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Nerve Cell Spike Train Data Analysis: a Progression of Technique

DAVID R. BRILLINGER

Collections of occurrence times of events taking place irregularly in time
provide a data type that is fairly common, but not broadly discussed. This
work is concerned with the particular circumstance of the firing times of
nerve cells. The nerve cells studied interact and forn networks.

An intention of the work is to review a progression of statistical

analysis technique. The techniques begin with description, next association
as measured by moments and correlation, then onto regression and finally
likelihood. The data is point process, but may be seen as that of regres-
sion and of multivariate analysis, in standard parlance. A simple descrip-
tion of data collected simultaneously for one or more cells is provided.
*
David R. Brillinger is Professor of Statistics at the University of California,

Berkeley. This article fonned the R. A. Fisher Lecture given at Atlanta, Geor-

gia in August 1991. The research was partially supported by the National Sci-

ence Foundaton Grant DMS-8900613. The computations were carried out at

the Statistical Computing Facility, University of California, Berkeley, Director

Leo Breiman. The figures were prepared employing S, see Becker, Chambers

and Wilks (1988). The author thanks the many individuals who gave him help

and advice with the computing and with the presentation of the material. The

author particularly thanks Professor J. P. Segundo, Department of Anatomy &

Cell Biology, UCLA who for almost 20 years has helped him with the intrica-

cies of the pertinent neurophysiology.



KEY WORDS: Association; Binary data; Coherence; Cross-intensity func-
tion; Descriptive statistics; Impulse response; Likelihood; Nerve cell; Net-
work; Nonlinear system; Partial Coherence; Point process; Probit analysis;
Semiparametric-model; Threshold phenomenon

1. INTRODUCTION

"... the purpose of inductive reasoning, based on empirical observations, is
to improve our understanding of the systems from which these observa-
tions are drawn." Sir R. A. Fisher (1956)

The above statement sets down the spirit of applied statistics. The
related goal of the present work is the better understanding of the nerve
cell system and of the construction of quantitative models of the neuronal
firing phenomenon. On the substantive side, the author's collaborator J. P.

Segundo has remarked that "the biological goal is understanding in strictly
biological terms". This may be viewed as an ultimate goal. The models
will change, but the biology will remain.

R. A. Fisher was central to the historical development of the field of
statistics. In particular he was central to the progression of data analysis
techniques from description and simple measures of association past the
tools of association and regression analysis and onto likelihood analysis.
A principal goal of this work is to illustrate the same progression for a
data type of some contemporary interest - point process data - and to con-
tinue on to nonparametric and semiparametric likelihood analysis.

The work is concerned with a particular biological system, that of
small networks of neurons communicating with each other and responding
to stimuli. The system studied is of basic interest on both scientific and



theoretical grounds. Scientific interest follows from a concem as to how
the nervous system works. Theoretical interest results in part from the
system's strong nonlinearity.

- Data from two different living preparations are studied. First dis-
cussed are some data for the cat. These were collected by A. E. P. Villa at

Lausanne, Switzerland. In his experiments, cats were subjected to sound
stimuli and data for 8 nerve cells recorded simultaneously. The experi-
ments are described in Villa (1988, 1990). Also studied are data of
Aplysia californica (the sea hare) collected by J. P. Segundo at the Univer-
sity of California, Los Angeles. This is simultaneous data for networks of
two and three identified nerve cells, in particular the cells L2, L3, L5, L10
of Aplysia. The experiments in which those data were collected are
described in detail in Bryant, Ruiz Marcos and Segundo (1973) and in
Bryant and Segundo (1976). Aplysia is often studied by neurophysiolo-
gists because the nerve cells are large and accessible and a number are
repeatedly identifiable.

As is the pleasant feature of most time series analyses, a broad variety
figures are presented. These figures are central to the analysis.

The layout of the paper is the following: What is a nerve cell? What
are point process data? Association - second-order moments; Regression -

a linear model; Likelihood - conceptual modelling; Networks - 3 cell, 8
cell; Discussion and summary.

Important aspects of nerve cell firing that are not addressed in this
present work include spatial effects and intracellular data collection and
analysis.

