
Hinging Hyperplanes for Regression,
Classification, and Function Approximation

By

Leo Breiman

Technical Report No. 324
September 1991

Department of Statistics
University of California

Berkeley, California 94720



Hinging Hyperplanes for Regression,
Classification, and Function Approximation

Leo Breiman

Abstract

A hinge function y = h (x) consists of two hyperplanes continuously joined together
at a hinge. In regression (prediction), classification (pattern recognition), and noiseless
function approximation, use of sums of hinge functions gives a powerful and efficient
altemative to neural networks with compute times several orders of magnitude less
than fitting neural networks with a comparable number of parameters. The core of the
methodology is a simple and effective method for finding good hinges.

1). Introduction

In an M-dimensional space (xl,... , XM), a hinge function y = h (x) consists of
two hyperplanes continuously joined together. Taking xo 1 and using to denote the
inner product of two vectors, if the two hyperplanes are given by

y= x, y=P=-X,
they are joined together on (x: ( P- W) x = 01 and we refer to A = - (3, or any
multiple of A, as the hinge for the function. The explicit form of the hinge function is
either max ([+ - x,p- - x) or min ((+- x, .- x).

Most of the recently introduced methods for nonlinear regression, classification,
and function approximation use expansions into sums of basis functions. The basis
functions used are "data selected" from a large parametric class of primitive func-
tions. For instance, CART (Breiman et al. [1984]) uses an expansion into indicator
functions of multidimensional rectangles with sides parallel to the coordinate axes.
Neural network methods use sigmoid functions of linear functions as primitives. The
MARS method (Friedman [1991]) uses products of univariate linear spline functions as
its primitive class. In this work, the hinge functions form the primitive class. There
are good reasons, as given below, for this approach.

Let P be any measure with compact support on E(M) and f(x) any sufficiently
smooth function. Then we show in section 3, using methods developed by Jones
[1991] and Barron [1991] that there is a constant C(f,P) such that for any K, there are
hinge functions hl,... , hK with

K C
if-_hkII2 C.

1 K
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The property that makes the hinge functions effective is that there is a simple and
computationally efficient method for locating hinges. Suppose we are told that
y = h (x) is a hinge function with unknown hinge A*; are given data (yn, Xn),
n = 1,9. ., N; and want to use this data to locate the hinge. One approach is this: for
any specified candidate hinge A, do a least squares fit of a hinge function with hinge A
to the data. Let RSS (A) be the residual sum-of-squares. Now search over A-space to
find the minimizer of RSS (A). This procedure is compute intensive and global
searches are not feasible unless M, N are small.

Here is an alternative: start with an arbitrary hinge A(°). Using least squares, fit the
data on the side A(°) xn > 0 to a hyperplane y = [- x, and do a similar fit to the data
such that A(°) -x < 0 getting y = [- x. Take the new estimate for the hinge as

and repeat the procedure, getting a sequence A(k) of estimates.

In section 2 we give evidence that generally A(k) e A* and that the convergence is
rapid. The noisy case, yn = h (xn) + en, is also looked at and the accuracy of limA(k)
as an estimate of A* examined. Simulations support the theoretical accuracy results
and show that the hinge finding algorithm is computationally efficient and accurate
even for large M, and high noise.

In section 3 we state the theorem regarding the approximation of a smooth function
by a sum of hinge functions. Then we look at the implementation that at the Kth stage
adds a new hinge function by using the hinge finding algorithm on

K-1 K
y= f(x) - hk (x), and then readjusts the sum Ihk(x). Simulations in dimensions

ranging from M = 2 to M = 16 show good approximation properties and verify the 1/K
decrease.

The most important applications of hinge functions is to multivariate regression and
classification. Section 4 discusses the use of hinge functions to produce a nonlinear
prediction function given noisy data {(yn,xn), n = 1, . . . , N). Examples are given to
show how sums of hinge functions can be used to construct accurate predictors. In
particular, to cope with high dimensional spaces, a variable selection method in hinge
finding is introduced. It took 2.8 minutes of cpu time to compute the prediction equa-
tion in a highly nonlinear 100-dimensional example with a training set of size 2000.

In section 5 we show how the hinge finding algorithm can be extended so that
hinge functions can be usefully employed in classification (pattern recognition) prob-
lems. The approach is to formulate the J-class problem in terms of J linked regression
equations, and then to locate, at each stage, the hinge that is optimum for a combina-
tion of the equations. This leads to a J x J eigenvalue problem at each iteration.
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Examples are given, with both real and simulated data to illustrate the effectiveness of
this method.

Our concluding remarks and summary appears in section 6, and the proofs of
theorems are in Appendix I. Computational aspects of the hinge procedures are dis-
cussed in Appendix II. Appendix HI gives some equations for computing cross-
validated error measures in regression and classification.

On current computing equipment, the procedures are quite feasible for substantial
sample sizes and dimensionality and we give cpu times involved for various examples
in the text. The examples were run on a variety of machines. To provide uniform
time benchmarks, the 16-dimensional example of section 3 was run on all machines
including an IBM RS6000/540. The timings given in the text are scaled to the RS
6000, a 12.5 megaflop machine.

Another important application of hinge finding is in determining splits for the con-
struction of classification and regression trees. This is the subject of a sequel paper.

For recent advances in constructing nonlinear prediction functions, see (in the sta-
tistical literature) Friedman and Stuetzle [1981], Breiman et. al. [1984], Breiman and
Friedman [1985], Friedman [1991], Hastie and Tibshirani [1990], Breiman [1991],
Whaba [1990]. In classification, some recent statistical publications are Breiman et. al
[1984], Breiman and Ihaka [1987], Hastie and Tibshirani [1990]. In the engineering
and computer science fields, where recent attention has been focussed on neural net-
works, see Lippmann [1989] for a review and references.

2). Finding the Hinge

2.0). Analytic Results

Assume that y = h (x) is a hinge function with unknown hinge, and that there is a
distribution of points x e E(M+) governed by a probability measure P (dx). For a fixed
vector A(°), denote

S+ = (x: AM0 x > 0), S_ = (x: A()-x<0)

r+(m,m') = Jxmxm,dP, r_(m,mt) = Jxmxm,dP

(xy)+(m) = fxmh(x)dP, (xy)_.(m) = Jxh(x)dP.
s+ s-

The least-squares coefficients of a hyperplane fitted to the y-values in S+ are
p+ =r.rl (xy)+, and those in the S_ fit are ,B_ = r7J1 (xy).. The new hinge value A(1) is
, f-3 and the process is repeated starting from A).
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Since y = h (x) is a hinge function, there is a hinge A* such that for
S= x: A* x > 0) and S* = (x: A* x < 0), if the fitted coefficients on the +,
sides are ,B+, I3, then A* = - J3. Thus

(xy)+ (m) = f X (3** x) dP + J xm(1*x) dP
S+nS+ S+nrS*

(xy)_ (m) = Xm(P x) dP + Xm(* x) dP,
S-S* Sn)S-*

Denote

r++ (m, m') = f xmxn dP
S+r-S *

with the analogous definitions for '+-, rT+, rF. Then, some manipulations give

AM = AA*

where

A = I-r r;1 -r-lr+. (2.1)

Hinge Convergence Theorem (2.1). Denote by s any linear function of xO, .. . , XM.
Assume that P satisfies
i) There is a c <oo such that for every s with Es2 < 1, Es4 cc.
ii) Letp (a) = sup P (I s I < a). Then p (a) = O(a) as c -* 0.

