~n,ABX(tt U n7j=1

where 4AB denotes the characteristic function of FAB and * denotes adjoint. For d as
in (2.7), the definition (2.4) of the minimum distance estimator FAB becomes

(2.8) X= arg if

Replacing FAB with C (mn) in (2.8) gives the corresponding definition of the discrete
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minimum distance estimator FAB,n.

3. Calculation of TFABI, This section describes an algorithm for computing the

discretized nonparametric minimum distance estimator FABn, whose consistency was

established in Proposition 2.4. Since sample size n is fixed in this calculation, we will
drop that subscript here. Once FAB has been found, drawing bootstrap samples from it
is a matter of sampling the m support points of FAB with replacement. Thus, given

FAB, the prediction intervals described in the Introduction are easily found.

Calculating FAB requires three preliminary choices:

Choice of the compact K withiin which the support of FAB is assumed to lie. For
expository simplicity, suppose that p = q = 1 in model (1.1). Let ;k denote the (,k)th
moment of FAB and let Pjk be a consistent estimation of gjk. We suggest defining K
to be a rectangle centered at (j1,0, Po,j), the lengths of the sides being 4 or more times
the respective estimated standard errors (t2o0 - P1,20)1/2 and (0,2 - I2 )112. The Che-
byshev and Bonferroni inequalities are the rationale for this proposal.

For each positive integer r, define the least squares estimates {PTrkk: 0 < k < r} to