2. WHAT IS A NERVE CELL?
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Neurons (or nerve cells) are basic building blocks of an animal's cen-

tral communication system. They are input-output systems of a particular
structure having important functions. It is pertinent to discuss both struc-
ture and function because in biology often the two seem to be directly
related. The functions include the accumulation, processing and transmis-
sion of information. A nerve cell receives messages through its dendrites,
root like strings susceptible to chemical stimulus. The messages propagate
to the cell body (or soma.) Out of the soma grows the axon, with many
branches, ending at synapses. The synapses are the junctions of neural
networks. Figure 1, taken from Cajal (1894), is a drawing of a collection
of neighboring neurons. The arrows are meant to indicate the flow of
information. The cell bodies are the five blobs, 4 of which are labelled A,
B, C, D. The axons run vertically downward from the bodies, except for
E which is an axon entering from a distance. The dendrites include the
three tree-like structures at the top susceptible to influence from E.

The dendrites absorb input from other neurons through chemical
processes that change ionic conductances and thereby induce current flows.
The input is thence converted to a membrane potential throughout the
soma. At the axon hillock (or trigger zone) the membrane potential occa-

sionally reaches a threshold and the neuron fires, that is generates an
action potential (or spike). This action potential propagates along the
axon, to synapses, at which point a chemical transmitter is released to in
turn affect other neurons. The action potentials are of near identical size
and shape, see the spikes in Figure 2. This figure provides measured vol-
tage fluctuations within cell R2 of Aplysia, see Bryant and Segundo
(1976). It may be argued that, because of reduced sensitivity to noise, the
firing times are the crucial variates in communication amongst neurons.



Some discussion of the reduction to point processes is given in Segundo et
al. (1991).

Synaptic connections may be excitatory or inhibitory, that is depend-
ing on the type of connection, the firing of one neuron may make a second
neuron more likely or less likely to fire. Neurons also may fire spontane-
ously in the case of no outside stimulus. Further there is the phenomenon
of refractoriness wherein after a neuron has fired, the chance of it firing
again is reduced (perhaps to zero) for a time period.

Questions of interest include: Can an analytic model that incorporates
the basic features of neuron behavior be developed and fit? and Given the
firing times of a network of neurons, can one infer their causal connec-
tions?

General references to pertinent neurophysiological background
include: Koch and Segev (1989), Segundo (1968, 1984, 1986), Segundo et
al. (1991) and Stein (1972).

3. WHAT ARE POINT PROCESS DATA?

A stretch of point process data is a set of ordered numbers,

I - '2 < ..< 'rK
to be thought of as the times of events that occured in some time interval,
say (0,T]. Usual examples are the times of telephone calls or the times of
emission of particles by some radioactive material. A naive descriptive
statistic derived from such data is the observed rate, given by KIT here.
It has dimensions of counts per unit time and is useful in elementary com-
parisons of point process behavior. For the data studied in this paspike
per, the rates range from about 1 per second to about 20 per second. In
the case of Figure 2 there were 7 spikes in about 14 seconds.
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Descriptive statistics conducive to insight are provided by the plots in
Figure 3. These plots are based on data collected in experiments studying
the auditory system of the cat. Microelectrodes were inserted in a cat's
brain at a location related to hearing. The plots refer to firing times for a
single particular nerve cell, cell 7, that the probe happened upon. In the
case of the lefthand plot there is no applied stimulus. To describe the plot
suppose that the observation period is broken up into L segments of length
1000 milliseconds. Let tkl refer to the time elapsed since the start of the

1-th segment, of the k-th spike of that segment. The points plotted are
now {(Tkj, k), k = 1, .. .,K1} for I = l,...L. No dramatic structure is

apparent in the lefthand panel. The second panel of Figure 3 refers to the
same experiment but now a noise stimulus was introduced into the ears of
the cat every 1000 milliseconds. The points are plotted as before with X
refering to the time elapsed since each presentation of the stimulus. What
this picture shows is that this neuron fires a short time after the application
of the stimulus. Then there is a time period during which the neuron is
unlikely to fire and perhaps then a rebound period when the cell is more
likely to fire. Plots, such as those of Figure 3, are known as rastor plots.