Es2L-1

iii) If S+ = (x; s . 0) and P (S+) = c > 0, the inf over s of the minimum eigenvalue
of r+ is X* (C) >O.

Then, there is a 8 > 0 such that if 11 A(°) - A* . 8., then

II&k)_ A* 11 e 0.
and convergence is exponentially fast.

The proof is in Appendix I. Both theoretical and simulation results suggest that
convergence occurs even for A(°) distant from A*. For example;

Theorem 2.2. If xo 0 and (xl, . . . , XM) have a joint normal distribution, then
A*k) * A"* for any starting AM0° such that A(°)*iVA* 0.

The proof is given in Appendix L

2.1 Simulations

The simulations were done as follows: the (A* (1),... , A* (M)) were taken to be
M i.i.d. N (0, 1)'s, and At* (0) adjusted so that the proportion of data in (A* x 2 0)
was uniform on [.15, .85 ]. Initial hinge values A(°) were selected by taking
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(AM0° (1), . . . , A(') (M)) to be another M-vector of i.i.d. N (0, 1)'s and A(0) (0) taken so
that #(xn: A(°)x. . 0) = int (N/2). Starting from A), the hinge finding algorithm was
run to convergence giving A. The run was counted as a hit if I cos (A, A*) I . .99, oth-
erwise a miss. The whole procedure, including the data generation, was repeated 100
times.

In the first run, N = 250, the dimension M = 6 and (xl.... , XM) were sampled
from Xl, . . . , XM With Xm = Zm - Z.., (ZO,... ZM4 independent unit exponen-
tials. To study the affect of dimensionality, the same structure was used in the second
run but with M = 12. Since this example used long tailed distributions, in the next
two runs we again set Xm=Zm- Znl but took the (Zm) to be uniform on [0,1].
The first run was at dimension 6 and the second at dimension 12.

There were no misses in the 400 repetitions. But the algorithm can be made to
miss. For instance, at least 13 points are needed to define a hyperplane in 12 dimen-
sions. We set A* (0) in the 12-dimensional exponential case so that
#fxn; A*xn > 0) = 20. Now 20 points to define a corner hinge in 12 dimensions is
sparse. In 100 trals there were 13 misses.

2.2 The Effect of Noise

Suppose that the data is of the form (yn,xn), n = 1,... , N with Yn = h(xF) + en,
h (xn) a hinge function and (fen) noise. Then

Ak+') = A* - BA* + p1' (£X)+- 1 (£X)-
where B is r+-'+_ + r _lr_+. The matrix B is a function B (A(k), A*). The proof of
the hinge convergence theorem indicates that B is small order of the noise. That is, if
the noise is small, and A(k) - A* + Z, where Z is a linear function of the noise, then
B - o (Z). Thus, for small noise, at convergence

A = A* + I[-1 (Ex)+- r_Z1 (cx)_.
From this,

EIIA(A*Ir2 = (;1)+Tr(r_)) (2.3)

2.3 Simulations: Noisy Case

The (xn), n = 1, . . . , N data was generated as in the first example in section 2.1.
Then yn was set equal to h (xn) + en with the {Ie,) i.i.d. N (0, a2) noise. The hinge A*
was selected as in section 2.1.

The signal/noise ratio (s/n) is here defined by first fitting a least squares hyperplane
to (h (xn)). Then the signal a, is defined as the square root of the mean residual



- 6 -

sum-of-squares (MRSS). The noise is defined by its standard deviation AN. Then
s/n = a,/aN. Another way to look at this is that the expected MRSS on fitting h + e
by the right hyperplane is ca + cs. The expected MRSS on fitting by the right hinge
function is aN. The ratio of expected MRSS is

MRSS (hinge) = 1
MRSS (linear) 1 + (s/n)2

The s/n ratios used were 1, 1/2, 1/3, 1/4. The output of each run consisted of the aver-
ages over the repetitions of I cos (A, A*) I and of 11A - A* 11 /D where

D = i (Tr(r1) + Tr(]-1)),

with r+, r computing using A and

d2= 1 -1
N-2 (M + 1) n (Yn-f (Xn))

where f is the estimated hinge function. The discussion leading to (2.3) indicates that
the expectation of 11A - A* I /ID should be close to one in low noise situations. The
standard deviation of these two quantities over the repetitions in the run is also given.

Another quantity of interest is S2/ (INel /N). This is the ratio of the MRSS using
the estimated hinge function debiased by the factor 1/(N - 2(M + 1)), to the MRSS
using the known ridge function. Denote this ratio by RSSRATIO. We report on four
runs of 100 repetitions each using N = 250, and the 6 dimensional exponential distri-
bution specified previously.

Table 2.1
Effects of Noise

s/n | av(l cos I) Sd(I cos l) av(llA - A*II/D) | Sd(IIA- A*I1/D) j RSSRATIO

1 .99 .01 .92 .38 1.00
1/2 .93 .07 1.11 .58 1.00
1/3 .81 .20 1.31 .67 1.00
1/4 .68 .24 1.49 .71 .99

Its surprising how well the algorithm does even with high noise levels. When
s/n = .25, only a 6% decrease in RSS is gotten by fitting the underlying hinge instead
of a hyperplane. Yet the values of the RSSRATIO show that the minimum RSS hinge
is consistently being found.
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3). Noiseless Function Approximation

On E(M) a sum of hinge functions 1 hk(x) is a continuous piecewise linear func-
tion. Results of Barron [1991] on sigmoid function and Jones [1991] on sinusoids can
be extended to show that sums of hinge functions are effective in function approxima-
tion. Let f (w) be the Fourier transform of f (x).

Theorem 3.1. If the support of P is contained in the sphere of radius R, and if

fIIwII2If(w)ldw = c<o

then there are hinge functions hl. . .,hK such that

hlf- hkhI2 < (2R)4c2
1 K

The proof of this theorem is an extension of Barron's extension of the Jones result and
is given in Appendix I. In the Jones and Barron results, a function 4 on E(1) is
specified, and the approximating sums are of the form Z (Pk - x). In neural net-
work approximation, the sum which minimizes 1 f (x) -_S (Kvx) 1 is gotten by
using local gradient searches to minimize over the ({il... , PK). Not only is this
highly compute intensive even for K, M of moderate size, but only local minima are
guaranteed.

Barron and Jones show that there is a "greedy" algorithm which at each step
enters the next function 4 (PK x) by minimization over M + 2 parameters only, and
still achieves the upper bound of the existence proofs.

A similar "greedy" result can be proved for hinge functions but the point may be
moot. The hinge finding algorithm makes the optimization over the entire sum compu-
tationally efficient. Our simulations show that the decrease in squared norn is
inversely linear but that the constant is orders of magnitude less than that given in
Theorem 3.1.

