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Abstract

Within ray theory, traveltimes sample a finite set of points on the core-mantle

boundary (CMB). Only if the CMB is smooth can we estimate its shape from travel-

times. The assumed degree of smoothness affects the uncertainty of the estimate. We

find lower bounds on the uncertainty of the CMB shape by assuming (i) traveltime

errors are independent and identically distributed (lid) with zero mean and known

variance, (ii) linearization does not compromise accuracy, (iii) event locations are ex-

act, (iv) radial velocity follows the IASP91 model, and (v) the only three-dimensional

structure is a low-degree spherical harmonic perturbation to the CMB. We compute

1



confidence intervals and simultaneous confidence envelopes for the CMB with a new

technique based on reproducing kernels. Simultaneous confidence envelopes have a

specified probability of containing the entire CMB, rather than just one point on the

CMB, and thus allow inferences about the CMB shape. Suppose the standard devia-

tion of traveltime errors is 0.25sec (it is probably closer to 1.Osec), and that the CMB

has a degree 4 spherical harmonic expansion. Then the width of a 95% confidence

envelope around the least-squares estimate of the CMB using 776,958 PKP phases

and 84,947 PcP phases ranges from 0.32km under Europe and Tonga to a maximum

of 1.06km under the mid-Pacific, with a median width of 0.58km. If the CMB has

structure up to degree 20, the envelope width ranges from 8.14km to 245.0km. It is

wider than 40.5km for 50% of the CMB, and wider than 67.3km over 25% of the CMB.

We construct a degree 20 CMB model extending almost 93km into the lower mantle

beneath the mid-Pacific that changes traveltimes by only O.lsec rms.

Introduction.

In recent years there have been many depictions of three-dimensional structure in Earth's

deep interior using ISC traveltime data [Bulletin of the International Seismological Centre,

1967-1989] , for example, Clayton and Comer [1983], Creager and Jordan [1986], Doornbos

and Hilton [1989], Dziewonski and Woodhouse [1987], Dziewonski [1984], Dziewonski et al.

[1977], Gudmundsson [1989], Inoue et al. [1990], Morelli and Dziewonski [1987], Pulliam

et al. [1992], and Sengupta and Toksoz [1976]. These models include three-dimensional

structure in the mantle, topography of the core-mantle boundary (CMB) and anisotropy of

the inner core.

We present a method to find optimistic uncertainty estimates as a function of position
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in linear and linearized inverse problems, subject to smoothness constraints on the unknown

model. We apply the method to an idealized problem to find uncertainties in the CMB

from ISC data. Smoothness constraints are essential in ray-theoretic tomography, since rays

sample zero-volume paths in the medium and thus the data have no information about

off-raypath structure. (Stark and Nikolayev [1992] study the sensitivity of traveltimes to

off-raypath structure using the Born approximation.) However, if velocity varies smoothly,

velocity near a raypath resembles velocity on the raypath, and we can estimate more of the

structure. Current methods smooth by regularizing and by parametrizing velocity structure

with truncated spherical harmonic expansions or pixels with finite dimensions. Spatial un-

certainty estimates are quite sensitive to the assumed degree of smoothness, since only the

smoothness controls off-raypath structure.

In our idealization,

Al Seismic velocity varies only with depth, except that the CMB may have a three-dimensional

perturbation

A2 The raypaths given by the IASP91 model [Kennett and Engdahl, 1991] are accurate

A3 The CMB is smooth in a sense made precise below

A4 Source relocations in the IASP91 model are perfect

A5 Traveltimes are accurate to rms a sec.

Complications including more general three-dimensional structure, uncertainties in the

IASP91 model, nonlinearity, lack of compelling information about the smoothness of the

CMB, and inaccuracies in source locations make the uncertainty in the real tomographic
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reconstruction problem larger. Thus we find a lower bound on the difficulty finding the

CMB from traveltime data. The theory holds for three-dimensional reference models as

well, but the cost of ray tracing is prohibitive at present.

Consider the following measures of uncertainty of the CMB as a function of angular

position r:

Ul The size of a bump on the CMB at ri whose effect on the data is indistinguishable from

noise

U2 The largest difference at ri between two CMB models that produce nearly the same data

U3 The largest difference at r' between two CMB models that both fit the data within the

noise level

U4 The width of a confidence interval for a least-squares estimate of the CMB at ri

U5 The width of a confidence interval for the best possible estimate of the CMB at r'

U6 The width at r' of a simultaneous confidence envelope around the least-squares estimate

of the entire CMB.

These measures of uncertainty have the same spatial pattern as a function of ri; they are

equal up to a constant scaling factor. Donoho [1989] establishes the equivalence of measures

U2 (the "modulus of continuity") and U5 quite generally for linear inverse problems with

Gaussian noise. The other equivalences follow from additional linear structure in the idealized

problem A1-A5. The easiest measure to compute is Ul, which we show below can be found

simultaneously for all r, by constructing a reproducing kernel [Aronszajn, 1950] for the space

of CMB models.
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The most relevant measure is U6, since all current CMB estimates are based on least-

squares, and simultaneous confidence envelopes tell us about the shape of the CMB. The

question of "continents on the core" [Creager and Jordan, 1986] has to do with the presence

and magnitude of "bumps" on the CMB. If we naively construct a confidence interval for

each point on the CMB, the confidence level of the set of intervals taken together is not as

large as the confidence level of the individual confidence intervals. The difference between

U4 and U6 is the number of points we wish to estimate:

Suppose we wish to compare the height of the CMB at 10 points. If the estimates of

CMB topography at these points were independent, and we had a 95% confidence interval

for each of the points, the simultaneous confidence level for the set of intervals would be

0.9510 < 0.6. To have simultaneous 95% confidence, we need to lengthen the individual

intervals so that their confidence level is 0.951/10 t 0.995. The individual confidence level

required to maintain a fixed simultaneous confidence level goes up as the number of intervals

goes up. If estimates of CMB topography were independent at each point, we would need

infinitely wide confidence intervals at each point to be able to say with 95% confidence that

the CMB was within all the intervals.

