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Methods for Comparing Cumulative Hazard Functions in a
Semi-Proportional Hazard Model

Abstract. Graphical methods based on the analysis of differences between log cumu-
lative hazard functions are considered for a two-group semi-proportional hazard model
which allows for interaction between treatments and covariates. Confidence pro-
cedures and test statistics that can be used to test for interaction, for main effects, and
for proportional hazards, are developed. Their use is illustrated by applying them to
the analysis of kidney transplant data from the University of California, San Francisco.

Key words and phrases: Cox regression, stratification, semi-proportional hazard
model, interaction, cumulative hazard function, graphical methods.
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1. INTRODUCflON

1.1 The model

Consider a study where patients are grouped according to a certain characteristic.
We discuss two cases: (i) grouping based on treatment group membership and (ii)
grouping based on stratification of a covaniate. We consider a semi-proportional
hazard model where a subject in group i with covariate vector z has cumulative hazard
function

(1.1) A (tIz) = A0j(t)exp(I3jrz), i =l1,2

where f1 and 02 am vectors of unknown regression coefficients and AO, (t) and A02 (t)
are unknown baseline cumulative hazard functions for the two groups. In this paper
we discuss graphical methods based on the analysis of differences between log cumu-
lative hazard functions, and give confidence procedures and test statistics that can be
used to test for interaction and main effects. As an illustration we apply some of the
results to the analysis of kidney transplant data from the University of California, San
Francisco.

Model (1.1) allows for [1 * f2 and thereby makes it possible to analyse interaction
between treatments and covariates as well as between covariates. Thall and Lachin1
and Andersen, Borgan, Gill and Keiding2 present models which include (1.1) as spe-
cial cases. Kay3, Kalbfleisch and Prentice4, Therneau, Grambsch and Fleming', and
Kronborg and Aaby6, among others, consider model (1.1) with .1 = 012 = 0*

Model (1.1) can be used to address three related questions:

(a) Interaction. Suppose that the two groups correspond to treatment groups 1 and 2.
In this case, model (1.1) corresponds to proportional hazards with respect to the
covariates, but (possibly) non-proportional hazards with respect to the treatments.
Note that J1 * 02 corresponds to interaction between treatment and covariates. This is
important when treatment efficacy depends on the covariate values of the patient. We
return to the question of how to measure this interaction in subsection 1.2.

(b) Treatment Comparison. The four parameters (1, 02, AO, (t) and A02 (t) on the
right hand side of (1.1) can be combined to give a description of the relative perfor-
mance of two treatments at time t for a patient with given covariate values. We return
to this in the next subsection.

(c) Proportional hazards. Suppose that within a treatment group we define groups by
stratifying one of the covanrates, say z1. In this case, in model (1.1), z stands for the
vector of the remaining covariates and model (1.1) with A0O (t) = A02 (t) corresponds to
a proportional hazard model with respect to the covariate used to create the strata.

Similarly, we can check for proportional hazards between two treatments by letting the
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groups correspond to the two treatments and letting z be the vector of all covariates, as
in (a) above. In many studies, hazards are proportional, but here are two possible
types of deviations from the proportional hazard model:

(i) Decaying treatment effect refers to the case where initially the new treatment is
superior to the old treatment but after a period of say several months, the ratio of the
cumulative hazards corresponding to the two treatments tends towards one. A decay-
ing treatment effect was found in our analysis of the kidney-transplant data (see Sec-
tion 3) and in the analysis of malignant melanoma data by Andersen, Borgan, Gill and
Keiding2 (1992, Examples 7.3.1 and 7.3.4). These authors showed that an extension of
the proportional hazard model based on introducing a frailty parameter resulted in a
good model fit. A counting process approach to the analysis of the resulting frailty
model is given by Nielsen, Gill, Andersen and Sorensen7 as well as Andersen, Borgan,
Gill and Keiding2.

(ii) Diverging treatment effect refers to the case where initially there is no
difference between two groups, but after a period of say several months, the hazard
experiences of the two groups start to diverge. An instance of gradual "treatment"
effect is found in the analysis of ex-smoker (treatment 1) and current smoker (treat-
ment 2) data Doll8, Freedman and Navidi9). Here the lung cancer hazard rate for a
group of smokers who quit smoking was initially the same as that of a group that con-
tinued smoking, but gradually the rate for the ex-smokers started decreasing. It then
turned around and began increasing, but stayed well below that of the group that con-
tinued smoking. This is the opposite of the decaying treatment effect in that the ratio
of the cumulative hazards starts at one and then gradually decreases until it stabilizes
at a constant below one.