3.1 The Approximation Algorithm

The basic algorithm is: given a function specified at the points (x.), n = 1,... , N
run the hinge finding algorithm on this data, resulting in a hinge function approxima-
tion h (x). Since the function to be fitted is not a hinge function, M starting values of
A(°) are used, and the hinge adopted is that with minimum RSS. The mth starting A(O)
is given by A(°)(0)= 0, j * m, A(°)(m) = 1, and A(O) (0) selected so that the condition
{A(O) - x 2 0) cuts the data in half.

To compute the approximation to f(x) using K hinge functions, at the Klh stage
K-1

find the hinge function approximation hK (x) to f (x) - hk (x). Then refit: update h,



K
by refitting the difference f - £ hk. Using this updated h1, update h2 by refitting

2
K

f - h, - Ihk. After hK is refitted, start the cycle again with fl. These cycles are con-
3

tinued until there is no further appreciable decrease in RSS. The procedure is made
more efficient by using, as the single starting A(°) for each refit, the current hinge of
the function to be refitted.

Another algorithm was also tested. Each hinge function is the sum of a linear
function and a function h(A- x) where h+(x) = x, x _ 0, and 0, x < 0. Let
h+ (Ak- x), k=l, .. . , K-1 be the nonlinear parts of the hinge functions entered at
steps 1,2, . . . , K-1. Do a linear regression of f(x) on the M + K variables
i,X1, . . xM h+(Al X),x * h (AK-,-1 x), getting

M K-1
fK-1(x) = OmXm+ Z'?ikh (Ak X)-

0 k---1

Use the hinge finding algorithm on f - fK-l to find hK and suppose the nonlinear part
of hK is h+ (AK x). Do a linear regression of f (x) on the M + K + 1 variables

1,x1,'.. XM,h (A1l x),. .. ,h (AK X)

getting new coefficients 3o,.** .O,3M and Yi, ... YK. Take fK to be the linear com-
bination using the new coefficients.

Although refitting is computationally fairly efficient, the cpu time to fit, say, 50
hinge functions in 16 dimensions to 1000 data points is considerably larger than the
regression type algorithm described in the above paragraph. The trade off in cpu time
and accuracy is explored in the simulations reported on in the next section.

3.2 Simulations: Function Approximation

The first example is chosen for visual inspection. There are 1000 (xc) values uni-
formly distributed on the square [ 0, 1 ]2. Let e = (1, 1), then

f(x) = e7Ix - .3e112 _ e-"'x - .7e 112

Figure la gives the surface plot of f Hinge functions are fitted and refitted. The sur-
K

face plots of 11 hk (x), K = 4, 8, 16, 32 are given in Figure 1 b,c,d,e.

We are not advocating the use of hinge functions to fit smooth surfaces in low
dimensions. Other methods are available which give smoother and more accurate fits
in 2 or 3 dimensions (see, for instance, Breiman [1991], Friedman [1991], Whaba
[1990]). The above 2-dimensional example is given only because visual inspection is
possible.



Figure 1. Surface Plots of Hinge Approximations

1(a) Original Function

l(b) 4 Hinges 1(c) 8 Hinges

11(e) 32 Hinges1 (d) 16 Hinges
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The second series of examples are similar except for dimension. The function is

f(x) = e7IlxII/2

The points (fxn are distributed on the sphere II x <1. 3 using a spherically symmetric
distribution such that 1 x 11 is uniform on [ 0, 3 ]. For this function

M = JlIwIl2If(w)ldw,
so that the upper bound of theorem 3.1 is 1296 M2/K.

For M = 4, the refit and regression algorithm were run up to K = 50. Figure 2
K

gives the plots of 1 / 11f - I hk 112 vs K for both the refit and regression algorithms for
1

K =1 to 50. Fitting the 1/l f- hK 112 data by K/b using least squares gives
b = .022(refit) and b = .061(regression). Either one is orders of magnitude smaller
than the constant given by Theorem 3.1.

There is a third set of points plotted in Figure 2. The suspicion arises that if one
put down a series A1, . . . , AK of hinges chosen at random and regressed f(x) on the
variables 1, xl, . .. , xM, h+ (A1 xX) A . . . , h+ (AK x) one might do almost as well as
using the hinge finding algorithm. To check this, random hinges A1, . . . , AK were
generated with (AK (1) . . . , AK (M)) being i.i.d. N (0, 1) and AK (0) taken such that
the proportion of data satisfying (AK - X 2 0) is uniform on [.1,.9]. The values
1 f - £p k 11-2 generated this way form the third graph on Figure 2.

To explore the effect of dimensionality, we ran the refit algorithm using dimen-
sions 4, 8, 16 and going up to K = 50. The data was generated as described above
with sample size 1000. Figure 3 gives the graphs of 1/lf-E hk 112 vs K for
K = 1, ... , 50, including the results for dimension four. The MRSS for dimension
16 decreases rapidly when more than 20 hinge functions are fitted. This is probably
due to the fact that 1000 data points are sparse in 16 dimensions. Fitting 20 hinge
functions involves optimizing over almost 400 parameters, and 50 hinge functions,
over almost 900. As the number of parameters approach the number of data points,
the error of the fit at these points drops rapidly to zero.

A more interesting comparison of the effect of dimensionality is when the number
of parameters is constrained to be small compared with the number of data points.
Figure 4 graphs the same data as Figure 3 but only up to 20 hinge functions. There is
very little effect due to dimensionality.

The run doing fitting and refitting of the 50 hinge functions in 16 dimensions took
11.4 cpu minutes (RS 6000), pretty fast for a highly nonlinear optimization involving
almost 900 parameters. The regression type algorithm took 2.3 cpu minutes.
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4). Using Hinge Functions in Regression
Hinge functions give a potentially powerful new approach to nonlinear regression.

Given data of the form ((yn,xn),n = 1,... , N) the problem is to use this data to con-
struct a function f(x) that will give accurate predictions of future unknown y-values
when the corresponding x-values are known.

If f(x) is restricted to be linear, then squared error loss leads to classical least
squares regression. If the number of variables is nominal, say c 20, then the methods
proposed by Friedman [1991] and Breiman [1991] give continuous predictors f(x) res-
tricted to be the sum of nonlinear functions each depending on only a few variables,
say one, two, or at most three. But with some data, predicting y by sums of functions
of a small number of the x-variables may not give accurate results. Consider, for
instance, the function eIXll 12 in M-dimensions.

Methods for fitting continuous functions to high interaction, high-dimensional data
are rare. One early and remarkable result due to Meisel and Collins [1973] derives a
piecewise continuous hyperplane estimate using a method much different from hinging.
Friedman and Stuetzle [1981] originated "projection pursuit" regression which uses a
sum of estimated smooth functions of linear functions. The tree-structured approach
(Breiman, et. al [1984]) fits a discontinuous histogram-like functions.

The approach using hinge functions in prediction is the same as in the noiseless
K

case -- find the best fit to y of Zhk (x). One important issue is how many hinge func-

tions to fit. If K is too large, overfitting occurs and the fit loses accuracy on future
data. Two methods are useful for selecting K. The simplest uses the PECCV criterion:

Let MRSS (K) be the mean residual sum-of-squares. The PExCV estimate for the
test set prediction error is given by

PEGCV(K) = MRSS(K)/(1l-c(K+ 1)(M+ 1)/N)2

where N is the sample size, and M the dimension and c a parameter in the [1,3] range.
Now take K to minimize PEGCV (K). The most accurate estimate of test set error is
given by cross-validation, which requires much more computing. For derivations see
Appendix Ill.