However, if the CMB is smooth, least-squares estimates at different points are not in-

dependent, and it is possible to find a nontrivial "simultaneous confidence envelope" for

the entire CMB-a pair of functions such that our confidence that the CMB lies between

those functions is 95%. The assumed smoothness permits nontrivial confidence intervals at

every point on the CMB without their simultaneous coverage probability going to zero. A

simultaneous confidence envelope for the whole CMB allows us to test hypotheses such as

the existence of continents on the core, because we can with confidence delineate the shape
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of the CMB. Normalization constants for simultaneous confidence envelopes as well as the

other measures of uncertainty are tabulated below.

Using the reproducing kernel approach we explore the dependence of the uncertainty on

the assumed smoothness and clarify the dependence of the uncertainty on the source-receiver

geometry. The method can be applied to mantle tomography (Pulliam and Stark, in prep.),

exploration tomography, and other linear or linearized inverse problems with smoothness

constraints. Extreme smoothness is necessary for an infinite-dimensional space to possess a

reproducing kernel (equivalently, for the point-evaluator to be a bounded linear functional).

We do not know any reason the CMB should be smooth, but we ignore that issue and

proceed.

The Model Problem.

Mathematical Model for the Observations. We observe an n-vector of traveltime data r

related to the unknown velocity model vo via a vector of nonlinear functionals F, with

additive noise c:

Tr Fvo+E, (1)

where

T,E E R , (2)

F: V Rn, (3)

vo E V, (4)

and V is a linear vector space of Earth models. We assume (1) can be linearized about a

reference model v1 (e.g., IASP91 ):

T =Fvl+G(vo-vi)+U+E, (5)

6



where G : X -- R' is a vector of linear functionals depending on the reference model vl, X

is a Hilbert space of perturbations, and o is the vector of linearization errors depending on

vo and vl. Define

XO vo-vl (6)

and

r= - Fv1. (7)

The linearized data relations are

6iGxo+o+E. (8)

The constraint that the CMB is smooth is

xo E C, (9)

where the "constraint set" C is a convex subset of the model space X. WVe assume for

simplicity (the theory applies more generally) that the perturbation xo is just a perturbation

to the CMB, and write xo(A) as a function on the unit sphere {1 : }frj=1). Let X be the

space of square-integrable CMB models:

X={X(r) J Ix( )I9 <o} (10)

Then the spherical harmonics {y1m}'0 m comprise a basis for X. The norms on the

model space and data space will be denoted We assume a bound on the two-norm of

the observational errors:

11E112 < X (11)
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The choice of X is discussed in detail below. It depends on the statistics of the traveltime

errors and on which measure U1-U6 we choose. We neglect the linearization errors, which

make the uncertainty larger, so our results remain optimistic.

Uncertainties for Linear Functionals.

Suppose we wish to know how well a linear functional L : X -- R (such as the point-evaluator

Lx = x(s.)) can be determined from data 6 = Gxo + e, the constraint xo E C, where C is

convex, and the knowledge that IJE I < X. If two models x and y both satisfy the data and

lie in C, how different can Lx and Ly be? I.e., what is

U(X, L, G, C, 6) sup{lLx - Lyl : IGx -611 < X, I1Gy -611 < x and x, y E C}? (12)

(This is uncertainty measure U3.) To determine the uncertainty (12) before making mea-

surements (in analogy to a confidence interval whose length is fixed before the observations

are known), we must find the largest U(X, L, G, C, 6) that could arise from any 6 = Gz + E

when z E C and tJEll < X:

U*(x, L,G, C) sup U(X, L, G, C, 6). (13)

6=Gz +E

z E C

tlEll X

Define the "modulus of continuity of L" [Donoho, 1989]

w(x,L,G,C) sup{lLx - Lyl : IlGx - Gyll < X and x,y E C). (14)

(This is uncertainlty measure U2.) The modulus measures how much L can differ between

two models in C that produce almost the same data. We claim that

U*(x, L, G, C) w(2X, L, G, C) (15)
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whenever the modulus is finite. We usually suppress the arguments L, G, and C.

Proof. By the triangle inequality,

{(x,y): IIGx - 611 < X, IIGY-611 < X} C {(x,y): IIGx - GyIl < 2X} (16)

Thus U*(X) < w(2X). For -y > 0, let x:r and y'y E C satisfy IlGx" - Gy"iJ < 2x and

lLx-Y - Ly-y > w(2X) --y. Define z- = (x'? + y")/2. By the convexity of C, z'y E C. We have

IlGx& - Gz'II = 1(Gx - Gy") (17)

< Xi (18)

using the linearity of G and the positive scalar homogeneity of the norm. The same inequality

holds for JlGyy - Gz'll, so for 5Y = Gz',

w(2x, L, G, C) > U*(X, L, G, C) > U(X, L, G, C, 61) > w(2X, L, G, C) -. (19)

But a was arbitrary, so (15) holds. 0

Thus the optimization problem (14) gives the uncertainty of estimating Lxo corresponding

to measures U2 and U3. We specialize now to Lx = x(S.), the point-evaluator.

Uncertainties for Local Values When C is a Finite-Dimensional Subspace.

Suppose C is a finite-dimensional subspace of X: the span of the spherical harmonics of

degree I < 1max. On C introduce the seminorm

IIX IIG VGX * Gx, (20)

which may fail to be a norm if it is positive-semidefinite rather than positive-definite. This

can be checked as follows:

9



Define the bilinear functional

< XIY >G= Gx * Gy. (21)

Let {j},N 1, N = (imax + 1)2, be an enumeration of the Schmidt seminormalized spherical

harmonics Ylmr 0 < I < Imax, Iml < I [Backus, 1986]. If the N by N matrix r with elements

ri, =< xi4xj >G (22)

is positive definite, then < 1 >G is an inner product and 11 IIG is a norm. This can be

verified numerically. Henceforth we assume 11 -IG is a norm.

