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Abstract

The motivation of this paper is to investigate the asymptotic be-
havior of Grenander estimator locally as well as globally when the
underlying densities have both filat and nonfilat parts. This paper
consists of two parts. In the first part I consider the problem of esti-
mating a monotone density. In the second part I use the Plug-in MLE
to estimate the a unimodal density with unknown mode.

For the monotone density the limit distribution of the estimator at
a point has been derived. Under LI-norm the asymptotic distribution
is the sum of a normal distribution and maxima of Brownian bridge.

For the unimodal density with unknown mode, I show that, ex-
cept for the mode, the Plug-in MLE will eventually agree with the
estimator when the mode is known. However it blows up at the mode,
which causes the problem of "spiking" near the mode. However, from
limit distribution of the L1 -norm, it seems that this spiked estimator
behaves very well globally. Moreover, whether the mode is known or
not the LI-norm remains the same up to the first order.
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1 Introduction
Let F be the class of nonincreasing right continuous densities on the interval
[0, oo). It was shown by Grenander (1956) that the nonparametric maximum
likelihood estimator fn, of a density f under the order restriction that it
belongs to F is given by the right slope of the concave majorant Fn of the
empirical distribution function Fn. Since a unimodal density f with mode
m is nondecreasing on the left side of the mode and nonincreasing on the
right side of the mode, by use of results about the monotone density, we can
derive that the maximum likelihood estimator is the left slope of the greatest
convex minorant of empirical distribution Fn in (-oo, m) and the right slope
of the least concave majorant of Fn in (m, oo). For a discussion of this result
and more genral results in isotonic regression, see Robertson et al. (1988).

In 1969 Prakasa Rao first studied the asymptotic distribution of these es-
timators at a point, see [17]. By use of a jump process Groeneboom simplied
Prakasa Rao's proof and gave the limit distribution of the Ll-norm, see [10].
However these results are derived under some kind of conditions like strict
monotonicity. They don't have much to say about the limit distribution of f,n
when f is not strictly monotone, especially when f has both flat and nonflat
parts. The motivation of this paper is to try to investigate the asymptotic
behavior of f, locally as well as globally when f has both flat and nonflat
parts.

This paper consists of two parts. In the first part, including section 2, 3
and 4, we deal with the problem of estimating a monotone density. In section
1 and 2, I'll consider the behavior of fn at a point to. The rate depends on
the smoothness of f at this point. If f has the kth nonzero derivative, the
rate is 2kc1 and the limit distribution relates to Brownian motion. When
f is flat near this point, the rate is 2 and the limit distribution relates to2
Brownian bridge, see theorem 1 and 2 in section 1. For the boundary points
of flat ranges or support of f, the asymptotic rates are given in theorem 3
and 4 in section 2.

Groeneboom proved that LI-norm is asymptotic normal when f is strictly
monotone and maximum of Brownian bridge if f is uniform , see [10]. In
section 3, I'll show that these are two extreme cases. Generally the asymp-
totic distribution of LI-norm is sum of this two kinds of distributions, which
are presented in theorem 5.

2



In the second part, including section 4, I'll try to estimate a unimodal
density with unknown mode by use of the Plug-in MLE. If the estimator of
the mode is consistent, it will eventually agree with the estimator with known
mode except for the mode, which has the same asymptotic distribution as
the monotone case. At mode the plug-in MLE is spiked. However it seems
that the problem of "spiking" at the mode does not affect the Ll-norm very
much. The asymptotic distribution of LI-norm has been derived. Moreover,
it turns out that whether the mode is known or not the LI-norm is the same
up to the first order.

2 Limit Distribution
Let X1,** , X,, f, f be the nonincreasing in [0, oo), f,, is Grenander es-
timator. The asymptotic distribution of f,,(to) has been studied by Prakasa
Rao(1969) and Groeneboom(1984) when f(to) # 0. In this section I'll study
how it behaves asymptotically when f is flat near to or f(k)(to) # 0 for some
k.

If f is smooth at to E (0, oo), then

(A) f is flat in a neighborhood of to, let [a, b] be the flat part containning
to, i.e. [a, b] {t: f(t) = f(to)}.

(B) f(t) - f(to) P d(t - to)k near to for some k > 0 and d < 0. Set
f(k)(to) - d, a = 2 d =

1

First I reduced the problem of finding the distribution of f,, to that of
the locations of maxima of the process (Fn(t) - at, t > 0) I a > 0. Let

Un(a) = sup{t: Fn (t)-at is maximal } (1)

Then we have, with probability one,

fn(t) < a v-Un(a) < t (2)
Theorem 1 For the case (A), set [a,b] = {t fn(t) = fn (to)}. Then for
a < to < b,

V-(fn (to) - f(to)) = Sa,b(tO) (3)
Here Sa,b(t) is the slope at F(t) of the least concave majorant in [F(a), F(b)]
of a standard Brownian Bridge in [0, 1].
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Corollary 1 ( Groeneboom) Iff is the unifor-m density on [0, 1], then

v'i(fn(to) - f(to))
converges in distribution to the slope ofthe least concave majorant of Brownian
Bridge at to.