be the values of the (g-]kk) that minimize

~~~~~nrr
(3.1) I -1I 1T-k,k,X I]2.

i=1 k4)O

By the law of large numbers, these least squares estimates are consistent for each fixed
r, whenever the moments of (Ai, Bi) and of Xi are finite. The motivation for (3.1) is

the relationship
rn

(3.2) E(Yir) = PT;-J.Tk,kE(Xi).

Choice of m, the cardinality of the support of FAB. The value of m should be as
large as is feasible computationally, in view of Proposition 2.4.

Choice of the distance d that defines FAB. Tractability, both numerical and theoret-
ical, favors taking d to be the L2(Q) distance on characteristic functions (cf. section
2.2). The integration with respect to Q can be handled by Monte Carlo methods.
Note that the moments of FAB are determined by the derivatives of its characteristic
function at the origin. Thus, it is intuitively plausible that Q should have most of its
mass near the origin, while retaining full support in RPNPq.

The algorithm. One K, m and d have been chosen, as discussed above, the algo-
rithm for FAB consists of four steps:
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1) Let Sn= {(Yj,Xj): 1 < j < n) denote the sample. Write a module to calculate
the empirical characteristic function of Sn,

n
(3.3) )(t,u) = nl z exp(i< t,Y3> + i< u,X;>)

j=1

where t E RP, u e Pq and < -,.> denotes inner product in these spaces.

2) Let the I (ak, bk): 1 < j < m) be the m candidate support points of FAB, which
assigns to each of these the probability m-l. Write a module to calculate the charac-
teristic function of FAB,

m
(3.4) 4)A (t,v) = m-1 exp (i< t, ak> + i < v, bk>),OAB(ti,V)k=1 k)

where t E RP and v e Rq. Write a further module to calculate the characteristic func-
tion of the estimated distribution for (Yj,Xj) under model (1.1),

(3.5) AB,x (t, U) = n1 I (AB (t, Xj*t) exp (i < u, Xj >),

where t E RP and u E RPq.

3) Let QN denote the empirical distribution of a pseudo-random sample of size N
from the distribution Q. Write a module to calculate the following Monte Carlo
approximation to the L2 (Q) distance between 4 and ~AX,x
(3.6) = f I)(t,u) - AB,x (t,u)I2dQN(t,u).

4) Minimize d;B in step 3 over all possible choices, within the compact K, of the
m support points for FAB. The uniform distribution on the minimizing support points
is the estimator FAB. Ties are permitted among support points, in which case the uni-
form probabilities are added together.

REMARKS. (a) Numerical trials by the authors and by Jingou Liu, a student of
the first author, indicate that the distance being mi zed in step 4 may have many
relative minima (see Liu 1994). The difficulty of estimating an inverse Radon
transform is thus translated into a possibly difficult minimization problem. We found
simulated annealing to be more reliable than Nelder-Mead (cf. Press et al. 1992) but
neither was fool-proof in the examples we studied. Considerably more work is needed
on the algorithmic aspects of computing the minum distance estimator of FAB.

(b) If Ai and Bi are assumed to be independent in model (1.1), steps 2 and 4

should be modified as follows to calculate the discrete minimum distance estimates for
the marginal distributions FA and FB:

2') Let the (ak: 1 . k < m} and the (bk: 1 < k < m) be m candidate support

points for FA and FB respectively. FA assigns probability m-l to each of its support
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points, as does FB. Write a module to calculate the characteristic functions Of FA and
FB,

m
(3.7) VA (t) =m7l I exp (i< t, ak >)

4)B (v) =m7 I exp (i< v, bk >)

where t e RP and v E Rq. Put fAB (t, v) = A (t)4B (v) in (3.5).
A24') Minimize dAB over all possible choices, within the compact K, of the m sup-

port points for FA and the m support points for FB. The uniform distributions on the
two sets of minimizing support points are FA and FB respectively.

4. Semiparametric models. This section treats more extensively a semiparametric
version of model (1.1) in which the unknown distribution Fx of Xi is unrestricted
while the unknown distribution of (Ai, Bi) belongs to a parametric family
(FAB (0): 0 e 1). Here e is an open subset of Rk. The distance d is taken to be the
L2 (Q)-distance defined in Section 2.2. We give sufficient conditions under which the
minimum distance estimator of 0 is n112-consistent and examples where these condi-
tions hold.

Assumptions. Write P (0, Fx) for the distribution of (Yi, Xi) under the semi-