The space C spanned by {xj},< 1 with inner product < 1 >G and norm 1G is a finite-

dimensional Hilbert space, and thus possesses a reproducing kernel KG(i,s) [Aronszajn,

1950]. The properties of KG(', s) we use are:

<x(ri)hKG(',s) >G= X(S) (23)

|X(S)l < |X (IG (24)

and that KG(', A) has the expression

N

KG(^ =s)- Ajkxj(r)xk(s), (25)
j,k=l

where A3k = (r-')jk. Equation (23) is the defining property of a reproducing kernel: for

fixed s, K(ri, s) E C, and the inner product of any element x E C with K(rv, s) evaluates x at

the point s. Inequality (24) follows from (23) by the Cauchy-Schwarz inequality. It says that

we can bound x at a point s in terms of the norm of x and the reproducing kernel. Equation

(25) shows that once we construct r we essentially have KG(r', s) as well. See Aronszajn

[1950] for proofs.
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The uncertainty in x(sA) =< KG(r)s)|x(r) >G iS

w(2x) = sup{lx(s) - y(s)I : Gx - Gyll < 2x, x,y E C} (26)

sup{Ix(.)I: IlGxIl < 2x, x E C} (27)

= SUp{IJX(S')I: IIXIIG < 2x, x E C) (28)

= 2X (29)

from (24) and the fact that C is a subspace. (This does not hold for general convex C.) Thus

the reproducing kernel gives the uncertainty of the CMB. This development does not depend

on the fact that the finite-dimensional subspace consists of spherical harmonics-the same

procedure works for a pixel basis or any other finite-dimensional space of CMB models, with

different entries in r.

Subject to assumptions about the distribution of sources, we can show that the modulus

converges to zero. Suppose sources are randomly distributed in a way that the resulting

CMB hit points are independently distributed with a distribution .F. Then each entry in the

Gram matrix r is the sum of n iid random variables with finite variance (the distributions

will generally be different for different elements of the Gram matrix; the variances are finite

since the spherical harmonics are bounded). Each sum is n times the average of the random

variables. By the weak law of large numbers, each average converges (in probability) to a

fixed mean value. Thus as n - oo, the Gram matrix converges to n times a constant matrix

ro. Provided Y satisfies mild conditions (having a density that is nonzero on an open subset

of the CMB will do), ro is invertable. The inverse of the finite n Gram matrix will then

tend to 1/n times the inverse of ro; i.e. each element will converge to zero at rate nv1. The

modulus at any point is the square-root of a linear combination of elements of the Gram
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matrix (substitute equation (25) into equation (29)), so it converges to zero at rate n1'2.

Extremal Models.

The reproducing kernel also gives the model in C with the largest amplitude at the point s.,

subject to perturbing the data by at most X (uncertainty measure Ul): suppose we seek

x,(r') = argmax{x(s.): IIGxI1 < X}. (30)
zEC

Let x = ,j6xj3, where {:xj} I is a basis for C; let 83 be the N-vector with components %j;

and let -y be the N-vector with components

=i-x3(.). (31)

We need

max{x(s.): IlGxl < X} = max{fy. l3::3 Fr.3 < x2} (32)

= -nmaxmin{ -y.,+A(f,f3rX.,X)}* (33)

The last equality follows from Lagrangian duality [Luenberger, 1969] if the modulus is finite.

Let 4(A, ,) denote the term in brackets in the last equation. The functional / is differentiable

with respect to both j and A. Stationarity in ,3 yields

P=
I

-y-.r-1. (34)

Substituting (34) into (33), we find

max{:x(s): IIGx: I < X} =max A- r*r - 2}. (35)

Differentiating with respect to A gives the stationary point

>=21/ r- . (36)A=2X 11y
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Now yF.r KG(S,S), so

13 - z r-t(37)

xi*r= XKG(A,) (38)

Thus the model x!(r) maximizing the perturbation at the point s is proportional to the

reproducing kernel. Setting s = r, we find

x!(A)=X KG(A,A), (39)

half the width of the bounds. Since -x! also lies in C and produces data with norm less

than X, the total range of values of x(s) that perturb the data by at most X and lie in C is

2X KG(=,A) W(2x), as claimed.

Extensions: Quantitative Smoothness and Infinite-Dimensions.

There are a number of ways to incorporate a quantitative bound on the roughness of the

CMB. Suppose

lxols IJ V2XO12 < M, (40)

where V2 is the dimensionless surface Laplacian [Backus, 1986]. We present three ways to use

the constraint (40). Two lead to optimistic uncertainty estimates; the third (conservative)

approach may be useful in other problems.

Let

V= span{xj}L (41)

Redefine C to be the convex set

C XV_xr: lxls < M} *(2
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We seek the modulus (14) with this new definition of C:

w(X) = sup{ix(s)-y(s)j: I|Gx -Gyll < X, x,y E C} (43)

= sup{x(S) : IIGxI < XI lxIs < 2M}, (44)

by the symmetry of C and the set {x:xIGxII < X}.

Upper Bounds. On the orthogonal complement APL of AV, I * Is is a norm (since the null-space

of V' is in the span of the data kernels Gi) strong enough that the resulting space has a

reproducing kernel KSN(', '). Since AV is finite-dimensional and therefore closed, X can be

decomposed into the direct sum

X - JVw + JV^1 (45)

I.e., any x E X can be written uniquely

x = xg + Xg±, (46)

with xg E X and Xg.i E N-. On X, define the inner product

< xly >GSN-< XArIY >G + 4 IVX.L VIyAiL (47)

If two Hilbert spaces Y and Z have reproducing kernels Ky and Kz, and W-y= Z, then

W has the reproducing kernel Kw = Ky + Kz [Aronszajn, 1950]. Thus the reproducing

kernel for X with inner product < xjY >GSN is

KGSN(;, S)=KG(;, ^) + KSN(7, S), (48)

and so

w(X) = sup{x(s) : IIGxII < X and lxIs < 2M} (49)
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< sup {x(s.) : jIGxll < X and x E JV} +

+sup{x(s): lxIs < 2M and x EAfL} (50)

= x KG(, .) + 2M (51)

The reproducing kernel KSN(r, ) can be bounded numerically by estimating series involving

Legendre polynomials to get upper bounds on w(X).

Lower Bounds. We present two ways to get lower bounds on the modulus w(X). One uses a

reproducing kernel, the other simply solves the optimization problem for w.

First Technique. On AV define the bilinear functional

<xly >s J V2XV2y, (52)

and let A be the N x N matrix with elements

Ajk =< Xj|Xk >S (53)

The spherical harmonics xj = are eigenfunctions of the surface Laplacian V2 with

eigenvalues AIm = A1 = -1(1+ 1) and are orthogonal with norm (21 + 1)-1 [Backus, 1986].