Theorem 2 For case (B), set 6 - [fk(tk(l)(to) l] then

n'61(fn(to) - (t) V*(O) (4)

Where Vk(t) is the slope at t of the least concave majorant of (W(z) -
IZIk+, z E (-cx,oo)), and W is standard two-sided Brownian motion on
(-oo, oo) with W(0) = 0.

Corollary 2 (Prakasa Rao) If f'(to) # 0, then

n*If'(to)f(to)I(fn(to) - f(to))

converges in distribution to V(O), where V(a) is the location of the maximum
of the process (W(z) - (z - a)2, z E R), W is standard two-sided Brownian
motion with W(O) = 0.

Remark. 1. The rate of fn at a point depends on the smoothness of f at this
point, if f has a kth derivative the rate is k which tends to 2 corresponding
to the case of f is flat at this point. However the limit distribution of Vk(0)
does not tend to that of S.

2. Since the distribution of Vk(O) is symmetric and S is a.s positive,
so fn is asymptotically unbiased at point where f is strictly monotone and
overestimates on the flat range asymptotically.

3 Asymptotic Behaviors at Boundary Points
From section 1 we know the asymptotic distribution of fn(to) when to is a
'regular' point, i.e to the interior point of a flat range or has nonzero derivative
of some order, but this still leave out some points, like the boundary points
of the flat ranges or the support of f, in this section I'll study the behaviors
of fn at those points.
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Theorem 3 Let [a, b] be a flat range of f as in the case (A). If a and b
are not the boundary of the support of f and are points at which f has left
or right nonzero derivatives, then fn(a) always overestimates f(a) and fn(b)
underestimates f(b) asymptotically. Moreover

(a) n*(fn(a) -f(a)) = Op(1), ni(fn(b) - f(b)) = Op(1).
(b) For o > 3 n(fn(a) - f(a)) + oo, nP(fn(b) - f(b)) £P 0

Remark. 1. At points in the left or right of a, fn has rate 3 or 2 respectively,
so it seem resonable that the rate of fn at the boundary of the flat range is

2. The hehavior of fn in an nAi-shinking neighborhood of a or b are
similar.

3. If fIk)(a) # 0 for some k > 1 and f(')(a) = 0 for 1 < i < k, then
results similar to those of section 2 can be formulated.

Theorem 4 fn(0) always overestimates f(O) and is not consistent. More-
over

fn(0)-f(0) - 00

4 Asymptotic Distribution Under the Ll-Norm
Groeneboom [10] has shown that the Ll-norm llfn- fil is asymptotically
normal if f is strictly monotone, but didn't know how it behaves if f has
both flat and nonflat parts. In this section I'll answer this question.

Let f be nonincreasing, concentrated on a bounded interval and have
bounded piecewise continuous second derivatives. Then we have

Theorem 5 Let O < a, < bi < *.. < a, < b, < B. Iff is flat in each
[aj, bj,] 1 < j < r, and strictly decreasing in e = [0, B] - Uj=l[a, bi]. Then

V4(Ilfn - fIll - 3 N(0, o2P(X E E>)) + 3 Y (5)
j=1

where N(0, a2P(X E 0)) and (1, 1 < i < r) are independent and

Yi e 2 sup B(F(s)) - B(F(ai)) - B(F(bj))
a <&<bj
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B is standard Brownian Bridge in [0, 1], and

6 = 2EIV(O)l I_f'(t)f(t)Ikdt .82J I_f'(t)f(t)I*dt
2 8j Covar(jV(0)1, IV(() -()de .17

Corollary 3 (Groeneboom) Iff is strictly monotone then

N/"n;(l-fnI-If11, - On-) N(0,u2) (6)

where 6 and a2 are defined in theorem 5.

Corollary 4 If f is a uniform distribution on (0, 1) then

'l1If-fnfl- -i - 2 sup B(s) (7)

Remark. 1. For the two extreme cases, the limit distributions are re-
spectively normal and maximum of Brownian bridge. Combining thess two
distributions together we get the asymptotic distributions for general case.

2. The flat parts don't make any contribution to 6. The normal variance is
that a2 time the proportion P(X E E3) corresponding to the strict monotone
parts.

4. The normal mean is zero, but all Y's are positive, this agree with
the results in section 2 that fn is unbiased at the points where f is strictly
monotone and overestimates on the flat ranges.

5 Estimating the Unimodal Density
Now suppose X1, I.,Xn ^ f, where f is unimodal with mode m. We know
that one of the difficuities of estimating of a unimodal density with known
or unknown mode is the problem of 'spildng' near mode. In this section I'll
study asymptotic behavior under L1 - norm. Thoughout this section I'll
assume that dIt - mq < f(m) - f(t) < d2It - Mlq as t -- m for some q > 0
and d2 > d1 > 0. First let consider the case that the mode m is known.

Let Fn,m be the greatest convex minorant of Fn in (-oo, m) and the least
concave majorant of Fn in [m, xc), f;,m is the left slope of Fn,m in (-oo, m),
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f+,m is the ght slope of Fn,m in [m,oo). Set fn,m = f;nm on (-oo,m)
fn,m = f+m on [m,oo), which is the MLE subject to the restriction that
f is a unimodal density with known mode m, see [19, 17]. For t 5 m,
the asymptotic distribution of fn,m(t) is similar to that when the density is
monotone, see Robertson (1967) and Prakasa Rao(1969). But at the mode
by theorem 4 we have

Theorem 6 fn,m is not consistent and always overestimate. Moreover

fn,m(m) -f(m) -+ oo

Remark. This is the source of the problem of "spiking".