parametric model, in place of the earlier notation P (FAB, FX). Let ( (0, Fx) denote the
characteristic function of P (0, Fx), let 1 - be the L2 (Q)-norm defined in (2.7), and let
(0o, Fx,o) denote a fixed point in the parameter space of the model. We make the fol-
lowing assumptions

Cl. (strong identifiability). If 114(0, Fx) - 4 (0%, Fx - 0 then 0 -÷ 00.
C2. (norm differentiability). If Fx > Fx,o and 0 -4 00, then there exists a k x 1 vec-

tor function rlo = Tl (00, Fx,o), whose components belong to L2 (Q), such that

(4.1) 10- oo rtl (E), Fx) - (oo,Fx)-<0 Oo,rt>llo> 0.

C3. (non-singularity). There exists a finite positive constant C such that

(4.2) 1I<t,T10> . CIt
for every t e Rk.

The hypothesis in Cl implies that Fx > Fx,o. Convenient sufficient conditions for
Cl to C3 are discussed later in this section. The minimum distance estimator On
satisfies

(4.3) (3n= arg inf 11 4n - p (0, Fx,n) 11
B
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in the sense of (2.4). The following rate-of-convergence result is proved in Section 5.

PROPOSITION 4.1. Suppose that conditions Cl to C3 hold, that In1/2 (On- 00)} is
bounded and that Fx,n * Fx,o. Then

(4.4) On = %O + Op(n1)
under the sequence of models {P (Ow FX.n) 1

In treating examples, the relatively abstract assumptions C1 to C3 may often be
replaced by more convenient sufficient conditions:

Sufficient conditions for Cl. By Proposition 2.2, if the parametric family
{FAB(0): 0 e 19 consists of distributions supported on a fixed compact and
(x*t: x E supp(Fx,o)) contains a nonempty open set in Rq for every t . 0, then the
hypothesis in Cl implies

(4-5) FAB ((n) =:> FAB ((o)
Condition Cl is now equivalent to strong identifiability of the parametric family.

Sufficient conditions for C2. The fundamental theorem of calculus and the
Cauchy-Schwarz inequality yield the following. Suppose that for every (t,u) e RP+Pq
and for every (0, Fx) in a neighborhood of (0o, Fx,0) the characteristic function
4 (t,u ; 0, Fx) has partial derivatives (ilo Fxj (t,u): 1 < j < k) with respect to 0. Sup-
pose as well that these partial derivatives are continuous over a neighborhood of
(00, Fx,o) and that the convergence 0 -+ 00, Fx * FX,o implies

(4.6) 1I'le,&FjIe1 II'1e0Fx.JIIo 1 ' j ' k.

The C2 holds with lro = (71e0.Fx,J: 1 < j . k).

Equivalent condition for C3. Because 0 is finite dimensional, nonsingularity in the
sense of C3 is equivalent to linear independence of the components of ilo (cf. Pollard
1980).

Three examples illustrate the usefulness of these sufficient conditions and the scope
of Proposition 4.1.

EXAMPLE 1. FAB (0) is a discrete distribution supported on r distinct sites
(si: 1 < i < r} in RP'q. These sites are ordered by their first coordinates, with ties
broken by second coordinate ordering, and so on. The probability supported on each
site si is 1/r. Here 0 = (sl,s2, . . . , sr) and the dimension of 0 is k = (p + q)r.

This model does not induce a classically regular semiparametric model in the sense
of Begun et al. (1983) because the support of FAB (0) depends on 0. However, this
semiparametric model is regular from the viewpoint of our minimum distance estimate.
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For simplicity, suppose that p = q = 1 so that the sites in H = (sl,... ,sr) have the
form sj = (ajs bj), where aj and bj are real. Here the characterstic function 4 (0, Fx)
reduces to

(4.7) 1(t,u,0,Fx) = r1~exp (itaj + ixtbj) exp (iux)dFx (x).(t~uj0j, FX) j=1

Suppose that t2 dQ (t) is finite and that p (Fx) = Jix IdFx (x) is finite and weakly con-

tinuous in Fx. The components of T1e,FX (t, u) are the k = 2r elements

80(t,u) = r f it exp (itaj + ixtbj) exp (iux)dFx (x)

(4.8) a 4(t,u) = rlfix + exp (itaj + ixtbj) exp (iux)dFx (x)

where 1 < j < r. The sufficient conditions for C2 held by by dominated convergence.

Since FAB (0) puts mass 1/r in each of the distinct sites (sj: 1 c j < r}, the strong
identifiability of the model [FAB (0): 0 E 81 is apparent. Consequently, Cl holds pro-
vided the support of Fxo contains a non-empty open set and the sets I si) lie within a

given compact. Finally, C3 holds because the partial denrvatives in (4.8) are linearly
independent.

EXAMPLE 2. (FAB (0) : 0 e 813 is a canonical exponential family model supported on

a fixed compact and (3. is the interior of the natural parameter space. Unlike Example