Therefore A is diagonal with entries Ajj = 12(1 + 1)2(21 + 1)-1 for the appropriate value of

1. Recall the definition of -y (31).

W(X) sup{x(s): IIGxII < X IxIs < 2M} (54)

> sup{x(s) : IIGxII < x, Ixis < 2M, x E N} (55)

= max{y.3:I.r1*. <x2, ,A 3< 4M2} (56)
P3ERN

max min{ *y ±+A(lr3.r,_-x2) +1\ *A2>O *PER

+A2(P .A ~-p-4M2)}, (57)
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which can be found numerically. The solution can be written const x where

KA,(S,S) is the reproducing kernel

KA,(, S) =E ((r + AA)1) *k Xy(r )-(^) (58)

Second Technique. Alternatively, consider the inner product on AV

<Xjy >GS=< XjY >G + < XlY >S, (59)

and the induced norm

IIXIIGS (60)

There is a reproducing kernel KGS corresponding to this norm; the relevant matrix is r + A.

The constraints IIGxll < X and Ixls < 2M are less restrictive than the constraints x E X

and IIXIIGS < min{x,2M}, so

w(X) > sup {x(A) : X E AN, IIXIIGS< min{X, 2M}} (61)

min{X, 2M}x/k\S (62)

Thus we can accomodate a quantitative bound Ixis < M and still get optimistic uncer-

tainty estimates for xo(s.). We have not pursued this numerically since we are unaware of a

persuasive argument for a particular value of M, or even the existence of a finite M.

Results.

Data and Computations.

R.J. Pulliam supplied us with processed ISC data, consisting of arrival times from over

46,000 events between 1964-1987. The events were relocated in the IASP91 model [Kennett

and Engdahl, 1991] using all direct P arrival times to constrain the locations. Only events
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with at least 50 reported arrivals were retained. In all 84,947 PcP times were identified in

the epicentral distance range 300 to 380 and 470 to 75°. There were 33,602 PKPab arrivals

in the range 1460 to 1800; 308,846 PKPbc arrivals in the range 1460 to 1540; and 434,510

PKPdf arrivals in the range 1140 to 1800. In each case, the search for arrivals was in a ±30s

window around the expected arrival. These rays were traced in the IASP91 model to find

their crossing or bounce points on the CMB. The total number of rays was 861,905 and the

total number of sample points on the CMB was 1,638,863.

Figures la(i)-lc(i) plot the relative density of hits of rays on the CMB in cells one degree

on a side, normalized by area and scaled to a maximum of 100. The plots are truncated at

10 to show some structure. Figures la(ii)-lc(ii) plot 10 by 10 cells on the surface of the CMB

that are hit at least once. All maps are in the Aitoff equal-area projection, with longitude

zero at the left boundary and latitude zero in the middle. All plots (except figure 5) were

produced by programs written by R.L. Parker.

For this set of rays we computed the matrix r of inner products < xjlXk >G by eval-

uating, for each source-receiver pair, the linearized change to the traveltimes induced by

spherical harmonic perturbations xj and Xk, and summing over source-receiver pairs. In the

linearization the perturbation does not change the parameter of the ray joining the source

and receiver. We computed the change in path lengths through material just above and

below the CMB and divided by the corresponding velocities to find the traveltime perturba-

tions. The spherical harmonics were evaluated at the CMB hit points using code written by

Robert L. Parker. This was done once, for the maximum dimension =ma=20 (N = 212).

The dimension of r is N x N, regardless of the number n of data. We used NAG routines

[Numerical Algorithms Group, Inc. Mark 12] to invert submatrices of r corresponding to
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imax E {4, 8,12,16, 20}. We computed the "diagonal" of the reproducing kernel, KG(', S),

using equation (25) and evaluated it numerically on a grid of 360 longitude by 180 latitude

points using R.L. Parker's spherical harmonic routines. The unnormalized uncertainties

w(1) = KG(A, A) for the five values of lma, are plotted in figure 2 for the combined PcP-

PKP data set. Figure 3 shows degree 4 and 20 mnodels that perturb the data by only lsec in

the norm and maximize the structure southwest of Australia and beneath the mid-Pacific,

respectively; see the section on extremal models above. We show below that the degree 20

model could penetrate 92.7km into the mantle but perturb the data by just 0.lsec rms.

Interpretation.

Figures 2 and 3 must be multiplied by 2x to be meaningful. The choice of X affects the inter-

pretation of the figures. We present a deterministic interpretation and several probabilistic

interpretations.

Deterministic and Crude Statistical Interpretations. The first is the crudest. Suppose we

can find a finite value of x such that

Probf{IlEI X} 1-a, (63)

for some known a E [0, 1). For a = 0, we get deterministic uncertainty bounds for x(s):

figure 2 times 2x gives the widths of bounds guaranteed to contain x(r) for all irll = 1. For

a 0 0, figure 2 times 2x bounds the widths of simultaneous 1 - a confidence envelopes for

x(r') for all J11JJ = 1: the length of a "strict bounds" 1 - a confidence envelope [Stark, 1992]

for x(r;) with the worst possible data is given by the figures times 2x. These interpretations

use minimal assumptions about e, but yield extremely wide bounds.

Consider the deterministic choice of X. If the rms error in traveltimes is less than 0.25sec
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(it is closer to 1.Osec for most epicentral distances), then X = 0.25,An-, and we must normal-

ize figure 2 by 0.5V/; to get uncertainty bounds (see table 1). The minimum uncertainty

using all the PcP and PKP data is 0.5 x 928.4 x 0.017 = 7.89km (= 0.25 x entry in table 1 x

entry in table 6), even if the CMB has a degree 4 spherical harmonic expansion. The maxi-

mum uncertainty for a degree 20 core would be 0.5 x 928.4 x 0.998 = 463.3km.