Theorem 7 Suppose f is concentrated on [A, B] and has piecewise con-
tinuous second derivative. Let A < a, < bi < ... < a, < br < B,
r < oo. If f is flat on [aj, bj] for all 1 < j < r and strictly monotone
on E = [A, B] - Ur= [aj, b,], then

vn(lIfn,m-n- fII, - On-') N(O,2P(X E 1)) + Y, (8)i=l
where N(O, a2P(X E E)) and (YX, 1 < i < r) are independent.

Yj ^2 sup B(F(s)) - B(F(aj)) - B(F(bi))
aj <s<bj

where B is standard Brownian Bridge in [0, 1], and

O = 2EIV(0)IJ 1-f'(t)f(t)I*Ldt R .82J I-f'(t)f(t)I*dt
c,.2 = 8J Covar(IV(O)I, jV(()- j)dt .17

Corollary 5 If f is strictly monotone in [A,im) and (m,B], then

vf4;(Ilfn,m-ffII, - Oni) . N(0 a2) (9)
where 0 and au2 are defined in theorem 7.
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A more interesting problem, both from a mathematical and practical
point of view, is the problem of estimating a unimodal density with unknown
mode. Here our approach to this problem is to find a direct estimate of the
mode location first and then an indirect estimate of the density, say using
the techniques described in the known mode case.

Let mn be an estimate of the mode m, fn,m be the Grenander estimator
with known mode m. Then replace m by mn in fn,m to get the plug-in
estimate fn,mnI I'll study the asymptotic behavior of fn,mn globally as well
as locally.

Theorem 8 Ifmn is consistent then for all E > 0, eventually fn,mn and fn,m
will agree on (m - e, m +e)c. Hence for t ¢ m, fn,mn has the same asymptotic
distribution as that of fn,m.

Remark. From theorem 8 we can easily get theorem 1 and the conjecture
in Bickel and Fan [2]

sup Ifn,mn(t) - fn,m(t)l = op(nT)
It-ml>e

Theorem 9 Under the conditions of theorem 7, if mn = m + Op(n-),
then

v/i( JJfn,n - fill - lIfn,m - fI11)°0 (10)
That is, the L1-norm offn,mn (the estimator with unknown mode) is equiva-
lent to that of fn,m (the estimator with known mode) up to order n- . Hence
the asymptotic distribution of the L1- norm of fn,mn is the same as that of
fn,m in theorem 7,i.e,

x/-(n Ifn,n - fl1 - On-) > N(O, 2P(X E 9)) + EY
i=l

Corollary 6 If f"(m) # 0 and mn iS nt -consisent, then

V'-i(IIfn,m-fili6- Ond)3) N(0,a2P(X E e))) + Y,
i=l

Corollary 7 If f is strictly monotone in [A, m) and (m, B], then

V-( lf,fmnn-ffll - On i) = N(0, a2)
where 0 and ca2 are defined in theorem 9.
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Remark. 1. There are many methods to estimate the mode. For example
the Chernoff's mode estimator can achieve the rate required by theorem 9.

2. Intuitively we may think that the problem of "spiking" becomes worse
for estimating a unimodal density with unknown mode, but globally, from
the LI-norm point view, it makes no diffence up to order nAT whether the
mode is known or not.

6 Proofs

6.1 Proof of theorem 1
By the relation (2) we have

P(%47(fn(to) - f(to)) < x) = P(Un(f(to) + n x) < to) (11)
From the definition of Un in (1)

Un(f(to) + nAx) = sup{s: Fn(s) - (f(to) + nAx)s is maximal }
= sup{s :47(Fn(s) - F(s)) + v47(F(s) -f(to)s) - xs is maximal }

By Komlos et al. (1975),

VW(Fn(s) - F(s)) = Bn(F(s)) + Op(nA log n),

where (Bn, n E N) is a sequence of Brownian Bridges, constructed on the
same space as the Fn. So the limit distribution of Un(f(to) + n4x) is the
same as that of the location of the maximum of the process (Bn(F(s)) +
x/Vi(F(s) -f(to)s) - xs, s > 0). Noting F(s) is concave and linear in [a, b],
then

F(s) = F(a) + f(to)(s - a) for s E [a, b]
and

F(s) -f(to)(s - a) < F(a) for s i [a, b]
Hence the location of the maximum of (Bn(F(s))+Vii(F(s)-f(to)s)-xs, s >
0) behaves asymptotically as that of

{B(F(s)) - xs, a < s < b} = {B(F(a) + f(to)(s - a)) - xs,a < s < b}
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where B is a standard Brownian bridge in [0, 1]. Combining the equation
(11)

P(V4n(fn(tO) - f(tO)) .x)x)
P( the location of the maximum of {B(F(s)) - xs, a < s < b} < to)