A second set of experimental data of some interest, comes from
experiments with Aplysia, the sea hare. Suppose that firing times are
available for two related neurons, in the analysis to be presented neurons
L3 and L10 of Aplysia. Let {aj } represent the firing times of L10 and

(tk I those of L3. In the case of these neurons it "has been demonstrated
almost beyond reasonable doubt" that L10 drives L3, see Bryant, Ruiz
Marcos and Segundo (1973). Figure 4 is a plot of the points

[((Tk-CSj;), k = 1,2,...,K1 } for j = 1,2,3 * This plot is consistent with
the idea that the firing of L10 tends to inhibit the firing of L3. There is an



mdication of a brief acceleration or rebound at a lag of about .5 second.
The bulk of the points appear to be randomly distributed.

In order to progress with the analysis, it is convenient to introduce
some probability structure. A stochastic point process is a random process
whose realizations are collections of points {tk ), ordered by rk . tk+l on

the interval (-oo,oo). Such a process can be described by giving the joint
distributions of all the N(!1),...N,N(1) where is a Borel set and N ) is
the number of points falling in for j=l,...I and J = 1,2. The pro-

cess is said to be stationary when the joint distributions are unaffected by
simple time translation, I -* I + t. An alternate way to describe a point
process is via the joint distributions of the intervals Yk = tk+l-'tk between

successive points. In the stationary case, the rate of the process is given
by E(N(I))III I where IIl is the length of the interval.

It is worth remarking that there are many similarities between the con-
cepts and techniques of time series analysis and those of point process
analysis, see Brillinger (1978) for some discussion. The classic reference
to the analysis of point process data is Cox and Lewis (1966).

4. ASSOCIATION - SECOND ORDER MOMENTS

In the case of a bivariate stochastic point process (M,N) with com-
ponents M (a;j } and N - tk } one can define the cross-intensity func-
tion

lim Prob(N point in(u+t,u+t+h] I M point at t)Ih
h -o0

This will be a function of lag u alone in the stationary case. This parame-
ter may be estimated by

#{u+G < tk < u+a+h (4.1)
# [GJ}h(41



for small h > 0. Figure 5 gives the estimate for the data of Figure 4. It
is essentially the histogram of the (tk -- } and comes from counting the

points in vertical strips of Figure 4. In fact because of simnpler sampling
properties it is--often more convenient to plot the square root of the esti-
mate, see Brillinger (1976), and this was done here. The horizontal
dashed lines provide ±2 standard error limits set about 0. The diagram
shows a period initial inhibition after L1O's firing followed by a rebound
at about .3 second. In some sense Figure 5 is not adding new information
to that of Figure 4, but it does provide a specific way with which to inter-
pret and assess the phenomena occurring. This cross-intensity function
provides a precise measure of second-order association in the stationary
case.

If two processes are associated, one can anticipate that functions of
their realizations will be correlated. A particular function to study,
because of its simplifying characteristics, is the empirical Fourier
transform. Consider the Fourier transforms of two stretches of point pro-
cess data, specifically

e-, e-i k

O<Gj <T O<tk T
for 0 < X<oo. The quantity

RMN(x) = lim corr ( e i ,Xe i
T--~oc

is called the coherency at frequency X. Its modulus-squared, IRMN 129 is

called the coherence. The coherence lies between 0 and 1 and measures
the extent of linear time invariant association between two processes, see
Brillinger, Bryant and Segundo (1976).

Figure 6 provides an estimate of the coherence for the L10-L3 data
above. The estimate is seen to be highest for frequencies X/2i less that 1



cycle/second. The dashed line in the figure gives the (approximate) 95%
upper point of the null distribution of the estimate. In view of the essen-
tial nonlinear relationship of the data being studied, the magnitude here of
the coherence estimate at the low frequencies is surprising.