For the probabilistic choice, if the errors ej are iid Gaussian random variables with mean

zero and variance a2, the value of X needed to guarantee 1 - a coverage probability is

X-a/X;;,, (64)

where x2 n is the 100(1 - a) percentile of the chi-square distribution with n degrees of

freedom. For large n (here n is nearly a million),

2
Xac,n fn + Vf2n.a, (65)

where Z. is the 100(1- a) percentile of the standard Normal distribution. The value of X

grows very quickly with n for this approach. With stronger assumptions, X can be chosen

much smaller and still yield 1 - a coverage probability.

Least-Squares Regression. Morelli and Dziewonski [1987] use least-squares to estimate a

truncated spherical harmonic expansion of the CMB. In this case, C is an N-dimensional

subspace of X, and linear regression theory provides both simultaneous confidence envelopes

(measure U6) and individual confidence intervals (measure U4), assuming the errors ej are

iid with mean zero and variance a2 < oo. The resulting choice of X is much smaller than in

the preceeding section. It grows with the number of model coefficients, not the number of

data.
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Recall the linearized problem (8) 6 = Gxo + e with C span{xj},=1. Let /3 be the

N-vector (ifl)N-* Define
N

X3*x(r) Z3jxj( 9),
j=1

and let /3O denote the coefficients of xo. Then

6 = G(,0 *x(ri)) + (66)

(Gx(ri)) *3. + e (67)

= A.30 +el (68)

where A = Gx(r") is the n x N matrix with entries Aij = Gixj.

The least-squares estimate of /3O is

/3 - (ATA)-1AT6 (69)

r-lATE, (70)

with r as in equation (22). When {,j} are iid and n >> N (as here), the distribution of the

coefficient error vector t7 _ 3 - /30 is approximately joint normal, with covariance matrix

E =_ Or2r-l. (71)

i.e.

/3 -,3o P N(o, a2r-'). (72)

See, for example, Hoel et al. [1971], Menke [1989], or Tarantola [1987]. The corresponding

least-squares estimate x(rt) of xO(r) is

x(r)- xx(r), (73)
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and the error in the estimate at S is

xOs)-os-*(74)

where y is given by (31). The error at s has zero mean and variance

2r.c2-1 . = 2KG(A, A). (75)

Thus a 1 - a confidence interval for xo(s) has width

2aZcri2 KG(,AS). (76)

This is measure U4; table 3 compares these values with optimal results for non-simultaneous

inference (measure U5) computed below.

We can also use the regression formulation to find a simultaneous confidence envelope

for all r'. For each rf, we have

|)- xo(^) I 1= x(rX)

- vie . F"'2 .-/2 . X()l

< 11 7 ri/l ilr-I .xr). (77)

The covariance matrix of v is E =-2r-1, so 7 Fr'12 has covariance a2I, where I is the

N x N identity matrix. Thus the first term in (77) is the square-root of a2 times a chi-square

random variable with N = dim(C) degrees of freedom. The second term is VkG7#;; see

(25). A simultaneous 1 - a confidence envelope for xo(r;) for all r; (measure U6) therefore

has width

2 X,,,/G , ) (78)
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This is considerably smaller than (64), where the number of degrees of freedom in the chi-

square distribution was n (the number of data), which is much larger than N = dimC.

These are the narrowest simultaneous confidence envelopes we have found. Table 2 gives

the resulting normalizing constants for figure 2 as a function of the maximum degree of the

model and the confidence level.

If the truncation level 'mGz is different from the maximum degree in the least-squares

parametrization, the confidence intervals and envelopes must be lengthened (e.g. if CMB

structure extends to degree 16 but we only solve for degree 4 and less, the confidence intervals

and envelopes need to be wider than for degree 16). The regression formulation can also be

combined with inequality (51) to get upper bounds on the width of a simultaneous 1 - a

confidence envelope using a quantitative smoothness constraint.

Non-Simultaneous Inference. The uncertainty measure that gives the smallest constant X is

U5, a confidence interval for a single point on the CMB. This applies when we are interested

in the height of the CMB at a particular point, rather than the shape of the CMB. Inferences

about variations in the CMB require simultaneous coverage probability. Nonetheless, it is

interesting to know how well the CMB can be located at an individual point, and in some

problems this is the primary question. Since U5 gives much shorter confidence intervals, we

urge extreme caution in interpreting the results.

If the errors ei are iid N(O, a2), the elegant theory of Donoho [Donoho, 1989; Donoho

and Low, 1992; Stark, 1992a] shows that w(2aZ,) is a lower bound on the length of a valid

1- a confidence interval for xo(S.). The appropriate values of 2x for a = 1 are given in table

3. Values for a 0 1 are obtained by multiplying the tabulated values by a. These intervals

are shorter than the least-squares confidence intervals by the factor ZX/Zg/2
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Discussion.

The maximum uncertainties grow quickly with the maximum spherical harmonic degree Imax*

Within ray theory the uncertainty is unbounded as 'm.c oo, except where rays hit the

CMB. For small lmaz, the spatial correlation imposed by the parametrization causes the

largest uncertainties to appear where there is some ray coverage, rather than exactly in the

largest gaps. As 'ma: increases, the maximum uncertainties migrate to the biggest gaps,

which are under the mid-Pacific. Under the western coast of Africa and to the west and

southwest of Australia the uncertainties are large too. Although there are relatively few PcP

data, and the uncertainty using the PcP data alone is huge, they reduce the maximum uncer-

tainty substantially when used with PKP data. They do not change the average uncertainty

much.

Distribution Function of the Uncertainty.

We can summarize the results by the fraction of the core that can be estimated with specified

accuracy. Figure 4 plots the distribution of the unnormalized uncertainties w(1) for the

combined PKP and PcP data and the various maximum model degrees. The abscissa x of

the plots is the unnormalized uncertainty; the ordinate y is the fraction of the unit sphere

that has unnormalized uncertainty less than x:

Y 1w(1)<Z

where lw(1)< is the indicator function of the set where w(1) is at most x. (Here x and y are

real numbers, not models.) Tables 4-6 give the minimum, quartiles, average, and maximum

unnormalized uncertainties, summarizing figure 4.