4.1 A High Interaction Example
As an example of a high interaction problem in 10-dimensional space, take

g (x) = logit (vl (x)) + logit (v2 (x)) + logit (V3 (x)).

The vl (x), v2 (, V3 (x) are linear in (xl, . ., x10) defined by letting

11 = 10x1+ 9x2 + 3x3 + 7x4-6x5-5x6-9X7- 3x8-2xg-xl0
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12 = -xl-2X2 - 3x3-4x4-5x5-6X6+ 7x7 + 8x8 + 9x9 + lOx10
13 = -xl-2X2-3x3 + 4x4 + 5x5+ 4x6-3x7-2x8-x9.

The (x,) are selected from a uniform distribution on [0, 1]10. Normalize the 11, 12, 13
to have upper 97.5% point = 2.0, and then put vi equal to 2 (l - 2).

Sample size was 400 and the (yn) generated as

Yn = a - g(xn) +en
where the [en) are unit normal noise. The constant a was defined so that for
f(xn) = a * g (xn), the standard deviation of the (f(xn)) was 4.0, giving a s/n ratio of
4.0.

A 4000 member test set was generated and used to estimate the prediction error
(PErS) as successive hinge functions were added. The PEGCV for c = 1.5 was also
computed. The initial value of the sample variance of the (Yn) was 17.4. A linear
regression fitted to the data resulted in a mean residual-sum-of-squares of 10.3.

The number of hinge functions fitted was increased from 1 up to 7 with the results
summarized in Table 4.1

Table 4.1
Summary of Fit by Hinge Functions

# Hinge Functions MRSS PEGCV PETS
1 5.22 6.20 5.69
2 2.07 2.69 2.49
3 1.09 1.56 1.52
4 1.00 1.58 1.52
5 .96 1.59 1.53
6 .82 1.62 1.54
7 .78 1.75 1.59

The coefficients of the hinges in the 3-hinge fit are given in Table 4.2.
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Table 4.2
Coefficients of Hinges in 3-Hinge Fit

Variable First Hinge Second Hinge Third Hinge
1 -2.2 9.8 .4
2 -6.0 10.6 .5
3 -8.1 8.2 1.4
4 10.9 6.8 3.5
5 13.4 -5.7 5.9
6 10.9 -5.2 6.3
7 -9.0 -5.0 -6.6
8 -6.5 -3.1 -7.4
9 -3.1 -2.6 -6.8
10 .7 -2.5 -8.2

The action of these three hinges is clear from inspection. The first hinge is fitting
logit (v2) on one side and the other two logits on the other side. The second hinge is
fitting logit(vl) on one side and the other two logits on the other side. Similarly, the
third hinge fits logit(v3) on one side and the others on the other side.

The minimum PEGCV selection criterion picks the same 3-hinge fit as the minimum
PETS criterion, (although PETS ties between the 3 and 4-hinge fits). In fact, the PEGCV
is a minimum at the 3 hinge fit for every value of the parameter c in [1,3].

The running time for this example is 7.4 cpu seconds.

4.2 Stepwise Forward Selection of Variables and a Higher Dimensional Examples

If the data set has, say, 1000 cases and 100 variables, then fitting 4 hinge functions
involves the estimation of 500 parameters. This is only 2 cases per parameter
estimated and will probably result in a noisy estimate. If possible, one would want to
keep a tighter control on the number of parameters estimated. In addition, with larger
dimensionality, fitting hinge functions becomes slower.

To deal with these two issues, a stepwise forward variable selection method for
entering hinge functions is used. Here is the idea: start with a search through all M
variables to find the single variable hinge that gives minimum RSS. Call the variable
used xl. Now search among all xm, m 2 2 to find the lowest RSS hinge based on the
pairs of variables (xl,xm). Keep adding variables until a minimum is found in the
GCV estimate of prediction error. Then start this process over to find the next hinge:
refit and keep adding hinges until the PEGCV hits a minimum.
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To illustrate, the following 100 dimensional example was run: the sample size was
2000 and the (Jx,} were sampled from the uniform distribution on {0, 1) oo. Define

K
g (x) = logit (vi (x))

where the ((vi (x)) are linear functions of xl,... , x100. The yn are given by

Yn = a * g (xn) + En

where the (en) are unit normals and a is taken to make the s/n rate 4.0.

The (vl) are defined as follows: For k = 20,40,60,80, let

c(k,m) = exp(-.7 Im-ki),

define

uk(x) = Ec(k,m)xm,
m

and

11 = 3u1-U2-u3-U4

12 = -u1+3U2-u3-U4
13 = -U1-U2+3u3-U4

14 = -U1-U2-U3+3u4.

Normalize the li to have unit variance and take vi = 1i - 1.

The sample variance of the (yn) was 17.1. A linear regression on all 100 variables
give a mean residual-sum-of-squares of 16.3, so the regression surface was predom-
-inantly nonlinear. The time needed to run this example was 2.8 cpu minutes (RS
6000). Table 4.3 summarizes the results.
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Table 4.3
Summary of Results for the 100-dimensional Example

Hinge # of variables* MRSS PEGCV PETS
1 21 11.01 11.78 12.70
2 20 6.71 7.67 8.20
3 25 2.83 3.52 3.57
4 13 2.16 2.82 2.69
5 4 2.13 2.83 2.71
6 5 2.09 2.84 2.73
7 3 2.08 2.86 2.75
8 3 2.06 2.88 2.79
9 3 2.04 2.90 2.83
10 4 2.02 2.90 2.85

*the minimum number of variables in a hinge was set at 3. ** c = 1.5

The structure of both of the above examples was devised so that an optimum fit
could be gotten using a neural network. It would be interesting to see what accuracies
and compute times are produced by running these examples on a neural.network pro-
gram.

5). Using Hinges in Classification

To use hinges in classification, the problem needs to be reformulated into a regres-
sion context. Suppose there are J classes numbered 1,... , J with the probability
P (ji x) of being in class j given x assumed known. Then the Bayes optimal
classification rule is: classify x into that class j for which P (j Ix) is maximum.

Let the random variable Y be one in class j, otherwise zero. Then the function B
of the vector X which minimizes E (Y - (X))2 is P(j Ix). With classification type
data {(jn,xn), n = 1,... , NI and in e (1,... , J), these remarks suggest the follow-
ing approach: define

11, in= i
YJn O otherwise

Find J functions Oj (x) such that RSSj = Iyy O-(112 is small. Classify a future object
with observed x as class j if

O (x) = max Oi (x).i i~~~~



- 15 -

The problem is how to estimate the functions Oj (x) from the data. If linear Oj are
used, the result is similar to discriminant analysis, and performance can be poor in
situations where the P (i x) are not well approximated by linear functions. The neural
network methodology uses Oj (x) estimated through the use of sums of sigmoid func-
tions of linear functions.

