
Multivariate Log-Spline Conditional Models

By

Charles J. Stone

Technical Report No. 320
August 1991

*This Research supported in part by NSF grant DMS-9100723.

Department of Statistics
University of California

Berkeley, California 94720



MULTIVARIATE LOG-SPLINE CONDITIONAL MODELS1

BY CHARLES J. STONE

University of California, Berkeley

August 21, 1991

Let X1, .... ,XM,Y1,... YN be random variables each ranging over [0, 1]

and set X = (Xl, . . .,XM) and Y = (Y1, . . . , YN). Suppose X and Y have a

joint density function and letf denote the conditional density function of Y
M+Ngiven X. It is assumed that (p = log f is bounded on [0, 1] . Consider the

approximation (p* to (p having the form of a specified sum of functions of at

most d of the variables xl, ... ,xM,y,. ... N plus a normalizing function of

x and, subject to this form, chosen to maximize the expected conditional log-

likelihood. Let p be a suitably defined lower bound to the smoothness of (p*.

Consider a random sample of size n from the joint distribution of X and Y.

Maximum likelihood and sums of products of polynomial splines are used to

construct estimates of (* and its components having the optimal L2 rate of

convergence n pl(2p+d)
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1. Inrduction. Consider discrete random variables X1,... ,XM, Y1, ... I N that

range over finite sets ,... 5M' yl 9 ... 'YN respectively. Set £ =W x... x$M and

Y=Ylx .. xYN. Also, set X= (Xi, ... XM) and Y= (Y ,9. . .YN)9 and let fX Y

denote the joint probability function of the £-valued random vector X and the Yvalued
random vector Y. It is assumed that fx y is positive on £ xy Let f denote the

conditional probability function of Y given X and set p= logf. Suppose, for simplicity,

thatM= 2 andN = 1. Then we can write

(1) (p(yIx1, X2) = PO(x1,x2) + (P3(y) + (P13(yIXI) + P23(y X2) +q123(y 1X1 X2).
The right side of (1) is referred to as the saturated log-linear model for p or as its

ANOVA decomposition. In order to obtain a unique such decomposition, suitable

constraints have to be imposed on the components T3, (P13' (P23 and 'P123 that involve y.

In practice, unsaturated submodels would commonly be employed in such contexts.

Let d be the maximum number of variables that are allowed in any component involving

y. In the context of (1), d = 1 if and only if the conditional probability function of Y does

not depend on xi and x2 or, equivalently, if and only if (X1, X2) and Y are independent;

if d = 2, then

(2) (y I x1, x2) = 0po(x1, x2) + p3(Y) + 'P13(Y Ix1) + (P23(YJX2).
Given a random sample of size n from the joint distribution of X and Y, we can use

finite parameter conditional maximum likelihood to come up with an estimate ' of p. In

particular, in the context of (1) we get that

(3) IX11,X2) = ("o(x1 'X2) + 3(Y) + 13() x1) + ^23() 1 X2) + 123(l 1xl9X2)'
In order to obtain a unique such ANOVA decomposition, we need to impose suitable

constraints on the components3 q13 P23 and q123 Examination of these components
can give insight into the shape of p and hopefully of qp as well.

In the context of (2) we get that

(4) 0(YlXlX2) (PO(X, zP(Y) + '13(yl)1)+' 23() IX2)'
If we do not know that Tp has the form given by (2), we can think of 'T as an estimate of

the corresponding best theoretical approximation

(5) (p*(y Ix1 X2) = (P5(x1x2) + P3p(y) + 'P*3(y1xl) + qP3(ylx2).
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to cp, where best means having maximum expected conditional log-likelihood subject to

the indicated form.

Fineberg (1975) states that "There remain a variety of unsolved problems in the

analysis of multidimensional contingency tables, solutions to which would be an

enormous help to those dealing with observational studies." He then goes on to list five

such problems, of which the first is "the development of methods for the analysis of

mixtures of continuous and categorical data, especially in situations where there are both

continuous and discrete response variables."

Observe that equations such as (1)-(5) are applicable when X1 , ... ,XM, Y1,...,y

are a mixture of discrete and continuous random variables. In order to employ finite

parameter conditional maximum likelihood estimation in this context, we can associate

the continuous variables with polynomial splines. From a methodological viewpoint, an

attractive approach would be to use adaptive model selection techniques as in MARS

[Friedman (1990, 1991)]. In the interest of mathematical tractability, however, in this

paper we will treat nonadaptively selected models. Given the observed values of

x1,... ,XN, these models have the form of a multiparameter exponential family. We

will further restrict attention to continuous random variables .X, . .. ,XM, y1, ....y

that each range over a compact interval. Without further loss of generality, we can

assume that each of these variables ranges over [0, 1].