Examples (i) and (ii) are treatment group examples. For groups determined by
covariates such as age and gender, the effects described in (i) and (ii) above are
perhaps less likely and the proportional hazards model may be more plausable.

1.2 The log cumulative hazard difference

A well known and useful approach for checking the proportionality of hazards
between strata is plotting the log cumulative hazards.2'3'4'6'10 If the estimated log
cumulative hazards for two strata appear nearly parallel, this is evidence in favor of
the proportional hazard model. Here we consider a modification of this procedure con-
sisting of plotting the difference between these two curves, that is, for fixed z we plot
an estimate of the curve p (t I z) defined by

p (t I z) = logA1 (t I z) - logA2 (t I z)
where Al (t I z) and A2 (t I z) are as in model (1.1). There are two advantages to this
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modification: (i) if the proportional hazard model holds, p (t I z) is constant in t, and it
is easier to see whether a curve is constant than to check whether the two nonlinear
log cumulative hazard curves are parallel; (ii) by giving confidence procedures for
p (t I z) we can do statistical inference. In particular, by using test statistics based on
an estimate A (t I z) of p (t I z), we can test for interaction and main effects.

Next we consider the application of p (t I z) to the three questions in section 1. 1.

(a) Interaction. Consider model (1.1) with groups 1 and 2 corresponding to the treat-
ment groups 1 and 2. Note that for a patient with covariate vector z

(1.2) p (tlz) = po(t) + (I1-02)Tz
where po(t) = log AO, (t) - log A2 (t) is a baseline log cumulative hazard difference
and (i1 - 02)Tz is an interaction term. If the hazards are proportional also with
respect to treatments, say AO, (t) = expo0)A02(t), then p (tlz) = 0 + (02 - 0 1)Z, which
is constant in t. By plotting an estimate of p (t I z) as a function of t we get a check of
proportional hazards with respect to treatments, and by looking at such plots for two or
more z, we get a check of whether there is an interaction effect. By testing
Ho: 01 = 02 we get a statistical test of whether there is interaction. Thall and Lachin1
use partial likelihood ratio methods to analyse interaction effects in semi-proportional
hazard models.

(b) Main effects. When comparing two treatment groups we can get a confidence
interval for the difference p (t I z) of log cumulative hazards by considering a pivot of
the form I 3 (t I z) - p (t I z) /e (tI z) where P (t I z) is an estimate of p (t I z) obtained by
substituting estimates of I1, 02 and po (t) into the right hand side of (1.2), and d (t I z)
is an estimate of the standard error of , (t I z). Thus we can test whether for a person
with covariate vector z, one treatment is better than another.

(c) Proportional hazards. If we have strata determined by stratifying on one covari-
ate, say zl, and z represents the other covariates, then the proportional hazard assump-
tion with respect to covariate z1 corresponds to p (t I z) being constant in t. Another
approach to checking the proportional hazard assumption in the [1 = (B2 case is based
on residuals. See Kay3, Themeau, Grambsch and Fleming', and Fleming and Harring-
ton10.

In Section 2 we develop the statistical inference methods to accompany the graphi-
cal approach. In Section 3 we illustrate some of our methods using survival kidney
time data from a kidney transplant study at the University of California, San Francisco.
We consider several immunosuppressive treatment regimes and a covariate zB which
gives the number of transfused units of blood the transplant recipients had received
prior to transplant. By applying the log cumulative hazard difference we illustrate
significant interaction between treatment choice and the covariate zB. This has
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important implications for treatment assignment since for a given patient the value of
ZB is known prior to transplant and this value determines which treatment is preferable.
In Section 3 we also illustrate proportional hazards within treatment groups with
respect to the covariate ZB, and we illustrate the analysis of treatment effects in the
semi-proportional hazard model (1.1).