One approach is -- for each j approximate the (y3n) by a sum of hinge functions
K
Y;hjk(xn). This uses up parameters at an alarming rate. A different approach,
1
employed in classification trees, for instance, is to use a common basis of functions,
h, .I . ., hK, to approximate each set of (yjn1, with the approximations differing from
class to class through the coefficients of the (hk), i.e. the approximations

yj ~£ayhk(x) (5.1)

are used. Then the problem becomes to find those hinge functions that make
K

RSS = niin IIyj- £,ajIhkII2

as small as possible.

Suppose hl, . . . , hK_1 have been selected and residuals
K-1

rjn = yj - I ajkhk(Xn)

computed. What is wanted is a hinge function fK, and coefficients (yjl to minimze

i,n(-j fK (Xn))2. (5.2)

-Start with a hinge A(°), and denote by (+), that data for which A(°) x > 0 and (-) for the
other data. Consider fitting a hyperplane B+ - x to the (+) data, and a hyperplane 0- to
the (-) data and selecting (j), V, ,B- to minimize

(rs -_jp*Xn)2 + (rJn-Y +*x) 53

After this minimization has been carried out, the next hinge is A(1) - - [ , and the
process is repeated until convergence.

Minimization of (5.3) leads to either a J x J or M x M eigenvalue problem. We
derive the J x J problem. To begin note that there is an indeterminancy in the scales
of y, ,+, ,B. This is resolved by taking IIyII2 = 1. Partial derivatives of (5.2) with
respect to P', - leads to the equations

S+p+ = Z+y,
S13 = ZY
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where S+ is the MxM matrix, SI = x,xm',n, Z+ is the MxJ matrix

Zj= Ex. rjn; similarly for S- and Z-. Substituting these expressions for PI, ,B into

(5.3) gives the expression

J,n
i yyH01j

where

H = (Z+)t (S+)-l Z+ + (Z-)t (S-)-l Z-.
To minimize the RSS we want to maximize YHy under the constraint lyll = 1. This
solution is the eigenvector of H corresponding to its largest eigenvalue. Once y is
known, then Z+y, Z-y are computed, PI = (S+)-l Z+y, f7 = (S-)-1Zy and
A() = P+ - 0-. After hK is entered, then refitting cycles are carried out refitting both
the thk) and the (Clk. The decision on how many hinge functions to use in the fit
can be based either on a test set or cross-validation.

5.1 Two Examples:

The first data set used as an example was provided to us by Richard Lippmann.
To quote him "The database consists of the first two formants frequencies (Fl and F2)
of vowels [Peterson and Barney, "Control Methods Used in a Study of Vowels", THE
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol. 24, No. 2, March
1952, pp 175-184. in Hz. The actual data was gathered by digitizing a figure from
Rabiner and Schafer, "Digital Processing of Speech", Prentice-Hall, 1978. The digi-
tized data was arbitrarily divided into 338 training samples and 333 testing samples."

There are ten vowel classes having roughly equal representations in both the train-
ing and test set. This two dimensional data was used as a benchmark for various
classifiers by Lee and Lippman [1989]. Table 5.1 is an excerpt of their results.
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Table 5.1
Classifier Performance

% Error Times
Classifier Test Set Training Set (cpu seconds)

Unimodal Gaussian 20.4 22.5 31.4
Back-Prop. 21.0 21.0 2458.4

Hypersphere (RCE) 23.1 17.3 144.9
KNN 17.4 20.4 .5
LVQ 18.0 13.5 425.9

Feature Map 19.5 22.2 113.1
CART Tree 21.9 16.0 8.2

Fitting 22 hinge functions gave a test set error of 18.6% and training set error of
20.4%. The compute time was 41.9 cpu seconds. This translates into 517.5 cpu
seconds scaled to the machine used by Lee and Lippman. Although we conceived of
the hinge function methodology as primarily useful in high dimensions, it is competi-
tive in this 2-dimensional example.

5.2 Simulated Wave Form Data

The second example consists of simulated data with structure given in pp. 49-55 of
the book by Breiman et. al [1984]. It is a 3-class, 21-dimensional problem based on
the waveforms wl (t), w2 (t), W3 (t) graphed in figure 5.

Each class consists of a random convex combination of two of these waveforms
sampled at the integers with noise added. More specifically, the measurement vectors
are 21 dimensional: x = (xl, .. . , x21). To generate a class 1 vector x, independently
generate a uniform random number u and 21 random numbers l,... ,2e normally
distributed with mean zero and variance 1. Then set

Xm = UWI (m) + (1 - U)w2(m) +em, m = 1. .. ,21

To generate a class 2 vector, repeat the preceding and set

Xm =uwl (m) + (1 -u)w3 (m) +em m = 1, ... ,21.

Class 3 vectors are generated by

Xm =uw2(m) +(l-u)w3(m) +em, m=1 ...21

Three hundred measurement vectors were generated using prior probabilities of

3 -3-), so there were approximately 100 per class.
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In one set of data generated as above, the CART tree classifier had a test set error
rate of 28%. Using linear combinations in the tree construction lowers the test set
error rate to 20%. Linear discriminant analysis with stepwise entry of variables gave a
test set error rate of 26%.

Ten data sets were generated using the above mechanism, together with ten test
sets of size 3000. When each training set hinges were added and refitted. The model
selected (i.e. number of hinges fitted) was that with minimum test set error.

For the stochastic structure of this data, the Bayes rule can be computed and
applied to 'the test sets. The averages over the 10 repetitions are:

number of hinges 3.6
training set misclassification rate (%) 9.5
test set misclassification rate (%) 18.1
Bayes rule misclassification rate (%) 13.6
cpu seconds (RS 6000) 39.7

The hinges procedure improves on the tree classifier using linear combination
splits. But the error rate is still somewhat above the Bayes rate. We revisit this exam-
ple in the next section.

5.3 Stepwise Addition of Variables and More Examples

For high dimensional problems a variable selection method is imperative. The
method used in classification is an extension of the regression method. Suppose that
hinge functions hl, ... , hK_1 have been selected and residuals (rj,) computed. What
is wanted is a hinge function hK and (J} to minimize (5.2).

The stepwise procedure first finds the single variable hinge (say on xl) and
coefficients (yj) that minimize (5.2). Then it finds the two variable hinge based on
(xi,xm), m . 1, and coefficients yj) that minimize (5.2). Variables are added until the
PEGCV criterion derived in Appendix m becomes minimum. Then refitting is carried
out among all K hinge functions. The number of hinge functions fitted is determined
by test set or cross validation.

5.4 The Wave Form Example Revisited

The simulated data of section 5.2 was rerun using the stepwise procedure. The
results (averaged over the 10 repetitions) were:
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number of hinges 3.7
number of variables per hinge 9.3
training set misclassification rate (%) 10.5
test set misclassification rate (%) 17.3
Bayes rule misclassification rate (%) 13.6
cpu seconds 7.3

Note that the accuracy increases by .8% while the compute time has been cut from
40 cpu seconds to 7 cpu seconds. The decrease of .8% seems insignificant, but
another way to look at it is that the all variable procedure is 4.5% above the Bayes
rate while the stepwise procedure is 3.7% above.

5.5 High Dimensional Simulated Data

To test the stepwise entry method on a larger problem, we generated 10 class, 61
dimensional data with 1000 cases. In structure, it is an extension of the 3 class wave
form data.