5. REGRESSION - A LINEAR MODEL

Consider next a model

lim Prob (N point in (t,t+h ] I M Ih =,+ a(t-ac) (5.1)
h -.0 J

This model is linear and time invariant. The function a(.) is meant to
represent the various chemical, electrical, spatial and temporal delay
processes involved in neuron M's firing influencing the firing of neuron N.
For example were the t's given by 'j = aj + Y1, with the Y's indepen-

dent and of density function a(.), then the result (5.1) would hold with

g = 0, see Brillinger (1974). The model (5.1) may be fit by cross-spectral
analysis, ibid. The resulting estimate of a(.) is given in Figure 7 for the
Aplysia data addressed in the preceding section. The estimate is seen to
mimic that of Figure 5. The distinction is that, as is the case in ordinary
regression analysis one is nearer to a system invariant. This analysis for
this particular data set is not dramatically enlightening, but interesting
examples may be found in Brillinger, Bryant and Segundo (1976). The
next section presents a more satisfying analysis of the present data in any
case.

6. LIKELIHOOD - CONCEPTUAL MODELLING

A model, with a long history in neurophysiology, involves a neuron firing
when the membrane potential at its trigger zone exceeds a threshold. The
threshold is a time varying quantity that is reset to a high level on the



- 10-

neuron's firing and then subject to slow decay (although the decay is not

always monotonic). The effect of the reset is to prevent firing recurring
immediately and hence to incorporate the phenomenon of refractoriness.

The model may be described in formal terms as follows. Let M = {a)

refer to the times at which a first (or input) neuron fires. Given the func-

tion a (.), consider the following time varying state variable

U(t) = I a(t-cs;) (6.1)
aj <t

The quantity U (t) is meant to represent the membrane potential at time t

at the trigger zone of the neuron whose firing is of interest. Here a (.) is
referred to as a summation function. As in the previous section a(.) is
meant to represent the various processes involved in M's firing influencing
N's firing. The character of the function affects whether the firing of the

neuron M increases (excites) or decreases (inhibits) the chance of the neu-
ron N firing. The threshold decay will be represented by a function b (.).

Figure 8 is a layout of the situation. The bottom two panels give
hypothetical a (.) and b (.) for the case of an inhibitory synapse. (Shortly
empirical estimates of a (.) and b (.) wil be provided.) The vertical aster-
isks of the top plot are the firing times of the input neuron. The hook-

shaped curves are the translates of the function b(.), with a new translate

introduced with each firing of the principal neuron. If y, denotes the time

elapsed since last firing, then the threshold curve may be represented by
0(t) = b(ye). The lower continuous curve of the figure is U(t). One is

concemed with U(t) crossing 0(t).

Consideration tums to developing a stochastic version of this model
and of a corresponding likelihood function to employ in analysing avail-

able data. Suppose first that the point processes are sinplified to discrete
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time (t = 0,±12,...) and to 0-1 valued series. That is, a sampling inter-

val of small length is selected such that only 0 or 1 points occur within
each interval, and one defines M, = 1 if there is a point in the unit interval

starting at t and Mt = 0 if there is no point, for t = 0,l1,+2,...

Corresponding discrete versions of N and a (.) are similarly defined. Now

U(t) = F, a (t -s;) -~ 7 at-uMu (6.2)
and it is convenient to represent the effect of the threshold by

Y,
et = Yd bvNt-v (6.3)

v=1
with yt the time elapsed since the last N -firing.

Suppose that there is noise, with c.d.f. P (.), superposed on the thres-
hold. This makes the model stochastic. The conditional probability of the
neuron firing given the past is taken to be

P =Prob (N = 1 the past) =P(N) (6.4)
where

Wt = J,auMtu - Ot
The loglikelihood is

z [Ntlog Pt + (l-Nt)log (I-Pt)] (6.5)
Estimates of the a's and b 's may now be determined by the maximization
of (6.5), employing iteratively reweighted least squares algorithms such as
those described in McCullagh and Nelder (1989).

Figure 9 presents the results of these computations taking P (.) to be
D(.), the standard normal cumulative (as in probit analysis) and the sam-

pling interval to be .075 seconds. The estimated summation function adu is

seen to swing negative directly. This corresponds to M (or LlO)'s firing
inhibiting the firing of N (or L3). This effect of L10 appears to last for
approximately a second. There is no apparent rebound effect present. The
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estimate of the decay function bu is 00 for the first five coefficients

reflecting the fact that no output spikes occurred closer than .49 seconds
for this particular data set. The standard errors are estimated via the usual
formulas of probit analysis. For convenience of display in the case of au
the errors are graphed about the horizontal axis.