-P(Sa,b(tO) < X)
by the definition of S. 0

6.2 Proof of theorem 2
By relation (2) we have

P(nc'b6(fn(to) - f(to) < x) = P(Un(f(to) + n 6x) < to) (12)
From the definition of Un in (1)

Un(f(to) + n-'6x) = sup{s : Fn(s) - (f(to) + n-'6x)s is maximal }
- sup{s : v'(Fn(s) - F(s)) + V/W(F(s) - (f(to) + n-'6x)s is maximal }

by Koml6s et al. (1975),

N-(Fn(s) - F(s)) = Bn(F(s)) + Op(n4 log n),
where (Bn, n E N) is a sequence of Brownian Bridges, constructed on the
same space as the Fn. So the limit distribution of n3(Un(f (to) + n-a6x) - to)
is the same as that of n'(U(f (to) + n-'6x) - to), where U(u) is the locations
of the maximum of the process (B(F(s)) + I/n(F(s) - us), s > 0), and B is
a standard Brownian Bridge on [0, 11. Since

B(F(s)) + /I4(F(s) - (f(to) + n-'6x)s)
- B(F(to) + f(to)(s- to) + O((S - to)k+l)) + f(k) (to) (s - to)k+l +

/I(F(to) -n-axto) - nI '6x(s - to) + o(s/0(s - to)k+l)
then B(F(s)) + V/fi(F(s) - (f(to) + n-a6x)s) achieves its maximum within
an Op(n!-T!Y)-neighborhood of to, so

B(F(s)) + v/ni(F(s) - (f(to) + n-¶5x)s)
= B(F(to) + f(to)(s - to)) + n f(k) (to) (S- to)k+l +

(k +1)!
vf/-(F(to) - n06bxto) - ni-'6x(s - to) + op(n-#T1

10



Hence the location of maximum of the process

B(F(s)) + v4i(F(s) - (f(to) + n- Sx))
behaves asymptotically like that of the process

B(F(to) + f(to)(s - to)) - B(F(to)) + nf ) (s _ to) + -(k + 1)!(-
n2 ix(s- to)

n=f (2k+1) .f/fi(t(B(z) - z - xz) (13)
here

= (t) (k + 1)=

If(k)(to) I
W

n2k+1 (s - to)
c

B(z)-= [B(F(to) + f(to)(s - to)) - B(F(to))]/[n!*3V'itoic
By the fact that Brownian bridge behaves locally as Brownian motion, so the
location of the maximum of process in (13) behaves asymptoticaRly the same
way as that of (W(z) - zk+l _ XZ, z E R), where (W(z), z E R) is two-sided
Brownian motion with W(O) = 0. Therefore nO(Un(f(to) + n-a6x) - to)
converges in distribution to the location of the maximum of the process
W(Z) - zk+1 _ xz. Combining with equation (12) we get

P(n'6l(fn(tO) - f(to)) < X) = P(Un(f (tO) + na6x) < to)
=P(n'3(Un(f (to) + n'6x) - to) < 0)

P( the location of maximum of W(z) - z XZ < 0)
-P(Vk(0) < X)

by the definition of Vk. O

6.3 Proof of corollary 2
Similarly to (2) we can relate of least concave majorant and the location of
maximum of a process. Note that the process (V(a) - a, a E R) is stationary,
see Groeneboom [10]. Then the distribution of the slope V2(0) at 0 of the
least concave majorant of process (W(z) _ z2, z E R) is the same as that of
V(O). O
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6.4 Proof of theorem 3

Since the proofs are similar. I'll only give the results for a. From the proofs
of theorem 1 and 2 we have

P(n (f (a) -f(a)) < x) = P(U (f(a) + n x) < a)
and the limit distribution of Un(f(a) + nPx) is the same as that of the loca-
tion of maximum of the process (B(F(s)) + gA(F(s) -f(a)s) - n'Axs, s >
0), where B is standard Brownian bridge. Noting that F(s) is concave and
linear in [a, b], then

F(s) = F(a) + f(a)(s - a) for s E [a, b]

and
F(s) - f(a)(s - a) < F(a) for s V [a, b]

So the process must achieves its maximum near a or b according to x > 0 or
x <0.

(1) If x < 0. For 0 < p < 2. Then the process (B(F(s)) + /ni(F(s) -
f(a)s) - n4-xs, s > 0) must achieve its maximum near b asymptotically, so
P(n"(fn(a) -f(a)) < x) -+ 0, i.e fn(a) always overestimates f(a) asymptot-
ically.

(2) Ifx>0,for =j a<s<b,

B(F(s)) + V¶(F(s) - f(a)s) - n4"xs

B(F(a) + f(a)(s - a)) - n2 xs

we see that asymptotically the maximum of the process in [a, b] is no more
than

B(F(a)) - n xa + Op(nA)

For s =a - nA,

B(F(s)) + v'n/(F(s) -f(a)s) - nxxs

B(F(a) + f(a)(s - a)) + n2f ()(- a)2 -

nkx(s - a) - n*xa

B(F(a)) - nLxa + Op(nAt) + O(nA-) + xnfl
= B(F(a)) - nAxa + nAI(x + Op(l))
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So for sufficiently large x, the process (B(F(s))+ Ini(F(s)-f(a)s)-nsxs, s >
0) attains its maximum at points on the left side of a asymptotically, therefore

lim liminf P(n"(fn(a) - f(a)) < x) _ 1

(3) If x > 0, for < t < 2 for s < a,

B(F(s)) + V/;(F(s) -f(a)s) - n4"xs

B(F(a) + f(a)(s - a)) + f(a)(s - a)2
2

n4-x(s - a) - n*7'xa
< B(F(a)) - n4 xa + Op(nA)