By normalizing Figure 4 with constants from tables 1-2, we can find the fraction of
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the core's surface on which the topography can be estimated with specified accuracy. For

example, suppose we want a simultaneous 95% confidence envelope for the entire CMB,

based on least-squares estimates of the topography from the combined PKP and PcP data

sets. Assume the traveltime errors are iid with mean zero and standard deviation 0.25sec. If

CMB topography is of degree 4 and less, then 50% of the CMB can be estimated to better

than ±0.29km, and the entire CMB to about ±0.53km. If CMB structure involves up to

degree 8, the uncertainty over 50% of the CMB is more than ±1.62km, with a maximum of

±4.20km. For imax = 12, the uncertainty is larger than ±4.81km over half the CMB and

larger than ±7.56km over 25% of the core, with a maximum of ±18.4km. For Imax 16,

the median uncertainty is ±10.7km, the upper quartile is ±17.5km and the maximum is

±54.5km. For Imax= 20, the median, upper quartile and maximum are ±20.3km, ±33.6km

and ±122.5km, respectively. See table 7 for a more comprehensive list for 99.9% confidence.

Many seismologists believe the traveltime standard deviation is closer to 1.Osec than to

0.25sec. If the standard deviation is 0.5sec, the numbers above must be multiplied by 2.

Experimental Design.

The reproducing kernel approach provides a framework to optimize the location of new

stations to best improve the reliability of CMB images. Experimental design requires a

precise goal; we believe it is especially desirable to decrease the maximum uncertainty.

Given smoothness constraints, our results confirm quantitatively the intuition that the

local uncertainty depends on the density of "hits" on the CMB, which suggests a strategy:

Target a patch on the CMB where the uncertainty is largest and trace rays from all source

locations that intersect that patch. Concentrations of surface hits of those rays are reasonable

places for a new station. From this naive starting point, trace rays from all sources to the
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receiver point to build a reduced Gram matrix for just that receiver. Gram matrices for

different source-receiver pairs add, so the reduced Gram matrix can be added to the fixed

Gram matrix for all remaining source-receiver pairs to find the Gram matrix for the combined

actual/hypothetical data set. Invert the Gram matrix to find the new maximum uncertainty,

perturb the location of the new receiver, and iterate. The additivity of Gram matrices for

different data sets allows most of the computations to be done only once.

Implications for Previous CMB Images.

There have been several studies of the shape of the CMB from traveltime data over the last

six years, for example Creager and Jordan [1986], Doornbos and Hilton [1989], Gudmundsson

[1989], and Morelli and Dziewonski [1987]. Data processing before inversion may include:

1. relocating events

2. correcting for elevation and ellipticity

3. truncating outliers

4. applying station corrections (possibly with azimuthal dependence)

5. applying event corrections

6. forming summary rays

7. correcting for the crust and mantle

8. correcting for core anisotropy

The resulting summary traveltime anomalies are inverted by least-squares or damped least-

squares for a finite-dimensional CMB model. Each step has uncertainties, and it has not been
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established that together they succeed in reducing "signal" not due to the CMB. In fact, since

the effect of perturbing these parameters is not orthogonal to the effect of perturbing the

CMB, small changes in the corrections can induce large changes in inferred CMB topography.

The first CMB studies from ISC traveltimes, the standards to which others compare

themselves, are those of Creager and Jordan [1986] (CJ), who use a pixel basis and stochastic

inversion, and Morelli and Dziewonski [1987] (MD) who use a degree 4 spherical harmonic

expansion and least-squares. CJ, MD and the studies that have followed constrain the CMB

to be smooth through low-degree spherical harmonic parametrizations, restricted pixel sizes,

regularization, or a combination of these. CJ do not solve for topography; instead they map

traveltime anomalies to the CMB. They propose the existence of "continents on the core,"

finding a chemical boundary layer more plausible than the ±10km topography needed to

explain the traveltime anomalies.

MD argue from the correlation of their results using PcP and PKP traveltimes separately

that the CMB topography of about ±5km they find is likely to be real. They quote a

significance level of less than 0.001 for the correlation, but do not state the null hypothesis

or the test used. We find correlation arguments unpersuasive. (See, e.g. [Pulliam and Stark,

1992].) The high correlation between PcP and PKP models is misleading because MD's

models are restricted to degree 4 spherical harmonics. MD structure is large where the

uncertainty in figure 2 is large. The correlation coefficient is high due to the similarity of

the largest structure in MD PcP and PKP models, which occurs where there are no data.

This often happens in fitting smooth global functions to noisy data with spatial gaps

using least-squares. Figure 5 shows two sets of 10 data on the discrete circle with 20 points,

along with least-squares fits of 5 low frequency sinusoids to each data set. The correlation
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of the data is 0.064. The correlation of the models is 0.887. Both models have their largest

structure where there are no data. This large, unconstrained structure is similar in the two

models, increasing the correlation. Fitting low-frequency sinusoids also smooths the data in

the range where there are observations, which increases the correlation: the correlation of

the models restricted to the interval where there are data is still 0.871, an order of magnitude

larger than the correlation of the original data. We believe this explains the large correlation

observed by MD.

Later studies are more skeptical. Doornbos and Hilton [1989], who use both spherical

harmonic and pixel parametrizations, tabulate the correlation of their models with CJ and

MD. Gudmundsson [1989], who uses a pixels, also compares his results with CJ and MD.

Doornbos and Hilton [1989] find structure of about ±4km, and Gudmundsson [1989] finds

structure of about ±2km, with and without corrections for inner core anisotropy. Both

confirm that different parametrizations or regularization schemes yield different results, and

both argue for boundary layer structure in addition to CMB topography.

It is difficult to assess the significance of the (generally low) correlations among the

published CMB models for several reasons, including lack of information about how spherical

harmonic coefficients were computed from pixel models and how pixels with no hits were

treated in the transformation to a spherical harmonic representation. Eckhardt [1984] studies

the statistical significance of correlation between spherical harmonic models.

Table 7 gives the spatial distribution function of the width of a simultaneous 99.9%

confidence envelope for the CMB for least-squares estimates with various maximum degrees

using the combined PKP and PcP data sets, assuming the errors in traveltimes are iid

zero-mean random variables with standard deviation a = 0.25s, that source locations are
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perfect, and that linearization error can be ignored. Under these optimistic assumptions, the

confidence envelope is wider than 2.90km over 75% of the core, 3.97km over half the core,

and 5.93km over 25% of the core, even if core structure is limited a priori to degree 8 or

less. If the CMB has structure up to degree 20, those values increase to 28.3km, 44.4km and

73.8km, respectively. The uncertainty in the regions where MD infer the largest structure

(±5km) is about 10.3km for maximum degree 8 and 269.km for maximum degree 20.