Besides p (t I z), another closely related function which also can be used to check
for interaction, main effects and proportionality of hazards is the relative difference
A (t I z) of cumulative hazards, that is

A(tlz) = [A1(tlz)-A2(tlz)]/A2(tlz).
Note that A (t I z) = exp ( p (t I z)) - 1, so that the A (t I z) and p (tl z) carry the same
information. A (t I z) is an extension to the case of covariates of the function A (t) con-
sidered by Dabrowska, Doksum and Song"1. In this paper we consider p (t I z) rather
than A (t I z) since it is "symmetric" in the sense of remaining the same, except for the
sign, if the labeling of the two groups is reversed. Moreover, the results of Bie, Bor-
gan and Liest6112 indicate that the asymptotic approximations are more accurate when
using log cumulative hazards. The results for A (t I z) are very similar to the results for
p (tlz).

2. STATISTICAL INFERENCE FOR THE LOG CUMULATIVE HAZARD
DFFE;RENCE(LCHD) IN THE SEMI-PROPORTIONAL HAZARD MODEL. We
consider an estimate of the LCH)D p (t I z) in model (1.1), and find the asymptotic dis-
tribution of a standardized version of this estimate and use it to construct approximate
confidence procedures for p (t I z).

Let Xll,... , X1n, and X21, . .., X2n2 denote the survival times of group 1 and
group 2 subjects, respectively. These are assumed to be independent random samples
from populations with continuous distributions. In the case of kidney transplant stu-
dies, patients enter the hospital at different times and for some patients the time to
failure Xij of the graft is known, while for others the transplanted kidney has not yet
failed but the time Cii that the kidney was last observed as functioning is known.
Such a time Cii is referred to as a censoring time. We write the observable data as Tij,
the failure or censoring time, and 8ij, a variable indicating failure or censoring for the
jth subject in treatment group i. We model our study in the usual way by representing
Tij and 8i as

Tij = min(Xij,Cij),)ij = I[Cij 2 Xj]
where {Cij} are censoring times that are independent of the (Xij), and I[Cjj 2 Xjj
equals 1 when the failure time Xii is observed, and equals zero when the graft has not
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yet failed and only the time Cii is observed.

For the jth subject in group i, we also observe a vector ZiT = (Zlij, . . * , Zdij) of
covariates such as age, genetic matching score, or amount of blood transfused prior to
transplant. On the basis of these data, we estimate the LCHD p (t I z) by

A(tIZ) = (01- 2)Z+ o(t), where p0(t) = logA1l(t) - logA02(t).
Here 01 and 02 are the Cox13'14 partial likelihood estimates of the proportional hazard
model parameters frT = (Ipi,... , Iid) and jT = (021 ... 132d), and A01 (t) and
A02 (t) are the Breslow15 estimates of Aol (t) and A02 (t).

Under regularity conditions such as those in Andersen and Gill16 or Tsiatis17,
standardized versions of V, 02' AOi (t) and A02 (t) converge in distribution to Gaussian
variables (processes). This leads to approximate statistical inference procedures that
can be used to address questions (a) and (b) of Section 1

(a) Interaction. To test whether there is interaction we test Ho: ,1 = 02 VS

H1: [1 . 02 by rejecting Ho for large values of the test statistic

T = M(02 - 1)T:l2(02- 01), where M = n1n2/(n1+ n2).
Here t12, the estimated inverse asymptotic covariance matrix of M (52 - 5i), is given
in the appendix. T has an asymptotic x2 distribution with d degrees of freedom, so we
can find approximate critical values in the X2 table. An asymptotically equivalent
approach would be to use partial likelihood ratio statistics as in Thall and Lachin1.

(b) Main effects. Let t be some fixed time point of interest, e.g. t = 150 could
correspond to survival for 150 days. Moreover, let z be a covariate vector of interest,
e.g., z could be the covariate vector for a current or future patient. If we denote by
dc (t I z) the estimate of the asymptotic standard error of 0 (t I z), as given in the appen-
dix, then a 100(1 - a)% pointwise confidence interval for the LCHD p (t I z) is given
by

(2.1) r3(tlz) ± ca/26(tIz) /M112

where cw,2 is the upper al2 critical value in the standard normal distribution.

In some cases it is useful to have confidence intervals that are valid simultaneously
for several t, say for t = 75, 150, 225, 300 and 375 days. Conservative intervals can
be based on the Bonferroni's inequality. For the case of 5 time points as above, this
amounts to replacing the critical constant cj2 in the confidence interval (2.1) by ccwlo.
Thus if we want 90% confidence that (2.1) is valid for five given time points, we
would use critical constant c./10 = c.01 = 2.326, while for 10 given time points we

would use c.1/20 = c.005 = 2.576.
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3. ANALYSIS OF THE UCSF KIDNEY TRANSPLANT STUDY.