Let 1 - 2p-qt< v<3 - q for some smalq>0,s=a+n-', then

B(F(s)) + v/6(F(s) -f(a)s) - n41'xs
B(F(a) + f(a)(s - a)) -nixs
B(F(a) + f(a)nv) - n7Hxa + xn2 H

-B(F(a)) - nI xa + n*B(a)(1 + op(l))
where B(F(a)) = n'[B(F(a) + f(a)n-v) - B(F(a))] behaves like Brownian
motion near F(a). However the probability that a Brownian motion ever
takes a positive value in nAi+1(F(a+nA1-)-F(a), F(a+n2 '7')-F(a)) =
(f(a), n2 Tf(a)) tends to 1, so, with probability one, the process can at
least achieve positive value with magnitude OP(nAT-") at the right side of a,
therefore the process must take its maximum on the right of a asymptotically,
hence for any x > 0,

P(n"(fn(a) - f(a)) < x) -+ 0

Combining (1) and (2), (1) and (3) we get (a) and (b) respectively. 0

6.5 Proof of theorem 4
From the proof of theorem 2 we can see

P(fn(O) - f(0) < X) = P(Un(f(0) + X) < 0)
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and the limit distribution of U (f(O)+x) is the same as that of the location of
the maximum of the process B(F(s)) + -/fi(F(s) - (f(O) +x)s). Set v > 1- 7
for some small q > 0, s = n-v, then

B(F(s)) + V/-(F(s) - (f(0) + x)s)

= B(f(O)s) + vr[(k + l)! k Xs] + o(VThSk+l)

B(f(0)n-') + Op(n' )
However n B(f(O)n-v) behaves like Brownian motion near 0, and a Brow-
nian motion must take a positive value in (0, f(O)), so the process must
take its maximum on the right of a asymptotically, hence for any x > 0,
P(fn(O) - f(0) < x) -- 0 i.e fn(0) - f(0) -°00. 0

6.6 Proof of theorem 5
Since the proofs are same except for details. I'll only give the proof for the
case r = 1 which is stated in the following theorem.

Theorem 10 If f has support [0,a2], and f is flat in [O,a,] and strictly
decreasing in [a,, a2], then

Vr7(IIf - flu - 0n-T) - N(O,u2(F(a2)- F(ai))) + Y (14)

Where N(O, a2(F(a2)- F(ai))) and Y are independent.
Y - 2 sup B(F(s)) - B(F(aj))

O<a<al

B is standard Brownian Bridge in [0, 1], and

= 2EIV(01l I2 !f(t)f (t) Idt.8212f'(t)f(t)IdtJa 2 Ja 2

2-= 8j Covar(IV(0)l, {V((-)d-
: .17

Proof of theorem 10. In order to simplify the proof we suppose f+!,(a,) #
0. (Otherwise we can find the first k such that f4(k)(ai) # 0.) Let fn,1
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fn,c,l and fn,c,2 be the slope of the least concave majorant of Fn in [a,, a2],
[a1 + 3cnAs, a2] and [0, a1 + 2cnAi] respectively. The proof of theorem 10 is
divided into several lemmas.

Lemma 1

lim liminf P(fn = fn,c,l=fn,l on [a, + 9cn, a2]) = 1 (15)
lim liminfP(fn= fn,c,2 on [0,a,]) = 1 (16)

Proof. The proofs are similar and so I only give the arguments for (15).

p(n, c) = P{Fn(z) < Fn(al + 8cnA) + (z - a1 -8cnA)(D - An)
for z < a1 + 3cn-*}

where A = -8cf+(aj) > 0, D = f(a,). Similar to the proof of lemma 4.1 in
Prakasa Rao [17], it is enough to show

lim liminfp(n,c) = 1 (17)

But

p(n,c) = P{Fn(y + 3cn-t) < Fn(al + 8cn-i) + (y - a, - 5cn*)
(D - An-) for y < a1}

- P{n[Fn(y) - Fn(al)] < n{[Fn(aj + 8cnA) - Fn(al)]
-[Fn(y + 3cn1) - Fn(y)] + (y - a, -5cn-A)(D - An-I)} for y < a,}
> P{n[Fn(y) -Fn(al)] < n{[Fn(aj + 8cn') - Fn(al)]
-[Fn(y + 3cn1) - Fn(y)] + (y - a1 -5cn-A)(D - An-')} for y < a,}
> P{n[Fn(y) - Fn(al)] < n{[Fn(aj + 8cnA-) - Fn(al)]
-Fn(3cnA') + (y - a, - 5cnA')(D - An-')} for y < a,}