The largest structure in CJ, Doornbos and Hilton [1989], Gudmundsson [1989], and MD

all correlate visually with regions of high uncertainty. We conclude that within ray theory the

CMB structure inferred previously in the literature is below the noise level: large variations in

the location of the CMB may be consistent with ISC PcP and PKP traveltimes, but the data

do not require such variations. A more powerful hypothesis test (with lower probability of a

type II error for the alternative hypothesis of asymmetry) could be constructed by looking

at just two well-sampled points on the CMB and using confidence intervals for just those

points to see if the data require different radii. The nonsimultaneous confidence intervals

described above can be used for this test; the significance level of the resulting test is less

than 2a.

Jault and LeMouel [1990] show that topography of ±5km or so would impose severe

constraints on fluid flows at the CMB to avoid torques grossly in excess of those manifest

in length-of-day fluctuations. Forte and Peltier [1991] used the MD model to test a number

of convection models through their induced CMB topography, arguing that the seismically

inferred topography is strong evidence for whole-mantle convection. Given the large uncer-

tainties in the seismically inferred CMB topography, we believe it is premature to it as a

constraint.
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Is There A Way Out?

Our conclusion is that the package traveltimes, ray theory, noise of 0.25s, CMB structure

of degree 20 or less-leads to wide simultaneous confidence envelopes for the CMB. An

hypothesis test based on least-squares estimates of the whole CMB would fail to reject

the null-model that the CMB is spherical, since the confidence envelope is larger than the

structure. Traveltime data may contain useful information about the CMB, and published

models may be basically correct, but the uncertainty under the current set of assumptions

is large. There are a number of directions in which progress is possible.

To estimate the location of the CMB point-by-point requires assuming the CMB is

smooth, which seems unlikely and has not been established (perhaps mineral physics could

provide a substantiating argument). As a result, we advocate abandoning the attempt to

locate the CMB at every point, and looking instead at functionals that average the CMB

location. Such functionals are less sensitive to smoothness assumptions, and are better con-

strained by the data. Examples include the average height of the CMB on a patch, the

average squared height of the CMB, the "inner product" of the CMB with a particular

spherical harmonic, etc. We must keep in mind that even if we know the 1 = 2 component

with very high accuracy, that does not mean the CMB looks like an 1 = 2 spherical harmonic:

for example, the cosine transform (at any fixed frequency) of a delta function is 1, but a

delta function does not look like a cosine.

Another way to circumvent the pessimistic conclusions is to approximate the physics

better. As mentioned above, ray theory requires assumptions about the smoothness of the

CMB. Doing the physics more precisely shows that traveltimes average CMB structure in a

well-defined way. The fact that the traveltimes are smoothing functionals of CMB position
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could enable us to recover averages of CMB structure without assuming the CMB is smooth.

Stark and Nikolayev [1992] study the sense in which traveltimes average Earth structure

in a simple model. Stark [1992b] provides theory that can be adapted to make conserva-

tive inferences about other functionals of the CMB using those averages. Procedures for

constructing minimax confidence intervals for linear functionals are given by Donoho [1989]

(Stark [1992a] presents a geomagnetic application). Although the authors find it implau-

sible, it is possible that underparametrized least-squares estimates of the CMB using ray

theory give reliable estimates of averages of CMB position. Pulliam and Stark [1992] give

evidence to the contrary, that underparametrized least-squares inversions are likely to con-

found source-receiver geometry with CMB structure.

It has been suggested (Mark Richards, personal communication, 1992; Thorne Lay, per-

sonal communication, 1992) that inverting for structure only where the ray coverage is good

using a local basis rather than spherical harmonics might yield lower uncertainties. For com-

parable amounts of smoothness, the uncertainties are the same regardless of the basis used.

That is, if the CMB is divided into pixels comparable in size to the oscillations of a degree

20 spherical harmonic, the modulus in the pixel basis will be comparable to the modulus

for the spherical harmonic basis. In our analysis the uncertainties depend on the spherical

harmonic basis primarily through the smoothness it affords, and through the number of

parameters in the model. The uncertainties are huge where there are no data, and Table

7 shows they are also quite large (> 5.5km) even where the core is densely sampled, if the

CMB has degree 16 structure. The uncertainty everywhere depends critically on smoothness

assumptions when we use ray theory; using a different basis will not alleviate the problem.

However, it takes fewer parameters to model part of the CMB at a given level of smoothness
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than it does to model the entire CMB. The number of parameters enters the least-squares

confidence envelopes through x2N which is smaller (since N is smaller) if we parametrize

only part of the CMB using a local basis.

Conclusions.

By means of reproducing kernels one may compute many measures of spatial uncertainty

in linear inverse problems with smoothness constraints. In certain linear problems, several

intuitive measures of uncertainty are equivalent up to constant scaling factors: the widths of

confidence intervals and simultaneous confidence envelopes around least-squares estimates,

the width of a confidence interval around the best possible (minimax) estimate, the size

of a perturbation that produces a negligable change in the data, and the largest difference

between models that produce nearly the same data. Within ray theory, the uncertainty in

the shape of the CMB inferred by least-squares collocation of low-degree spherical harmonic

models depends critically on CMB smoothness. If the CMB has structure up to degree 16,

the uncertainty measured by the width of a 95% simultaneous confidence envelope around

the least-squares estimate exceeds the CMB structure inferred in previous studies. To reduce

the uncertainty significantly will require abandoning the attempt to locate the CMB point-

by-point, and using a better approximation than ray theory.
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Figure Captions.

Fig. 1: The distribution of PcP and PKP hits on the CMB that comprise our data set.