The preceding analysis involved the assumption that the perturbing
noise values had a standard normal distribution. Suppose however that the
noise comes from an unknown distribution and that it is desired to esti-
mate that distribution. It is convenient to write that distribution as

P (v) = I(gy()) (6.6)
with the consequence that g (.) will be linear if the noise is in fact normal.

The estimation procedure employed in this case involves computations
carried out recursively. To begin set g (IV) = iy and g '(,V) = 1.

Step 1. Given N,, g (.) '(.) obtain estimates of the remaining param-

eters of the model, and in particular 4, by ordinary maximum likelihood.

Step 2. Given N1, 'y1 obtain g(.), g'(.) to maximize the locally
weighted loglikelihood

, w (ji-)[N1 log P1 + (l-N,)log (1-PF)] (6.7)
with w (.) a weight function, concentrated near 0, and with g (v) = a + f¾'
assumed (locally) linear. (This assumption of linearity means, that except
for the additional weight term, the computations are usual probit ones.)
The estimate of g (n) is now taken to be Cy,+Pxv and of the derivative

taken to be 5

Step 3. Return to step 1 until convergence is achieved.

The function estimation procedure of step 2 here may be found, at
various stages of development, in Gilchrist (1967), Cleveland and Kleiner
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(1975), Brillinger (1977), Cleveland (1979), Hastie and Tibshirani (1984),
Tibshirani and Hastie (1987), Staniswalis (1989). An early version of

GAIM, see Almudevar and Tibshirani (1990), gave the author confidence

that, this procedure was feasible for the present situation. The weight
function of (6.7) was taken to be the tricube, as in Cleveland and Devim
(1988).

Figures 10 and 11 present the results of these computations. The
dashed lines give estimated ±2 standard error limits. In the case of g(.)
they are placed about the level 1.0. The derivative estimate g'(.) is seen

to not deviate much from 1.0 in the region of apparent probability mass.

The computations are seen to support an assumption of linearity of g (.)
and hence of normality. This is further reflected in the similarity of Fig-
ures 9 and 11 giving the respective estimates of au and bu. The approxi-

mate standard errors were deternined via the jackknife, see Mosteller and

Tukey (1977). In the present case replicates were based on 99% of the
data and 20 replicates were formed.

Consideration next turns to an alternate type of experiment with

Aplysia. There is a different stimulus and a correspondingly altered state

variable. In the experiment, noise current is fed directly into the neuron
L5 and once again evoked spike times recorded. Some input and

corresponding output are provided in Figure 12. It is to be mentioned that

numerous neurophysiological experiments have suggested that neuronal
firing depends on more than a single state variable such as the membrane
potential's crossing a threshold, see Segundo (1968). For example, the
speed of the crossing appears to be pertient as well. The preceding thres-
hold model suggests consideration of the state variable

U(t)~ at-uXu (6.8)
U:5
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with X the input noise and iVt the corresponding linear predictor

yt = Ut - d - eyt - f t- g (6.9)
(In these computations it was convenient to take the threshold decay func-
tion to be cubic in order to avoid an excess of computations.) Consider
also a second state variable

vt =cuxt-u (6.10)
Suppose further that

Prob {N, = 1 1 the past) = 0(4,t))(vd) (6.11)
as an extension of (6.4). Figure 13 gives the results of fitting this model.
The fitting here is carried out iteratively, first assuming the coeficients of

'yt given and estimating those of v,, then assuming the coeficients of v,

given and estimating those of W. The estimation procedures in these

cases are both probit. The second panel gives the estimate of cU with 2

standard error limits set about 0. There is evidence for the presence of a
second state variable, although is does not have the appearance of the
derivative of the first. The estimate of au given in the first panel shows

how the noise current is exciting the neuron.

The problem of assessing goodness of fit has not yet been commented
on. Figure 14 provides an infonnal procedure for the model (6.11). The
top panel is a plot of (6.11). The bottom panel gives the empirical firing
probability as a function of the first and second predictors. To obtain this
one bins the values of the predictors and computes the corresponding pro-
portion of firing occurrences. The agreement does seem reasonable. One
could proceed to formal goodness of fit tests based on the quantities just
graphed such as chi-squared statistic, but this seems premature since the
temporal dependency leaves the sampling properties in doubt.
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Brillinger and Segundo (1979) fit the threshold model to some

Aplysia data by maximum likelihood. Brillinger (1988b) provides a

number of references to the threshold modelling of nerve cells' action and

presents further empirical examples.