Set

In= n{[Fn(aj + 8cn-r) - Fn(al)] - Fn(3cnAi) -5cnf(D - AnAi)}
n

-{l1(al < Xi !< a, + 8cn-i) - l( < Xi < 3cn-i)}
i=1

-5cn*i(D -An-)
- n(cA + V Vn)
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where EVn-= 0, VarV, = 1 + o(l). Then by Chebyshev's inequality,

liminfP(I~> 1 cAlhmBinf P(I,, > -cAni) > liminf P(Vn > -
n-+oo 2 n-+oo 2VU5c

> 1 limsup P(InV > cA i)> 1-imsup 2ADVarVn
n_-oo 2V cDn--+o cA

> 21v2vg - 2
cA

hence

p(n,c) > P{n[Fn(y) - Fn(al) <!cAnT + n(y - al)(D - An-')
for y < a,} - P(I,< !cAnw)

1 1
_ p'(n, c) - P(In < - cAnTs)

Now we have

p'(n, c) > P{n[Fn(y) - Fn(al)] <2cAnT + n(y - al)(D - An-')
for y < a,}
> P{x/7[Fn(y) - Fn(al) - F(y) + F(aj)] <2cAnK w
+V,f4[F(aj) + (y - al)(D - An' - F(y))] for y < a,}

'T
~1> P{Bn([F(a) - F(y)]/F(aj)) + Op(nIlogn) <.cAn-g
2

+Vf4[F(al) - F(y) + (y -al)(D- An4i)] for y < al}
T

111> P{Bn([F(aj) - F(y)]/F(aj)) + Op(n-4logn) <-cAn-.
2

+A(F(al) - F(y))n /D + V4i[F(al) - F(y) + (y - a )D](1 - AnAI/D)
for y < a,}
> P{Bn([F(al) - F(y)]/F(aj)) + Op(nAilogn) < 'cAn-A

+A(F(al) - F(y))n*/D for y < al}
> P{Bn(u) + Op(n4ilogn) < -cAn4i + AF(aj)un*/D for 0 < u < 1}

> P{Bn(u) <-cAn-4 + AF(ai)un*/D for 0 < u < 1}

16



Here I have used the fact that

v/4{Fn(y) - Fn(al) - F(y) + F(al)} = Bn([F(al) - F(y)]/F(al))
+Op(n4i log n)

where Bn is Brownian Bridge, by the the Hungarian embedding of Komlo's
et al. (1975) and

(y-aj)D-F(y) + F(al) >O for y > al

by the concavity of F.
It can be shown by the Cameron-Martin-Girsanov formula that the prob-

ability that a Brownian Bridge ever crosses the line between the points (0, x)
and (l,y) is e2xy, therefore

p'(n, c) > 1 - exp{-cAnA1(-cAn4 + DAF(al)n*) - o(l)

> 1 - exp{-cA2F(ai)/D} - o(l)

hence

lim inf p(n, c) ! lim inf p'(n, c) -lim sup P(In < cAn s)

> 1 - exp{-cA2F(ai)/D} 2V-c

-+1

as c - oo. 0
Remark. If we use the Hungarian embedding of Komlos et al.(1975) and
the results about the probability that a Brownian Bridge crosses a line as I
did in proving the lemma, we can simplify the proof of the key lemma 4.1 in
Prakasa Rao [17], which showed that fn(to) depend on only the data in the
n-i-shrinking neighborhood.

Lemma 2

V/i(J Ifn,l (t) - f(t)I dt - OnA)3 N(0, a2(F(a2)- F(al))) (18)

Proof. It comes directly from the theorem 2 in Groeneboom[10]. 0
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Lemma 3 Suppose a concave function G has a right continuous right deriva-
tive 9. Then for t < t2,

1 lg(t)j dt = 2 sup G(t) - G(t1) - G(t2)
tl ~~~~tl<t-<t2

Proof. Set to = inf{t, < t < t2 : g(t) < 0}, and to= t2 if 9 > 0 on [tl,t2].
then at to G achieves its maximum in [t1, t2]. Hence

rt2 {to {t2

1 jg(t)I dt = J g(t) dt - g(t)dt
2G(to) - G(t1) - G(t2)
2 sup G(t) - G(t1) - G(t2) 0

tj<tIt2

Lemma 4 For each c > 0,

/ fn,c-2(t)- f(t)I dt Y (19)

Proof. Let Fn,c be the least concave majorant of Fn in [0, a, + 2cn-4] and Fn
outside [O, a, +2cnA']. Set F(t,n) = F(al)+D(t-a,) fort E [a,, ai+2cnA1],
and F(t,n) = F(t) for t ¢ [O,a, + 2cnA]. Then vii(Fn,c,l(.)-F(.,n)) is
the least concave majorant of ,/F(Fn(.) - F(.,n)) in [O,a, + 2cn-A] and
Vi(Fn(.)- F(.,n)) outside [O,a, + 2cnA'], and

v/;; sup IF(t, n) - F(t)I = n sup IF(t, n) - F(t)j
O<t<a2 a, <t<ai +2cn-i

- rn sup IF(al + sn-T)-F(al)-Dsn-4I
O<J<2c

O(nA1)
By lemma 3 we have

al+2cn-i
\/n;lo Ifn,c,2(t) - DI dt

=-2Avf sup [ft c,l,(t) - F(t, n)] - v7[Fr (O)-F(0, n)]
O<t<al +2cn- i

V-/ Fn,c,l(a, + 2cnA)- F(al + 2cnAi,n)]