Figure la(i) shows a shaded plot of PcP hits per unit area on the CMB. The data are

normalized so that the maximum number of hits per unit area is 100. The hit density is

extremely inhomogeneous; to show some structure we truncated the scale at 10 hits per unit

area. Figure la(ii) shows 10 by 10 cells hit by at least 1 PcP ray. Figure lb(i) is the same

as la(i), but for PKP data. Figure lb(ii) is as la(ii), but for PKP data. Figures lc(i) and

lc(ii) are the same as lb(i) and lb(ii) but for PcP and PKP data combined. Note the gap

in data coverage in the Pacific.

Fig. 2: Unnormalized uncertainty w(1) in the location of the CMB as a function of angular

position, for various spherical harmonic truncation levels (lmfi) for the combined PcP and

PKP data set. The function w(1) is is defined by an optimization problem solved by the

reproducing kernel in equation (29). The values of w must be multiplied by a scaling factor

2x to be interpreted as uncertainties in the location of the CMB. The constant 2x depends

on the noise level, and on the interpretation one wishes to malce of the figures.

Fig. 3- Extremal models. Figure 3a shows a CMB model with maximum spherical harmonic

35



degree 4 that produces a perturbation to the combined PcP and PKP data sets of lsec in

the two-norm, and maximizes the height of the CMB southwest of Australia. 3b shows a

CMB model of degree 20 that produces PcP and PKP data with norm lsec and maximizes

the height of the CMB beneath the mid-Pacific.

Fig. 4: Distribution function of the unnormalized uncertainty; i.e. the fraction of the CMB

for which w(1) < x (see text for the definition and meaning of w(@)). Panels a, b, and

c respectively give the uncertainties using PcP only, PKP only, and PcP and PKP data

together.

Fig. 5: Illustration of illusory correlation of least-squares fits of smooth periodic functions

to noisy, gappy data. There are two sets of 10 data (stars and plusses) given at the first 10

points of a discrete circle with 20 points. The correlation of the two sets of data is 0.064.

The curves are fits of 5 low frequency sinusoids to each of the sets of data. The largest

structure in the fitted models occurs where there are no data. The correlation of the fitted

models is 0.887. Even restricted to the range where there are data, the correlation of the

fitted models is 0.871. As a general rule, smoothing data, for example by fitting smooth

functions, increases apparent correlation. Often when smooth functions are fit to rough data

with gaps, the largest structure in the model occurs where there are no data.
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Table 1: Normalization constants for deterministic traveltime errors, for 1.0 sec rms misfit.

For other values of the rms misfit, multiply by the rms. The constants do not depend on the

degree of the model.
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Data Type No.Rays CMB points Constant

PcP 84,947 84,947 582.9

PKPab 33,602 67,204 366.6

PKPbc 308,846 617,692 1,111.5

PKPdf 434,510 869,020 1,318.3

PKP 776,958 1,553,916 1,762.9

Both 861,905 1,638,863 1,856.8



Table 2: Normalization constants for simultaneous confidence envelopes around parametrized

least-squares estimates of the CMB, assuming Gaussian traveltime errors with standard

deviation a = 1.Osec. The constants do not depend on the number of data. Column 1:

maximum degree of the perturbation. Column 2: number of spherical harmonic coefficients

of that degree or less. Columns 3-5: normalization constants for coverage probabilities 0.95,

0.99, and 0.999 respectively.

Table 3: Normalization constants for individual (not simultaneous) confidence intervals,

assumng Gaussian traveltime errors with a = 1.Osec. The constants do not depend on the

number of data or the degree of the model. Columns 1-3: coverage probabilities 0.95, 0.99

and 0.999 respectively. Row 1: Constants for least-squares confidence intervals. Row 2:

Constants for lower bounds on minimax confidence intervals using Donoho's theory.
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Imax N a = 0.05 a= 0.01 a = 0.001

4 25 75.4 88.6 105.2

8 81 206.0 227.0 252.3

12 169 400.6 . 429.4 463.2

16 289 659.3 695.7 738.1

20 441 981.9 1026.0 1077.1

Procedure a = 0.05 a = 0.01 a = 0.001

LS 3.920 5.152 6.582

Minimax 3.290 4.652 6.180



Table 4: Distribution of unnormalized uncertainty w(1) for PcP data only. Column 1:

maximum model degree. Col. 2-7: minimum, lower quartile (by area), median, upper

quartile, and average of w(1).

Table 5: Same as table 4, but for PKP data only.
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l[a mi LQ Med UQ max mean

4 0.052 0.120 0.182 0.300 0.475 0.214

8 0.065 0.231 0.391 0.659 1.672 0.476

12 0.076 0.346 0.612 1.099 5.107 0.803

16 0.085 0.460 0.837 1.598 14.75 1.232

20 0.093 0.578 1.075 2.186 40.46 1.850

|max' min LQ Med UQ max mean

4 0.017 0.027 0.032 0.042 0.057 0.034

8 0.024 0.048 0.065 0.099 0.242 0.076

12 0.028 0.069 0.101 0.161 0.609 0.125

16 0.031 0.089 0.137 0.227 1.213 0.180

20 0.034 0.110 0.174 0.294 2.251 0.240



Table 6: Same as table 4 but for PcP and PKP data combined.

Table 7: Distribution of the width of a simultaneous 99.9% confidence region for the CMB,

assuming the data errors are independent and the model is found by least-squares using all

PcP and PKP data. This table combines results from tables 2 and 6. Column 1: maximum

model degree. Col. 2-7: minimum, lower quartile (by area), median, upper quartile, and

mean width of the envelope in km.

40

imaxi mn LQ Med UQ max mean

4 0.017 0.025 0.031 0.041 0.056 0.033

8 0.022 0.046 0.063 0.094 0.163 0.071

12 0.027 0.065 0.096 0.151 0.367 0.113

16 0.030 0.085 0.130 0.212 0.661 0.158

20 0.033 0.105 0.165 0.274 0.998 0.206

Ima: min LQ Med UQ max mean

4 0.45 0.66 0.82 1.08 1.47 0.87

8 1.42 2.90 3.97 5.93 10.3 4.45

12 3.13 7.53 11.1. 17.5 42.5 13.1

16 5.54 15.7 24.0 39.1 122. 29.2

20 8.94 28.3 44.4 73.8 269. 55.5
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Fig. 1 c(ii): Cells on the CMB hit by PcP or PKP
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corr(data)=0.0642 corr(models)=.882 df=5
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