It is then natural to conjecture that (under suitable conditions) the integrated squared

error of qx as an estimate of the corresponding best approximation p* and the integrated

squared error of each component of (p as an estimate of the corresponding component of

(p* should approach zero as n -4. Suppose the components of p* all have p derivatives.

In light of Stone (1982, 1985, 1986, 1991a, 1991b, 1991c, 1991d) and Hasminskii and

Ibragimov (1990), it is natural to conjecture that these integrated squared errors should

converge to zero at the optimal rate n-2p/(2p+d) and hence that choosing d <M +N

should mitigate the "curse of dimensionality." The main purpose of the present paper is

to verify the latter conjecture and thereby to provide theoretical motivation for the use of

polynomial spline estimation as a building block in modelling conditional distributions



4

involving random variables some or all of which are continuous.

2. Statement of Results Set £ = [0, 1]M and y= [0, 11N. Given a function h on

,Xxy and given xE£, set c(x;h)=logf exp(h(ylx))dy; if c(x;h)<W, then

exp(h(yI x) - c(x; h)) is a density function onY Given a subset s of (1, . . . ,M + N), let

ds denote the space of functions onW xythat only depend on the variables

x1lesn{I....,M) and Y,,1,lesn{M+1, ....,M+N).

Let <0 be a nonempty collection of subsets of (1,... , M + N). It is assumed that

1, .... ,M) c <0. It is also assumed that Q90 is hierarchical; that is, that if s is a member

of 10 and r is a subset of s then r is a member of Q90. Let Mo denote the collection of

functions of the form h =hI with h5 E fors Eeo and such that c(x;h) <oo for

X EWC

Suppose X and Y have a joint density functionfx Y.

CONDmTION 1. The function logfx y is bounded on xy.

Let fX denote the density function of X, and let f denote the conditional density

function of Y given X. ThenfX y(x, y) =fx(x)f(y I x) for x EW and y Ey Set v = logf.

The expected conditional log-likelihood function A(h), h E co, is defined by

A(h) = J [ [h(y I x) - c(x; h)]f(y I x)dy]fX(x)dx.
The first two parts of the following theorem will be proven in Section 3; the third part,

which is contained in the information inequality, is a consequence of Jensen's inequality.

THEOREM 1. Suppose that Condition 1 holds. Then there is afunction h*E MO such

that A(h*) = maxhC A(h). The function 0p* = h* - c( ; h*) is essentially uniquely

determined. If p = h - c(* ; h)for some h E c6, then p* = ( almost everywhere.

Set

(h1, h2) = J[Jhl(ylx)h2(yI x)f(yI x)]fx(x)dx

and 1lhl12 = (h, h) for square integrable functions h1, h2, h on xy. For s E o", let N2y- N~~~~
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denote the space of square integrable functions in X7 and set

A°s = (he 2c: h Le2Qrforrcswith r.s).

(Here h lM2-means that (h, k) = O for k E oV2r.)

Set de= (s E eSo:sn (M + 1,I ... ,M + N) * 0) and d = maxSE9#(s). It is assumed

that d . 1. LetM denote the direct sum of e*°S, s EEe. Then each h E d can be written inS

an essentially unique manner in the form h = £5h5 = h where h5 E MS for s E I

[see Lemma 1 of Stone (1991a)].

Suppose the function p* in Theorem 1 is square integrable. Then it can be written in

an essentially unique manner as = r- c(* ; Xsp*) with q* E MO for s E I.

Let 0 < 3 < 1. A function h on £ x y is said to satisfy a Holder condition with

exponent (3 if there is a positive number B such that

Ih(ylx)-h(yOjxO)j <B(lx-xol3+ Iy-yOIl3), xO,xeXandyo,yEY,;
here IxI = (xI+ +x)1/2is the Euclidean norm of x=(x1,...,x) and IYI is the

Euclidean norm of y. Given an (M + N)-tuple a = (a ...am+N) of nonnegative

integers, set [a] = a1 + + aM+N and letDa denote the differentiable operator defined

by

Da= [a]Dcc-aa1 aM+a I aM+N
dx1 dMd)?l

Let m be a nonnegative integer and set p = m + ,B. It is assumed that p > dl 2.

CONDmTION 2. The function Op* is bounded and, for s E E and [a] = m, the function

( onX xYis m-times continuously differentiable and Da( satisfies a Holder condition

with exponent 13.

Let (X1,Y),... (Xn Yn) be a random sample of size n from the distribution

having density functionfX y, and let ( , )n denote the semi-inner product defined by

(hl h2)n = n ihl(YiXi)h2(Yi2Xi
The corresponding seminorm is given by llhll2 = (h, h).

Let K = Kn be a positive integer and let Ik' 1 < k < K, denote the subintervals of

[0, 1] defined by Ik = [(k -1)/K, k/K) for 1 < k < K and Ik = [l - /K, 1] for k = K. Let m



6

and q be fixed integers such that m .0 and m > q. Let 2 =2n denote the space of

functions g on [0, 1] such that

(i) the restriction of g to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q .0,

(ii) g is q-times continuously differentiable on [0, 1].