The wave forn function w (x) = 10 - min (10, I x 1), has a peak at zero of height 10,
and is zero outside of [-10, 10]. Consider five functions

wk (m) = w (m - lOk - 1), k = 1,'. . 5

where m = 1, . . . , 61. These functions are centered at the points 11, 21, 31, 41, 51.
Let S1, . .., Slo consist of all subsets of size three of (1, . . . , 5), i.e. S, = (3,4,5)
S2= (2,4,5), . .. , So = (1,2,3).

The data is generated as follows: For n = 1 to 1000, the class j e 1,..., 10 is
selected with probability .1 of each choice. Three uniform random numbers ul, u2, U3
are generated. For the lowest index k, in Sj, q (Icl) is defined as ul / (ul + u2 + U3); for
the second lowest index k2 in Sj, q (k2) = u2 / (ul + u2 + U3) and for the third index
q(k3) = u3/(ul + u2 + u3). For k d Sj, q(k) = 0. Then, for m = ito 61

x (m, n) = £q(k)w (m,k) + cm,
k

where the (em) are independent unit normals.

Two areas were investigated with this data. First was the question of how accu-
rately could classification be done using linear methods only. The second was how
accuracy was effected by changing the constant in the criterion which governs the
number of variables entered into a hinge.

To explore the accuracy of linear methods, a stepwise entry of variables into a
linear classifier was employed. Let S c (0 ... , 61) be the subset of variables
already entered, with I S I = K. Then the (K + 1)st variable entered is that Xk, k d S
which minmzes
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mmpCjI J - cxIjX - Cjkx6k.).(Cm,Cj.k) j,n mES

For each K a 3000 case test set was used to estimate the classification error. The
minimum test set misclassification rate was 37.3% occurring when 12 variables were
entered.

The second question is this: the PEGCV criterion given in appendix II keeps adding
variables to a hinge as long as the PECcv value is decreasing. Using c = 1.5, the
decreases are quite small for a long string of entries. In this case, is the program using
up degrees of freedom for small gain, and could more accuracy be accomplished by
going on to the next hinge? To investigate this, we ran the program using c = 1.5,
2.0, 3.0, 6.0. Table 5.1 gives the results for the number of hinges giving the minimum
test set error.

Table 5.1
Summary of Runs on Extended Waveform Data

Value of Constant
1.5 2.0 3.0 6.0

Number of Hinges 4 4 4 4
Average No. Variables/Hinge 25.5 16.8 11.5 6.5
Training Set Error (%) 14.0 13.9 15.5 17.3
Test Set Error (%) 19.2 18.6 18.6 19.8
CPU seconds 135.4 84.0 70.1 40.4

The accuracy results are reasonably insensitive to the number of variables per hinge-
-equivalently, to the value of c between 1.5 and 6.0. The evidence of this example
argues for a value of c between 2.0 and 3.0. But in the smaller waveform example
increasing c from 1.5 to 2.0 increases the test set error to 17.7%.

The nonlinear hinge procedure improves considerably on the linear error rate.
Unfortunately, the Bayes procedure is difficult to calculate, so there is no way of tel-
ling how much better can be done.

6). Conclusions

Fitting hinge functions to data can give good predictive results in regression,
classification and noiseless function approximation. Using stepwise entry of variables
into the hinges, accurate predictors in fairly large problems can be derived in short
compute times. These preliminary results are encouraging, but there are important
questions that need further work. A short list is:
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1. Choice of a good initial starting hinge is important. The current strategy uses
M different starting hinges in M dimensions and takes the best result. Is it possible to
find a single starting hinge that will provide uniformly good results?

2. The stepwise entry method used is crude. A more refined procedure, for exam-
ple, is to enter two variables at a time and then delete from the set of entered variables
that single variable who deletion causes the least rise in RSS. Can more sophisticated
stepwise entry procedures significantly improve accuracy?

3. In stepwise entry, the variables in the first hinge sometimes appear to be
selected almost by happenstance, as the algorithm is hunting around to get some pur-
chase. Is there a way to improve the variable selection in the first hinge?

4. The hinge algorithm is not guaranteed to find the global minimum at

Ilf _ IKhk l over hi, . . . , hK. If f (x) is badly behaved, the hinge algorithm may
converge to a poor fit. Is there a way to consistently get near the global minimum?

This methodology will be explored in the binary tree context, and using a related
iterative approach, research into fitting by sums and products of ramp functions is
being carried out in collaboration with Jerome Friedman. (A ramp function is a con-
tinuous function y = r (x) formed by the intersection of a hyperplane with two planes
of constant height).
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APPENDIX I
Proofs

Proof of Theorem 2.1.

W.l.o.g. we can assume that 17=I and IIA*11= 1. For any A(°), let
S+ = (x;A() -x > 0), S_ the complement space, and define r+, F" as previously.
Using an orthogonal transformation on xo,xl, . . . , xm we can reduce I+, rIL to diago-
nal fonn D+, D_, where D+ = I - D_. By (2.1)

A*_A(l) - D+lT+.A* + D'_A*+h.

Let s = A* x, and A() -x = os+ at, E(st) = 0, E(t) =E(s2) 1. Then
(5(0))2 1- A(0) AA* 112 = (1 - a)2 + a2. For A= A -(1)

±. (A"* _A-1)) = D1T- A* + gD_lr_+&
= + +*
= J (p+ x)sdP+ f(I - x)sdP.

Take +j = IIp+le+, 11et11 = 1, and similarly for gf and note that IIt11 - 11iI/ +
g1KI 11< 111/X1 where +, X_ are the minimum eigenvalues of r+, 1.. Thus

8(1) - IvA*_s(l)I1 < iJ1v+sldP+ _ J IvsIdP

where v+ = e+ x, v- = e -x. Assume that 8(0)< 1, then a > 0. S_+ is the set s > 0,
as + act < 0, which combines into 0 < s < -(a/a)t. S+_ is the set 0 > s . -(a/a)t,
Letting y=C / a 1,

801) < I v+tj P+ I lV-tIO

Define

0(7) = sup max[|v:tIdP, V-tlIdPI,
V+v,-t s+s

then 0 (y) < 1, and 0 (y) = 0 (9?5) as y -4 0. To verify these statements, note that

IlvtldP ' IEv2Et2 = 1,

and

I Vt I dP < (p(T))1/2 (EV4 Et4)1/4.

Now max (P (S+_), P (S4+)) . P (I s I < y I t 1), and the latter is dominated by
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p (yb) + c/b4. Taking b = y115 makes this bound equal to

q(y) = p(yo) + cy' .

Now

P (A(°) x >t O) = P (A x > ( - )̂x

> P(A* x _> O) - P()A*)X < (A* - AM) XI).
The last term is bounded by

P(IA* xI c a) + C 8(0)
a4

With a=(=(0))4/5
P (A°* x . 0) P (A* . x 0O) - q

Let c* = P (A* x > 0), then

() S yO(y) [SX(c* - q(8(O)) + (1 - c* - q(8(0)) j

Noting that y < 8(O)/ 11 - (5(O))2 gives the result that

43(1) < 8(0) 0p (8(0))
where 4 (8(0)) =- ((8(0))25).