1, this model FAB (0) can be continuous. The induced semparametrc model satisfies
conditions Cl to C3, by reasoning similar.to that for Example 1. Moreover, this semi-
parametric model is classically regular, in the sense of Begun et al. (1983). The
robustness of the minimum distance estimate On against small departures from the
semi-parametric model is an attractive feature of On when compared with possible
likelihood-type estimators for this example (cf. Millar 1984).

EXAMPLE 3. The support of FAB (0) is discrete as in Example 1. The probability
r-l

supported on the site si is now pi. where pi > 0 and pPi < 1. In this semiparametric

model, 0 = (si,s2,'... , sr'SP ... ,Pr-1) and the. dimension of 0 is
k = (p + q + 1)r - 1. This generalization of Example 1 is also not classically regular
but satisfies the conditions Cl to C3 for Propositon 4.1.

In Example 2, Proposition 4.1 and the differentiability in 0 of FAB (0) imply that

FAB (on) = FAB (0) + Op (0f112) in supremum norm over any Vapnik-Cervonenkis class.
This reasoning breaks down in Examples 1 and 3, for lack of differentiability. In
Example 3, FA (0) is the probability measure on RP'q those support points and
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probabilities are given by the appropriate elements of 0. Define the double-variation
norrn (DV-nonm) of FAB (0) by

(4.2) ||FAB(O) IIDV = I 0 1

where II is Eucidean norm on RW. The corresponding DV-distance between two pro-
babilities FA (0), FAB (0') is then 11 FAB (0) - FAB () IIDV* Evidently, if

11 FAB(0n) - FAB (0o) IIDV - 0, then the sites and corresponding probabilities of

FAB (On) converge uniformly to those of FA (0o); and the DV-distance metrizes weak
convergence under hypothesis (4.1). Moreover, FA (0n) = FAB() + Op(n012) in
DV-distance by Proposition 4.1.

Convergence in DV-norm is weaker than convergence in the usual variation norm
11 -lIv. That is, 11 FAB (0n) -FAB (00) liv -4 0 implies 11 FAB (0n) - FAB (00) IIDV -4 0, but
the converse need not hold. However, if the support points of FAB (0n) coincide with
those of FAB (0o), then the two probability metrics are equivalent. Further properties
of the DV-metric will be described in Propositions 4.2 and 4.3. Note that replacing
Euclidean norm in (4.2) with an equivalent norm generates a norm on probabilities that
is equivalent to the DV-norm.

We conclude this section by relating the DV metric to to more familiar metrics.
Let n.1 n = 0, 1,..., be discrete probability measures with sites cl, . . . , cn,r and with
probabilities pni = ({cni). For every n, the {cnA) are restricted to the common com-
pact set K.

PROPOSITION 4.2.

(a) Let 11 IIBL denote bounded Lipschitz norm on probability measures. If
nl2 11in _- 0 IIDV is bounded, then so is n1t2 11 Wn.0IIBL-

(b) Let II-liv denote variation norm on probability measures. If n112 11-gn IIDV is
bounded and if cn = ci for every n, 1 < i < r, then n112 11 pn - p.o lIV is bounded.

PROPOSITION 4.3. Suppose that the discrete probability measures {IX}j are sup-
ported on R1 and have cdfs (p.n (t)).

(a) The convergence 11 p1 - po IIDV -* 0 does not imply convergence in Kolnogorov
metric. (That is, sup I Xn (t) - go (t) 1 4f 0 in general).

t

(b) The convergence 11 pXn - p0 IIDV - 0 does imply convergence in the Skorokhod
metric or in any other metric for weak convergence.

(c) Let 11- lip denote the Lp-norm on cdfs:

11 gn lKp= I I t (t) IPdt) "P.
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If n12 11 p - 0 IIDV is bounded, then so is n112 11 p,1 - go0 Il. The implication fails
ifp> 1.

These results, together with Propositions 2.3 and 4.1 are one indication that
supremum norms over Vapnik-Cervonenkis classes may not be appropriate in studying
the convergence of estimators for FA, in general.

5. Proofs. PROOF OF PROPOSITION 2.1. It suffices to show that the ch.f. of
P (FABn, Fx,) converges to that of P (FAB,os Fxo). To set this up let An, Bn have distri-
bution FAB,n and abbreviate Fxn by Fn. We then wish to show that

Jei<U X>Eexp(i< t,An> + i< t,xBn>I Fn(dx)

converges to

Jei<U.X>Eexp(i< t,Ao> + i< t,xBo>) FO(dx)

for all t E RP and all u e RPq. For fixed (t, u), defined for n = 1,2,..., and n =0, let

fn(x) = ei<U.X>Eexp(i< t,An> + i< t,xBn>}.
With this notation, we then must show that

Jfn(x)Fn(dx) -e Jfo(x)Fo(dx).
Note that fn(x), fo (x) are continuous, uniformly bounded (by 1), and that fn converges