3.1 Data description

The data considered in this paper relate to cadaveric kidney transplant performed at
the University of California San Francisco. In most cases, members of the UCSF tran-
splant team were directly involved in the processes of donor selection, donor manage-
ment, recovery of the kidneys for transplantation, and their preservation prior to tran-
splantation. Recipients for the transplants were selected on the basis of compatibility
of ABO blood type and HLA and DR tissue types. However, they were rarely
selected on the basis of the quality of tissue match, except in those unusual cases
where the degree of match between the donors and recipients appeared to be perfect.

Immunosuppressive therapy was initiated at the time of transplantation, and was
continued indefinitely thereafter for as long as the patients had a functioning transplant.
Episodes of rejection were diagnosed in the conventional manner, based upon clinical
findings supported by appropriate laboratory results and other diagnostic studies, which
sometimes included biopsies of the transplants for microscopic examination. Rejection
episodes were typically treated with higher doses of corticosteriods, and the use of
other anti-rejection therapies was generally reserved for those cases in which the rejec-
tion episodes appeared refractory to corticosteriods.

Graft survival rates were calculated assuming that "functioning" transplants were
those able to support the patients' needs without dialytic therapy, while graft "losses"
represented those requiring surgical removal or the resumption of chronic dialytic
therapy.

Two immunosuppressive treatments are considered. The first one consisted of a
combination of prednisone and azathiprine administered at the time of transplant. The
dosage of azathiprine was reduced in the case of toxicity. We refer to this treatment
group as the prednisone group.

Patients in the second treatment group received cyclosporine and prednisone as the
dominant mode of therapy. This group is referred to as the cyclosporine group. We
further consider two regimens. Nonsequential therapy relates to patients in whom the
use of cyclosporine and prednisone was initiated at the time of transplant. Cyclos-
porine is known to be potentially nephrotoxic during the first post transplant period,
when kidney function is impaired,18 so that following the earlier period of the study,
sequential therapy was used preferentially. In sequential therapy the initial treatment
consisted of the Minnesota Anti-Lymphoblast Globulin and prednisone and changed to
cyclosporine and prednisone some days following transplant when the quality of kid-
ney function was improved.
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We consider two covariates: age (AGE )and number of units of blood transfused
prior to transplant (BLOOD). Pretransplant transfusions have been shown in a number
of studies to have a beneficial effect on graft survival rates. The mechanism by which
this occurs is not well understood. In the case of cadaveric kidney transplants,
Terasaki et al.19 showed that transfusions have their greatest effect in the first months
following transplantation by reducing accelerated graft failure occuring primarily in
the first month. Transfusions appear to have almost no effect after the third month
after transplant. Further, the beneficial effect of blood transfusion appears to be
achieved equally with one to five transfusions, while more trnsfusions afford no addi-
tional benefit20'21 A major problem with a higher number of transfusions is the risk of
hepatitis followed by chronic liver disease, and also the greater likelihood of achieving
sensitization which in turn reduces the possibility of readily identifying a compatible
cadaver kidney by direct crossmatch testing.

3.2 Data analysis

For each patient the failure time considered is the time from transplant until failure
or rejection of the graft. Only first transplant recipients are included in the analysis.

We first use the LCHD to compare hazard experiences of patients that are stratified
into two groups according to the covariate BLOOD. Figure 1 gives a comparison of
the patients that have had more than five (group 1) and the group that has had 5 or
fewer prior units of transfused blood (group 2). In each case we set the level of the
covariate z = age at 40. The graphs for age = 25 and age = 55 were very similar. In
Figure l(a) all the patients were in the cyclosporine group while in Figure l(b) they all
were in the prednisone group. The graphs of LCHD show that in this study the group
with more than five units of transfused blood did better, but looking at the simultane-
ous confidence bands, this is not statistically significant since the lower boundary does
not exceed zero. This confidence band is the Bonferroni confidence band based on
confidence coefficient 1 - a = .90 and ten equally spaced time points.