7. NETWORKS - 3 CELL

Suppose one has 3 neurons, M, N, 0, which may be influencing each
other. In the experiment whose data analysis is about to be presented, (see

Brillinger, Bryant and Segundo (1976)), it was understood that neuron M

was driving both neurons N and 0, but it was not known if there were

direct connections from N to 0 or vice versa. The scheme of the situa-

tion is illustrated in Figure 15. One tool for addressing questions of con-

nectivity is partial coherence. The partial coherency at frequency X of

point processes M and N given the point process 0, is defined to be

R RNO -RNMRMO (7.1)

+(1 - IRNM I )(1 - IRoM 1 )

Here RNO denotes a coherency of two stationary point processes as before.

Dependence on x has been surpressed to simplify the display (7.1). The

partial coherency may be interpreted via

RNOIM= lim corr (d-T- , dT 'idT!}
with

dT(k) = e~-i Xj
for example, as before. Here a, ,B are the regression coefficients of d7 on

dT and of djT on dT respectively. The intent of their inclusion is to

remove the (linear) effects of the Fourier transforn of M from those of N

and 0.
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Figure 16 provides the results of such computations for data on a net-
work of cells 0 = L2, N = L3, M = L 10 of Aplysia. The particular
experiments are discussed in Brillinger, Bryant and Segundo (1976). The
effect of the analysis is quite dramatic. From the fourth panel one can
infer that the apparent association of cells N and 0, as shown in the first
panel, is due to their common association with cell M.

This present problem can also be addressed from a likelihood
approach by employing a threshold model. Suppose the firing times of
cell M are denoted by {(j ) and those of cell 0 by (pl). Consider the

membrane potential of cell N at time t to be given by

U(t)=m(t -a1)+Xo(t -PI) (7.2)
j X

and suppose

Prob{N = I the past) = I(Ut - d -eye -f 2 _ g) (7.3)
yt being the elapsed time since N last fired. Here m (.) and o (.) are sum-

mation functions associated with the effects of neurons M and 0. One
wonders if the function o (.) 0.

Figure 17 gives the maximum likelihood estimates of mu, ouand the

decay function. The 2 standard error limits for the cell 0 = L2, set about
0, suggest an insignificant effect. This is consistent with the results of the
coherence analysis. One could do a similar analysis relating 0 to M and
N. Here the result is the same.

A variety of references relating to network analysis are given in Bril-
linger (1988a) as are further examples. Tick (1963) is an early reference
to partial coherence analysis. Gersch (1972) discusses empirical partial
coherence analysis as a tool to study causality in electrophysiological sig-
nal analysis. More examples are provided in Rosenberg et al. (1989).
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8. NETWORKS - 8 CELL

In the next analyses to be presented, albethey preliminary as this is
work in progress, data were collected in an attempt to understand the audi-
tory pathways of the cat. Microelectrodes were inserted with location
tuned to an apparent response to sound and to anatomical knowledge.
Responding neurons were located.

The animal was stimulated by white noise bursts, of duration 200
msec., at the rate of 1 per second, through speakers inserted in the ears.
For the 8 cells located, Figure 18 provides rastor displays of firing times
for lags up to 1000 milliseconds following the stimulus application. The
stimulus was applied 364 times. A variety of behaviors show themselves
ranging from the strong association of cells 1, 2 and 6, to the weak associ-
ation of cell 8. One sees excitation, inhibition and rebounding.

This work has defined various measures of association of point
processes. Figures 19-21 provide them for a selected three of the 28 pos-
sible cell pairs.. In Figure 19, concerning cells 2 and 7, the cross-intensity
and coherence evidence association. Not much is present however when
the stimulus is "removed" by partial coherence analysis. This inference is
confirmed by the directly measured coherence between the two cells in the
case of no applied experimental noise stimulus. Figure 20 provides the
same for cells 2 and 6. Again the cross-intensity and coherence estimates
evidence the presence of association. The partial coherence in this case
however does suggest that the cells are related beyond the dependence
introduced by the common noise stimulus. This inference is again
confirmed by the coherence for the case of no experimental stimulus. Fig-
ure 21, based on cells 2 and 8, suggests there is not much connection, if
any for these cells. This is consistent with the apparent weak dependence
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of cell 8 on the stimulus, as seen in Figure 18.