Proof of Theorem 2.2.

W.l.o.g. we can take xl,... , XM i.i.d. N (0, 1) such that (A* x) = xl. For
any AM, let s = (A()- x). Then

r+ = r = I/2

and

AM (m) = A* (m) - 2(E (xmxl;x, 2 0, s < 0) + E (xmxl; x, < 0, s > 0)).

Let II A(0)111 =0 i ^0) 12 _ A(0)(1)2, and t(°) = A(°)(1)/l A(0/ii). By simple manipula-
tions

A(1) (1) = 0 (t(0))

'AM(m) = A 0OII1 x(t(°), m . 2

where

0 (t) = 1 - 4fx2 D(-tx)f(x)dx0
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x (t) = 2 1
E I'+t2

x

f(x) is the standard normal density and 4) (x) = J f(y) dy. Therefore

t(l) = (t(°))
where

CO(t) = 2 (1+0t2)(t).

Now 0' (t) = (4/t) (1 + t2)-2, so for t > 0

4
t~d - 2t0(t) > =1 42)2 =7(+2)

In consequence, 4 (t) > t, all t > 0, and t k) -o unless t(°) = 0, so A'k) (1) -+ 1 and
A(k)(M) _4 O, m 2 1.

Proof of Theorem 3.1.

The key is a lemma which we reproduce from Banron [1991].

Lemma. If f is in the closure of the convex hull of a set G in a Hilbert space, with
1I gI1 < b, all g e G, then for every K . 1 and every c' > b2 - lif112 there is an fK in the
convex hull of K points in G such that 11 f -fK 112 < c' / K.

Denote by h+ (x), the xe function (i.e., h+(x) = x, x > 0, else = 0). Every hinge func-
tion is of the form

30 + 0 * x + h+(Ao + A * x).
The idea of the proof is to show that

f(x)-x * V f(O)-f(O)

is in the closure of the convex hull of a set of functions (h+(AO + A - x)) with such
that each function in the set has norm bounded by c (2R)2.

Begin by noting that

g(x)=f(x) -x-Vf(O) -f(O)=RlJ(eIwX -iw*x- 1)f(w)dw
= Rl (eiwX - iw . x - 1) eiO(w) f (w) I dw

= J[cos(w- x + O(w)) + w xsinO(w) - cosO(w)] If(w)l dw.

Write Q (dw) = 11 w 112 If (w) I /c, so

g(x) = c [cos(w-x+O(w))+w-xsinO(w)-cosO(w)] Q(dw)
I ~~~~~~~~~~~11w 112
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and g (x) is in the closure of the convex hull of the functions

- c[cos(w x + O(w) + w. xsinO - cosO]
S", (x) ~~~~~~11W 112

Let w = llw II a, b = 0(w), y = a * x, and

c [ cos( w 11 y + b) - Itw 11 y sin b - cos b]
(y) ~~~~~11W112

so sW(x)=4(y), IalI= l, y [-R,R], 4(0) = O, and O"(y) is continuous on
[-R, R]. Consider fitting 0 (y) at the points j /J, j = O,... , int (RJ) with a function
of the form

Int(RJ)
s (y) = I ih(y - i/J)-

0
i-1

Then ai= J[(j/J) - (j-1/J)], and ac is J times the second difference of the

sequence 4(j/J) evaluated at j = i. Thus, as J - ,
R

X aIc I |~JbI'(y)Idy.
0

A similar argument holds for approximating 0 (y) on [-R, 0], with sums of functions
of the form h+ (-y - i/J). Thus, with

+R

J 1" (y) I dy < 2cR
-R

p(y) is in the closure of the convex hull of the set of functions (h+ (y (y - )) with
IYI ' 2cR and 'r e [-R,R]. This implies that g(x) is in the closure of the convex hull
of the set of functions (hl(y(a x - t))} with Ilal = 1. Since

h+(y(a _-X_))]2dp < y29(a x- r)2dP c (2R)272,
using the lemma completes the proof
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APPENDIX II
Computational Aspects of Hinge Fitting

There are devices used in the hinge programs both to improve accuracy and
improve computing speed. We mention these to assist other researchers in building
their own hinge programs.

The basic building block is the hinge finding algorithm. In this, two devices are
noted: i) if, in the iterations, the hinge gets too close to the edge of the data, then it is
pushed back into the data. More precisely, if the number of points on one side of the
hinge (say Ax < 0) falls below a threshold value NH then A (0) is readjusted so that
#{xn; A 0x< O) = NH.

The major computational burden in the algorithm is usually in the recomputation of
S+ = (XtX)+, S_ after a new hinge has been selected. To reduce this, the sign of the
new hinge is taken so that the number of points in S+ is c int (N/2), S+ is updated only
for those points that have changed sides, and S_ set equal to S - S+.

In the refitting algorithm, the last hinge Ak used in a hinge function hk is stored.
Any refitting of hk starts from Ak and the new hinge is then stored in place of Ak. In
the refitting algorithm, the best performance has been gotten by using one iteration of
the hinge finding algorithm per hinge function per cycle. Often, there are many cycles
until the reduction in RSS levels off.

In stepwise variable selection the problem was to construct a computationally feasi-
ble procedure when dimensionality is high - say over 50 variables. The device used
is this: suppose variables xl, . . ., XL have been entered into the current hinge. What
is stored is an indicator vector id (n) which tells which side of the current hinge each

xn is on, the matrices S+ S 1, and the values of xl xm for all I c L and m > L. For
a variable xm, m > L, the indicator vector id is used to compute (xl xm)+ for all
I < L, (xm xm)+, (xm - y)+ and the cofresponding (0_ values. Then a fast update for-
mula uses these values to produce the inverses S+, S§, where the tilde indicates that
the mh variable values are included in the S+, S._ matrices.

Then hyperplanes based on (xl, . . . , x4xm) are fitted on either side of the current
hinge, the new hinge function computed along with the new residual-sum-of squares
RSSm. The variable added is that with minimum RSSm. In actuality, computing
RSSm requires only a partial update of S-1, S_1 and after m is selected, then the full
update to S;1, S_i1 is done. The final step is to run the hinge finding algorithm to con-
vergence using (xl, ... , XL,xm) and store as starting values for the next round the
final S 5S1 and id.

The stepwise forward procedure in classification adds an extra step. After the
update to S+, S_ and Z+ = (xy)+, Z_ = (xy)_, form the updated H matrix (sec 5.2), and
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solve the J x J eigenvalue problem to find the new himge and RSS value. In the L
variable case, either a J x J or L x L eigenvalue provides the new hinge. If J is large,
it will be faster to solve the sequence of L x L problems.

APPENDIX III
Cross-Validation Measures

An important question in the use of hinges is: how many hinges to use? If step-
wise entry of variables is used, another question is how many variables to enter into
the current hinge. If large test sets are available, they can be used to answer these
questions. If not, then we use cross-validation measures as our basic tool.