Note that the LCHD is fairly close to a horizontal line in both cases in Figure 1.
This supports the proportional hazard model since for this model the estimand p (t 140)
is a horizontal line. In other words, when patients receiving the same treatment are
put in different groups according to different values of the covariate blood, a propor-
tional hazard model is indicated for the different groups.

Since proportonal hazards is indicated by the LCHID, we perform a Cox likelihood
analysis of the data and find that the hypothesis of difference in survival experience
between the two blood groups is not rejected. The two-sided P-values for the cyclos-
porine and prednisone patients were 0.13 and 0.66, respectively, which is consistent
with our above findings based on the LCHD.
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Figure 1 here

In Figure 2 we use the LCHD to compare the nonsequential (group 1) and sequen-
tial (group 2) cyclosporine regimes for patients with BLOOD covariate values 0, 5 and
10. The figure illustrates strong treatment-covariate interaction. In this study for
blood level 0 (A) the sequential treatment is beneficial since P (t 0) is negative. For
blood level 5 (B), the group P (t 15) is close to the horizontal line passing through 0
and both treatments have approximately the same effect on graft survival. Finally, for
blood level 10 (C) the LCHD estimate is positive so that the nonsequential treatment is
the better one. This interaction has important implications for treatment allocation
since the value of the covariate BLOOD depends only on the patients pre-transplant
history.

To test whether the treatment-covariate interaction is significant we use the Cox
model for each group since an analysis of the LCHD within groups, as illustrated in
Figure 1, shows proportional hazards with respect to the covariate BLOOD. Using the
P2L routin in the BMPD statistical package we find the value (-2.59)2 for the interac-
tion test statistic T of Section 2. This yields a P-value of 0.0096 and we reject the
hypothesis of no interaction.

Figure 2 here

We have now used the LCHD to illustrate proportional hazards within treatment
groups with respect to the covariate BLOOD as well as interaction between the treat-
ment regimens nonsequential-sequential and the covariate BLOOD. Next, in Figure 3,
we illustrate the analysis of treatment effects when the Cox model does not hold by
using the LCHD to compare the prednisone (group 1) and cyclosporine (group 2) regi-
mens for patients with BLOOD covariate value 5. The graph of P (t 5) in Figure 3
shows that in this study there is a decaying treatment effect in the sense that cyclos-
porine does much better initially but this advantage diminishes with time. Thus it is
not safe to assume a Cox model. On the other hand, we have seen in the discussion of
Figure 1 that proportional hazards within the prednisone and cyclosporine groups are
indicated and thus the semi-proportional hazard model (1.1) will be applied. Since the
upper 90% simultaneous confidence boundary is below zero we can conclude at the
10% level of significance that for patients with BLOOD covariate value 5, cyclos-
porine is the more beneficial treatment.

The estimates and confidence bands were computed using locally written FOR-
TRAN subroutines incorporated into S.

Figure 3 here
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Appendix. Asymptotics. Estimation, confidence procedures and testing. Suppose
that ni/(n1 + n2) - Ili, 0 < 71i < 1, i = 1,2, and set M = njn2/(n1 + n2). Further, let
us assume that given z, the conditions of Andersen and Gill (1982) are satisfied by
both groups in model (1.1) in a time interval [0,t1t. Finally, for i = 1,2, let

Yij (t) = I [ Tij 2 t ] and set

ni nf
S-(O)(t, pi) = £ Y1j (t)exp(13r Zij), S.(M) (t, Pi) - I Y1j (t)Zijexp (P:r Zij)

ni
s|2) ~~~(t.h)= Yj (t) Z!P2 exp (,Pir Zij) , Ei (t, Pi) = S -(1) (ti, Di) / S (°) (t, PB) 9

j=1 I

V1 (t, 13k) = [S(2) (t, f3i) / S(O) (t, fi) ] - E 2 (t, Pi)
where for any vector (a1,... , ad) = a, a®2 is a d x d matrix with (k, I ) entry equal to
akal. For the ith group, SP() (t, P1) represents a weighted number of individuals at risk
at time t. Further SP() (t, (3) is the vector of partial derivatives of SP() (t, [3) with
respect to Di = ([1, . . . , d) whereas S (2) (t, p() is the matrix of second partial deriva-
tives. We let sPi) (t, 13Ci), j = 0,1,2, ei (t, Poi) and vi (t, Poi) be the "in probability" limits
of the above variables in a neighbourhood of the true parameter vectors Poi. We fol-
low here Andersen and Gill (1982, Condition B), and assume that these lmits exist.
Let

tl

Ii = i ((joi) = f vi (u, Poi) s,(O) (u, Poi) X(j (u) du
0

t

4i (t, 30i) = Jei (u, f3ri) koi (u) du
0

t

p. (t, 30i) = J s() (u, PO()-3 Xoh (u) du
0

where oi(u) is the derivative of Ai In the following distributions are conditional
given Z = z. We assume model (1.1).