18



=-2 ,/n- sup [Fn(t)-F(t)]
O<t<al+2cn-i

-xf4[Fn(al + 2cnA) - F(al + 2cnA')] + o(nA')
2 sup B(F(t)) - B(F(al))
O<t<al

Here I have used

V-(Fn - F) = Bn(F(.)) + Op(n-* log n)

by Komlos et al. (1975). Again by lemma 3,

nIal+2cn- i

Il

-2V/n sup [Fn,c,I(t) - F(t, n)J- Vn[Fn,c,al) - al
a, <t<al +2cn4

-~/;7[Ftn,c,1(a, + 2cn) - F(al + 2cnAi,n)]
2V;i SUp [Fr1nc,l(t) - F(t)] - 4Fn,c,l(al) - F(ai)]

al <t<ai +2cn- i

-V'n[Fn(al + 2cnt) - F(al + 2cnA1)] + O(nA')
0

since

6Fn,c, )-F(.)] ='- BOal(-)
where Boa, is the least concave majorant in [F(al), F(a2)I of Brownian bridge
B and B outside [F(al), F(a2)], which is continuous process. This complete
the proof of this lemma. 0

Lemma 5 For each c > 0,

v;; Jal+9cn-i

V-al +9cn- i

Ia

Ifn(t) f(t)I dt £P 0

Ifn,l(t) -f(t)Idt -P 0

19
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Proof. Since the proofs are similar I'll only prove the first result. One has

vr-al +9cn-*@;;| ~~Ifn(t)- f(t)I dt

< 9cn Ifn(al) - f(a, + 9cn-A)I v Ifn(al + 9cni) - f(a,)I
So the lemma results directly from

fn (a, + 9cn- )f(a,) = Op(n-
fn (a,) - f (a, + 9cn-A) = Op(nA),

which is true by the theorem 3 and its remark. 0
Now theorem 10 can be proved easily: set

rn,c {fn fn=c,l = fn,l on [a, + 9cn i, a21, fn fn,c,2 on [0, a,]},
then on rn,c,

v'1lffn-flu-f If- 2(t) -af(t)l dt -|j Ifn,c,2(t) - f(t)l dtl1+9cn~IfOC t f()Id
a,+(. cn -,

n-; I fnn(t)- f(t)Il dt

and

V;7{ Ja2 fa2
al9cnai+9cn
ai+9cn&4

-t/;;| |~~fn,l (t)-f(t) I dt
by lemma 1 and lemma 5 we get

a2 ra,
IN|'-jfn-f III J- fn,cal(t)-f(t) I dt-| Ifn,c,2 (t)-f(t) l dti1l+9cn- i
PO-*0

Noting that fn,c,l and fn,c,2 are independent, and llfn- fi1, don't depend on
c, then by lemma 2 and lemma 4 we can get

.v/'(IIfn- fII - On4) . N(0, a2) + Y
0
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6.7 Proof of theorem 7
Noting

tm B
1Ifn.m-fii = Jm Ifnm(t) -f(t)l dt + If+m(t) - f(t)I dt

since f is nonincreasing and nondecreasing in (m, oo) and (-cx, m), then by
the results for the monotone density, e.g. theorem 10 and theorem 5, we can
get the asymptotic distribution of IIfn,m - f °ii.0

6.8 Proof of theorem 8
For ml > M2, if Fn,mi and Fn,m2 meet at a point after M2 or before ml, by the
construction of the least concave majorant, this point must be a observation
point and they will be equal after this point. Since mn is consistent, it is
enough to prove that Fn,mn and Fn,m will meet between m +6 and m + E for
some 6 < c. Since F is strictly concave in [m,m + e], this is a consequence
of the following lemma. 0

Lemma 6 IfF i strictly concave in (a, b), then

P(3a < t < b 3 Fn,m(t) = Fn(t) for all m < a) 1

Proof. If Fn,m(t) > Fn(t) for all a < t < b, then 3Xi < a and Xi > b
such that FnM is linear in (Xi, Xi) and equal to Fn at Xi and Xj. Since
Fn- F = Op(nA) uniformly, then Fn,m + Op(nAr) is below the line joining
point (a,F(a)) and (b,F(b)). So does Fn + Op(nAi). This implies that F
is below the line joining point (a, F(a)) and (b, F(b)), which contradicts the
strict concavity of F in (a, b). 0

6.9 Proof of theorem 9
Let Let Fn,mn be the greatest convex minorant of Fn in (-oo, Mn) and the
least concave majorant of Fn in [Mn, oo), fn,c be the right slope of the least
concave majorant of Fn in [m + 2cn-! , B) and the left slope of the great-
est convex minorant of Fn in (A, m- 2cn-T). Noting that Mn is nl2+1-
consistent, as in the proof of lemma 1 we can show

cx liminf P{fn,mn fn,m =fnc
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on (A,m- 2cn-TT] U [m + 2cnTTT, B)} =1.