to f0 uniformly on x-compacts. Since Fn converges weakly to Fo, the tightness
implies that there is a compact KY carrying all but e of the mass of {Fn) and Fo. Thus

IfnfdFn-JfodFoI < 2£ + I fndFn- fof0dF0I
Ke Ke

< 2e+ Jfn-fojdFn+I fod(Fn-Fo)I.
KE- Ke

By the uniform convergence in compacts the first integral on the right is less than e for
all sufficiently large n, while the second goes to zero by the definition of weak conver-
gence. This completes the proof.

PROOF OF PROPOSITION 2.2 AND 2.2'. Let us first establish the case for real
A,B,X, as in Proposition 2.2'. The hypothesis implies that the chf of P (F",n, Fxn)
converges to that of P (FAB,o FX,o). Let Ao, Bo have distribution F0,o. Since FAB is
tight, F&B,n has a subsequence converging weakly; let A1, B1 denote random variables
with this limiting distribution. The convergence of the chf's and of Fx,I then implies

JeiuxE eitAo+ixtB Fo (dx) = e1ux E eitA1+ixtBU Fo (dx)



- 16 -

for all u,t e R1. This in turn implies that for all x in the support of Fo

(5.1) EeiAoixBo = EeitAi+ixl3
Since the possible distributions for Bi are, by hypothesis, all concentrated on a com-

pact, the left and right sides of (5.1) are both analytic as functions of x. Hence (5.1)
holds for all real x because supp (Fo) contains a cluster point; it already held for all t.

Hence (Ao, Bo) and (A1, B1) have the same joint characteristic functions, so their distri-
bution are identical. We conclude that every weakly convergent subsequence of FABn
has the same limit, namely F",o. This is equivalent to the convergence of FAB.n tO

FAB,o, proving Proposition 2.2'. The proof of Proposition 2.2 (the vector valued case)
is similar. Proceed in the same way as above to see that

Eexp(i< A,t> + i< xB1,t>}

= Eexp(i<AO,t>+i<xB0,t>)
for all t and all x E supp(FO). Writing < xBi,t> = < Bi,x*t> and applying the
hypothesis that {x*t: x e supp (Fo)) contains an open set for every t . 0 then implies
that (A1B1), (AO, BO) have the same characteristic function, and so the same distribu-
tion.

PROOF OF PROPOSION 2.3 AND 2.4. To prove Proposition 2.3, note first that

p
(5.2) d (Fxn, FX.n) 4 0

p
d [ P (FAg, Fx,n) Pn] 4 0

by Kiefer's (1961) inequality, applied to the triangular array here. Next, by the fore-
going display, continuity (Proposition 2.1), and the triangle inequality

d I P (FAB,n, Fx,n)9 Pn ] 0 -~~~~P
Third, note that the definition (2.3) of the mnumdistance estimate FAB,n then forces

p
d [ P (FAg3,n, Fx,n)IPn I -+ ° -

Applying the triangle inequality with the last display and (5.2) shows
p

d [P (FAB,n FX,n) P (FAB,n, Fxn)] -* -

Hence, by continuity (Proposition 2.1),
p

d [ P (FAB,nw Fxn), P (FAB,o Fx,o)] 4 0.

Strong identifiability (Proposition 2.2 or 2.2') now implies
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p
d (FABn, FAB,o) -+ s,

proving the Proposition. Almost sure convergence holds if the triangular array formu-
lation here is dispensed with.

The proof of Proposition 2.4 is nearly the same. Indeed, if mn -4 oo, the distribu-
tions in C (mn) will approximate those in FAB, and so the argument just given applies
with just one more use of the triangle inequality.

PROOF OF PROPOSITION 4.1. By the triangular array weak law of large numbers
and Proposition 2.1,

A p

(5.3) 11On-4)(Oo,Fx,o)Il1 0

under the models {P (Qw FX,n)). Hence, because of C1, On converges in probability to
00.

By the definition (4.3) of en and the triangle inequality

114 (en' FX,n) -4 (03o, Fx,n) 1
(5.4) . 114) (On. FX,n)-4 (Gov FXSn 1l + Il ) - 4) (env FX,n) 11 + 11 n - 4 (0n, FX,n) 11

211 On -4)(0n Fxn) 1 + 14)(On,Fx,n) (OFx,n) 1 + O (n )

The first term on the right side of (5.4) is bounded above by

(5.5) 2 11 On -4 (On FX,n) 11 + 2 11 4 (0n, FX,n) - (0n FXn) 11
and is thus Op (n7l12) by the central limit theorem in L2 (Q). The second term on the
right side of (5.4) is also Op (n712) by C2 because Inl2(On - 00)) is bounded. Hence
the left side of (5.4) is Op (n71/2).

On the other hand, C2 and C3 imply that the left side of (5.4) is bounded from
below by C on - 001+ 0 (I On - 00 1) In view of the previous paragraphs, the Proposi-
tion follows.

PROOFS OF PROPOSITIONS 4.2 AND 4.3. Immediate from the definitions and
standard properties of the other probability metrices. The counterexamples needed can
be based on the two-site distributions

n({l- n7112)) = 1/4, pn((2)) = 3/4

P.j((l)) = 1/4, jo0({2)) = 3/4.
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