Proposition A.1. Let to and t, be two fixed time points with 0 c to < t, < M. Under
the conditions in Andersen and Gill (1982) the process MI/2 [ P (t I z) - p (t I z)] con-
verges for almost all z weakly in D [to, t,] to a mean zero Gaussian process W (t I z)
with covariance function given by

cov (W (s z), W (t lz)) =

= [rj2Cl (s,tlz)/AoA (s)AO, (t)] + [IT1 C2(s,tlz)/Ao2(s)Ao2(t)]

where
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Ci(s,tIz) = gi(S A t,Doi) + [i(s, Poi) - Aoi(s)z]TiZ, [t.(t,Doi) - AO,(t)z]
is the covariance function of

n2 [AlogAi (t I z) - logAi (t I z)] = [logAOi (t) - logAOi(t)] + (1i - ioi) z i = 1,2

Proof. We write

M112[logAi (t I z) - logAi (t Iz)] Ml[logAoi (t) - log Aoi (t) ] + M112(13i- t30)Tz.

By the 8-method for processes, M1/2 [logAoi(t) - log Aoi (t)] can, for the purposes of
obtaining limiting distributions, be replaced by

M12[AOi (t) - Aoi (t)]/Aoi (t), i = 1,2.

Since these two processes as well as .13 and 02 are independent, it follows from Ander-
sen and Gill16 and some covariance calculations that M [/2[5(t I z) - p (tIz)]

2
M £ [log Ai (t I z) - log Al (t I z) ] converges weakly to the indicated Gaussian sto-

i=l
chastic process.

Let a2 (t I z) be the variance of W (t I z) at time t. We estimate it by

d (t I z) = +n2 z) /AO, (t) + C2 (t I Z) / A62 (t)
nl+ n2 Citz/o() n1 + n

where Ci (t I z) is the sample counterpart of Ci (t I z). More precisely, let

Ni (u) = 21I [ Tij s u, 8ij = 1 ], then Ci (t I z) is Ci (t I z) with tj, gj and Ii estimated by
ti t t

Zi = J Vi (u, Di) dNi (u) j (t) = f Ei (u, Ji)Aoi (du), jai (t) - f Sl) (u, bi1 AOi (du).
0 0 0

Note that Yj-1 is the asymptotic covariance matrix of nj12 (Pi - Ioi) and that

'M [1I2 - 13l - (002 - 01)] is asymptotically normal with mean 0 and covariance
matrix

212 T-l2 11+rl2
Our estimate of 12 is Sj71 = (n2 j1 + n, t) / (n1 + n2).
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FIGURE CAPTIONS

Figure 1. The log cumulative hazard difference (solid curve) comparing groups
receiving more than 5 (group 1) and 5 or fewer (group 2) units of blood prior to tran-
splant. The covariate age is set at z = 40. The dotted curves give a 90% simultaneous
confidence band. Figure l(a) is for the cyclosporine group (n1 = 142, n2 = 481) and
Figure l(b) is for the prednisone group (n1 = 98, n2 = 256).

Figure 2. The log cumulative hazard difference comparing the nonsequential treatment
(group 1) to the sequential treatment (group 2). All the transplant recipients were in
the cyclosporine group. The covariate "no of units of transfused blood" is set at
z = 0,5 and 10 and the corresponding relative risk curves are labelled A, B and C,
respectively. The sample sizes are n1 = 157 and n2 = 466.

Figure 3. The log cumulative hazard difference (solid curve) comparing the treatments
prednisone (group 1) and cyclosporine (group 2). The covariate "number of units of
transfused blood" is set at z = 5. The dotted curves give a 90% simultaneous
confidence band. The sample sizes are n1 = 354 and n2 = 623.
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