9. DISCUSSION AND SUMMARY

The paper-has sought to follow the historical statistical progression of

description, association, regression and then likelihood analysis.The work

then continues to the contemporary topics of semiparametric maximum
likelihood and causal structure recognition. The data is of a particular type,
point process, and is taken from the field of neurophysiology. Amongst

other things the paper has illustrated that a calculus is available for point

process data analysis and that the calculus allows the computation of stan-

dard errors to provide uncertainty measures.

It has been seen that linear techniques, specifically coherence analysis,

can elucidate highly nonlinear situations. It has also been seen that sto-

chastic models can be set down that incorporate basic features of neuron

firing and network connections.

Work lying ahead includes: inferring causal connections for the 8 cell

cat network (taking note of the issues and techniques mentioned in Wold

(1956) for example), maximum likelihood analysis of the cat data, model-

ling at the ionic level and, as is topical in contemporary statistical work,

improving estimates by borrowing strength, eg. via random effects models.
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Captions

Figure 1. Drawing of Cajal (1894) illustrating a network of 5 cells. The
arrows suggest that the input arrives along the fibre E and progresses from
it both directly and indirectly to the cells A, B, C, D.

Figure 2. Fluctuating intracellular voltage of the cell R2 of Aplysia show-
ing the occurrence of point process data. The amplitudes of the spikes are
approximately 100 millivolts. Figure adapted from Bryant and Segundo
(1976).

Figure 3. Rastor plots providing the times at which nerve cell 7 fires in
successive time segments of length 1 second. In the lefthand panel there
was no experimental stimulus. In the case of the second panel, a noise
stimulus was applied at the beginning of each time segment.

Figure 4. Times of neuron L3's firings relative to those of L10.

Figure 5. The square root of the cross-intensity statistic (4.1). The dashed
lines give upper and lower two standard error limits placed about 0 level.

Figure 6. An estimate of the coherence of neurons L10 and L3 obtained in
the fashion described in Brillinger, Bryant and Segundo (1976).

Figure 7. An estimate of the function a(.) of (5.1) obtained in the fashion
described in Brillinger, Bryant and Segundo (1976).

Figure 8. The lower curve of the top panel gives U(t) of (6.1) with a(.)
given by the lower left function. The hook-shaped functions of the top
panel are translates of the function of the lower right panel initiated each
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time the curve U (t) is crossed.

Figure 9. Estimates of the functions a. and b. of (6.2) and (6.3). The

dashed lines provide two standard error limits.

Figure 10. Estimates of the functions g(.) and P(.) of (6.6) and of the
derivative of g (.).

Figure 1 1. Estimates of au and bu for the case of unknown P (.)

Figure 12. The neuron L5 of Aplysia is stimulated directly by the Gaus-
sian noise of the lower panel and fires as in the upper panel.

Figure 13. Estimates of au and cU of (6.8) and (6.10) and of the cubic

decay function of (6.9).

Figure 14. The top panel gives the right-hand side of (6.11). The bottom
panel provides the observed proportion of times the neuron fires as a func-
tion of the first and second linear predictor values.

Figure 15. Neuron M influences neurons N and 0, but one wonders if
there is a direct connection from N to 0 or vice versa.

Figure 16. The first three panels provide estimates of the indicated coher-
ences. The final panel is an estimate of the partial coherence of N and 0
"removing" the effects of the input M. The dashed line gives the upper
95% point of the null distribution.

Figure 17. Estimates of m (.) and o (.) of (7.2) and of the cubic decay
function of (7.3).
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Figure 18. Rastor plots, as in Figure 3, of the firings of 8 cells following
periodic application of a noise stimulus. The stimulus is applied every

1000 milliseconds.

Figure 19. Statistics to investigate the association of cells 2 and 7.

Figure 20. Statistics to investigate the association of cells 2 and 6.

Figure 21. Statistics to investigate the association of cells 2 and 8.
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