Now it is enough to show that

J- m2cn7 (Ifn,m(t) - f(t)I + fn,mn(t) - f(t)I dt 0P.
By lemma 3

m+2cn 2#F

Im= m+2cns

= 2V/n sup

Ifn,m(t) - f(t)I dt

Ifn,m(t) - f(m)I dt + 0(n - 2M9717)
I[Fn,m(t) - F(t)] - Vf'[Fn,m(m) - F(m)] -

m<t<m+2cnJT

V7[Frn,m(m + 2cn-rT) - F(m + 2cn-rT)] + O(nT#Tq )

I,n' m+2cn-
n

m+2cn79

-n

= 2V/n SU]

Ifn,mn(t) -f(t)I dt

Ifn,mn(t) - f(m)I dt + O(n- 2rq)
p [Fn,mn(t) - F(t)] - -/[Fn (mn) -F(mn)] -

mn<t<m+2cn

V74T[Fn,mn(m + 2cn)- F(m + 2cn -
*)] + O(nTCq+). (21)

By the strong approximation of Komlos et al. (1975), we have that v4il[Fn,m(s)-
F(s)]+Op(nA' log n) is that the least concave majorant of 1/nF(s)+Bn(F(s))
in [m, oo) minus i/ F(s), which is between a Brownian bridge B and its least
least concave majorant Bm in [F(m), 1], so the sum of (20) and (21) is no

more than

2 sup [DM I4AS)) + bmn"P(8S))J l((m)) -
m<t<m+2cn Zq+

B(F(m + 2cn-T)) - B(F(mn + +2cn- r)) + op(l)
4Bm(F(m)) - 4B(F(m)) + op(l)

= op(l).

-IB(F(mn))

22
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Here I have used that Bm is continuous process and equal to B outside
[F(m), 1].

Similarly I can prove

v/i;( 1 Ifn,m(t) - f(t)I + Ifn,mn(t)-f(t)I)dt -0
0

Acknowledgments. I wish to express my gratitute to my thesis advisor
Professor Peter Bickel for his guidance and encouragement.

References
[1] Barlow, R., E., Bartholomew, D., J., Bremmer, J., M. and Brunk, H.,

D.(1972). Statistical Inference under Order Restrictions. New York: Wi-
ley.

[2] Bickel, P.J and Fan, J.(1990). Some Problems on the Eatimation of
Densities under Shape Restrictions. Technical Report No. 258, Dept of
Statistics, University of California at Berkeley.

[3] Billingsley, P.(1968). Weak Convergence of Probability Measures. New
York: Wiley.

[4] Birge, L.(1989). The Grenander estimator: a Nonasymptoic Approach.
Ann. Statist. Vol.17, 1532-1549.

[5] Birge, L.(1987). Robust Estimation of Unimodal Densities. To appear.

[6] Brunk, H., D.(1970). Estimation of Isotonic Regression. Nonparametric
Techniques in Statistical Inference. 177-195 Cambridge Univ. Press.

[7] Grenander,U.(1956). On the Theory of Mortality Measurement, Part II.
Skand. Akt. 39, 125-153.

[8] Groeneboom, P.(1983). Concave Majorant of Brownian Motion. Ann.
Probab. 11, 1016-1027.

[9] Groeneboom, P and Pyke, R.(1983). Asymptotical Normality of the
Statistics Based on the Convex Minorant of Empirical Distribution
Functions. Ann. Probab. 11, 328-345.

23



[10] Groeneboom, P.(1985). Estimating Monotone Density. Proceedings of
the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer.
539-555.

[11] Groeneboom, P.(1989). Brownian Motion with a Parabolic Drift and
Airy Functions. Z.Wahr.verw.Geb. 81, 79-109.

[12] Ikeda, N. and Watanabe, S(1991). Stochastic Differential Equations and
Diffusion Processes. Second edition. Springer-Verlag.

[13] Ito, K and Mckean, H. P., Jr(1965). Diffusion Processes and Their Sam-
ple Paths. Springer-Verlag.

[14] Kiefer,J and Wolfowitz, J(1976). Asymptotically Minimax Estimation
of Concave and Convex Distribution Functions. Z.Wahr.verw.Geb. 34,
73-85.

[15] Komlos, J., Major, P. and Tusna'dy, G.(1975). An Approximation of Par-
tial Sums of Independent r.v.'s and the Sample d.f I. Z.Wahr.verw.Geb.
32, 111-131.

[16] Komlos, J., Major, P. and Tusna'dy, G.(1976). An Approximation of Par-
tial Sums of Independent r.v.'s and the Sample d.f II. Z.Wahr.verw.Geb.
34, 33-58.

[17] Prakasa Rao.(1969). Estimation of a Unimodal Density. Sankhya Ser. A
31, 23-36.

[18] Prakasa Rao.(1983). Nonparametric Functional Estimation. New York:
Academic Press.

[19] Robertson, T., Wright, F., T. and Dykstra, R., L.(1988). Order Re-
stricted Statistical Inferences. New York: Wiley.

[20] Strook, D. W. and Varadhan, S.R.S(1979). Multidimensional Diffusion
Processes. Springer-Verlag.

[21] Wright, F., T.(1981). The Asymptotical Behavior of Monotone Regres-
sion Estimates. Ann. Statist. Vol 9, No. 2, 443-448.

24