Number of Hinges Used in Regression

One approach is to use 10-fold cross-validation (see Breiman et. al [1984]). How-
ever, this increases the computations by a factor of ten. Another approach is to use
cross-validation measures based on the leave-one-out method. That is, the case xn is
left out of the fitting, coefficients derived and then xn used as a single case test set.
This is repeated for each case in the data and then the mean taken of the sums-of-
squares of test set errors. The resulting measure is called the cross-validated predic-
tion error, or PECV. In ordinary regression, its not difficult to show that

PECV - - r/1-h)Ni

where rn is the usual residual and hn is the nh diagonal element of the matrix

H.,t = X4 S1 xn where S-1 is the inverse of the matrix xn,nx,,n. The trace of H is
the number of variables M in the equation. If h, is replaced by its average I hn /N in

n

the PECV expression, the resulting approximation is called the generalized cross-
validation estimation of the prediction error and is given by

PEGCV = MRSS/(1 - M/N)2.
In fitting hinge functions, recall that the fit is the sum of a linear function and a func-
tion of the type h+ (A - x). That is, RSS is the minimum of

K
I(Yn Xn1* - I h+(Ak * 7-n))2. (A.3.1)
n k=_1

Denote by , Ak the minimizers of (A.3.1), and (rn) the residuals. In the neighbor-
hood of 0, Ak, say 3' = + e, Ak' = Ak + ik, (A.3.1) is approximated by

K
I(rn -* n- I 8k1 nI (k\k 1n2 0))2 (A.3.2)

where I ( ) is the indicator function.
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Define the (M + 1) (K + 1) dimensional variable 4 by

4 = (X,XI(A1-X2O), * * ,XI(AK-X>O).

Then letting a = (e, 1,.. .K), (A.3.2) has the form

£ (rn- C * 4n)2 . (A.3.3)
n

If the case numbered n' is deleted and the deleted sum-of-squares in (A.3.1) minim-
ized, the resulting (3', Ak' wil be close to 3, Ak. Therefore, the deletion and cross-
validation measures for the nonlinear (A.3.1) can be approximated by the same meas-
ures for the linearized (A.3.3). Thus, to 1st order, the PEGCv for the hinge fitting is
given by

PEGCV = MRSS/(1 - Np/N)2 (A.3.4)

where Np = (K + 1) (M + 1).

Because of the replacement of hn by h, the expression for PEGCV given by (A.3.4)
is usually biased low. The simplest way to correct tiis bias is to put

PEGCV = MRSS(l - cNp/N)2
where c e [ 1, 3]. We have used c = 1.5 throughout with fairly accurate results,
although the choice of the number of hinges selected is fairly insensitive to the choice
of c.

Number of Variables Used in a Hinge (Regression)

Suppose that some hinges have already been fitted, the current residuals are {rn}
and stepwise entry of variables into the next hinge function is being carried out to fit
-the (rn). Consider fitting with a single hinge function of Mo variables. Then from the
previous derivation leading to (A.3.4), we get

PEGCV = MRSS/(1-Np/N)2
where Np = 2 (Mo + 1).

In the stepwise selection of variables context, there is an additional reason why this
expression is biased low. In brief, the cross-validation measure used above does not
cross-validate the variable selection process (see Breiman [1990], Breiman and Spector
[1990]). Again, the estimate

PEGCv = MRSS /(1 - cNp/N)2
is used (c = 1.5 throughout), and variables are added until this expression starts to
increase.
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Number of Hinges Used in Classification
An expression can be developed for the leave-one-out miss-classification rate, but it

is complex and difficult to evaluate. For K hinges and M variables it requires the
inversion of a matrix of order K(M + 1) x K(M + 1). For 99 variables with 5 hinges,
this is a 500 x 500 matrix. If forvard stepwise entry of variables is used, the matrix is
sparse, and efficient methods may be found to invert it. In large problems a test set
provides a rapid method for determining how many hinges to use. If the sample size
is not large enough for a test set, we recommend 10-fold cross-validation.

Number of Variables Used in a Hinge (Classification)

Unless the test set is large, using it to both determine the number of hinges and the
number of variables in each hinge may be overfitting the test set. The procedure out-
lined below has proven a satisfactory alternative in the examples we have run. It
assumes that the "true misclassification rate" is decreasing as long as the "true
regression error" is decreasing.

Suppose there are currendy MO variables entered into the Kt hinge, and denote the
residuals after the (K - 1)st hinge was fitted by (rjn). The PEGCV when MO variables
are used will be computed and variables added until the PEGCV stops decreasing.

Let the coefficients (cj) and hinge function h (x)=[. x + h (A x) based on MO
variables minimize

£(rjn - Cj h(xn))2 . A.3.5
J,n

Denote Zjn =rin - c h(x,). Then z h,j= 1,... , J; and ifu= Ec z , then g 1 x,
m = 0,..., Mo. Further, tL I tm, m = 0,..., Mo where tm xm I (A - x > 0). Let
' = , + e, A' = A + 8, and cj' = cj + caj. Then the linearized version of (A.3.5) is

I (zjn - ajh (xn)- cj (£ _ X + tj*tn))2 . (A.3.6)
J,n

Define the 2 (Mo + 1) dimensional variable gn = (xn, tn), and s = (e, 8) so that A.3.6
becomes

£(zjn- jh (xn)_Cj s _ tn)2* A.3.7
i'ln

If the n' case is deleted, then the RSS is

£ (Zjn- cyjh(xn) - CjS _n)2-£(zje - cjh(x,) _CjS td)2. (A.3.8)

Because of the orthogonality relations, the 1st term is

z zj2 + I (cj h (xn) + cjs . tn)2
j,n ,n
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If the 2nd term in A.3.8 is expanded only to 1st order terms in aj, s, and we assume

l2= 1, then partial derivatives with respect to cj and s give the equations
(A) acj 11h12 + CjS(t,h) =-Zn'hn'
(B) (ajcj) ((, h) + Ss =-un, k
where un,, = ICj Zjn, and Sm1r' = (ems tm')

J

Equation (A) gives caj in terms of s. The solution for s (to first order) is as follows:
define a matrix A by

A
= (4mlh) (4m'h)

nmm = Smm - 11 h 112

and a vector vn by

(4, h) hn
v = (n 11h112

Then

s = -u A-1 vn,

and

PEcv ~ (zjn- ojnh(x1) -.h(n) ;)2 A.3.9

where the subscripts n on ajrg sn indicate that these are the values of aj, s gotten by
minimizing the RSS with the nth case deleted. Let RSS = (zj, zj). To terms of order

RSS/N, A.3.9 equals

RSS + uv! A1lvn.
n

To approximate the 2nd term, we replace un2 by u2. Noting that vnvn = A, the
n

approximation equals 2 (MO + 1) u-2. Therefore

PEGCV MRSS + 2(MO + 1) U2 /N.

Analysis of 2nd order terms shows that a slightly more accurate value is
-2 -2/(PEGCV MRSS - u +u /(1-Np/N)2

with Np = 2 (MO + 1). As previously, we correct this for downward bias by using

PEGCV = MRSS - U2 + U2/(1 - cNp/N)2
In two examples, the evidence indicates that the more selection is going on (i.e. the
higher the dimensionality) the larger c should be. In 21 dimensions, c = 1.5 was better
than c = 2. In 61 dimensions, the best value of c is between 2.0 and 3.0. But in both
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cases, the test set error changes only slightly over a wide range of c.