Let B1, 1 <j<J, denote the usual basis of2 consisting of B-splines [see de Boor (1978)].

Then, in particular, B..0 on [0, 1] for 1 <j<J and £.B.= 1 on [0, 1]. Observe that

K< J < (m + 1)K. It is assumed that J. 2.

Given a subset s of (1,...,M + N), let Ys denote the space spanned by the

functions g onW xyof the form

g(y|IX) = nlsn 1 .,}(Xl)RlESn{M+l, . M+N9l(YIw)'
where = (xl * * * ,x )9 y = (Y, * * and g, E 2 for I Es. Then Ys has dimension

J#(S) Set

Y1 = (gE g for every proper subset r of s, Es 9.

(Here g Lyn r means that (g, h)n = 0 for h e d
Set>0 {1 ,. . M}and > = (IsG g s E >O for s E eo°}. The space

YO + Y = (ISE ogS: gS E YS for s E <0'0
is said to be identifiable (relative to the random sample of size n) if the only function

g E > + Y such that g(Yi I Xd) = 0 for 1 < i < n is the zero function; otherwise, Yo + 3 is

said to be nonidentifiable. Suppose 0+ Y is identifiable. Then ( . )n is an inner

product on Yo + Y and 11 jj1n is a norm on Yo + Y; that is, llglln > 0 for every nonzero

function g E + Y. Moreover [see Lemma 2 of Stone (1991a)], Y is the direct sum of

3sX s E 9; that is, each g e can be written uniquely in the form g = £5g5, where

gs E 3>S for s E e.

CONDTION 3. J2d = o(n )for some 6> 0.

It follows from Theorem 1 of Stone (1991a) that if Conditions 1 and 3 hold, then

P(Y0 + Y is nonidentifiable) = o(l).
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We refer to the model corresponding to the assumption that

f(y x) = exp(g(y I x) - c(x;g)), xEf andy E y,

as a multivariate log-spline conditional model. The corresponding conditional log-

likelihood function l(g), g E Y, is defined by

1(g) = 1i[g(y1 Xi) - c(X; g)].

Ifg E~> and l(g) = maxgEyl(g), then =g-c( ;g) is referred to as the maximum

conditional likelihood estimate of p* and f = exp(p) is referred to as the maximum

conditional likelihood estimate of f* = exp(p*). If Yo + Y is identifiable and ip exists,

then i = X - c(* ; E P), where S E YS is uniquely determined for s E e. According

to Lemma 9 in Section 4, if Conditions 1 and 3 hold, then ip exists except on an event

whose probability tends to zero with n.

The rate of convergence of p to (p* is given in the next result, which will be proven

in Section 4.

THEOREM 2. Suppose Conditions 1-3 hold. Then

0 j-P + VYln S E 2Y,'Pqs 'psll °p[JP+wa;]sE
so

IP-q*11=OPI JI+ l

Observe that if Condition 3 holds with J - n11(2p+d) then p > d/2.

COROLLARY 1. Suppose Conditions 1 and 2 hold and that J - nl/(2P+d). Then

II^ *11 o (n-p1(2p+d)) SE°

so

P- (p* = 0p(n-p(2p +d)).
The L2 rate of convergence in Corollary 1 does not depend on M + N. It is clear [see

Stone (1982) and Hasminskii and Ibragimov (1990)] with d = M + N that this rate is

optimal. When d =M + N, it is possible to use the tensor product extension of de Boor

(1976) to obtain the pointwise and Loo rates of convergence of i to' p [see Stone (1989,
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1990, 1991d) and Koo (1988)]. Stone (1991d) contains a more extensive theory when

M =N = 1. The analog of Theorem 2 for interactive spline regression was obtained in

Stone (199la), the analog for generalized interactive models was obtained in Stone

(1991b), and the analog for multivariate log-spline models was obtained in Stone

(1991c).

The density function of X and the joint density function of X and Y can be

estimated as in Stone (1991c), from which we can obtain an alternative estimate of the

conditional density function of Y given X. Some conceptual advantages of the approach

of the present paper over this alternative approach are discussed in Stone (199id). An

additional advantage of the present approach when N = 1, m = 1 and d . 2 is the absence

of the need for numerical integration in solving the maximum likelihood equations.

3. Proof of Theorem 1. Let h1 and h2 be in 760. Fort E [0, 1], set

h(t)(yIx) =(1 - t)hl(y I x) + th2(y 1x), x Es andy E Y,
C(x;t) = c(x; h(t)), x EX,, and

f(t)(y Ix) = exp(h(t)(y x) - c(x; t)), x E W and y EY
Then h(t) E O. Also, C(x; t)) is a continuous function of t and its second derivative is

given by

(6) CC(x;t)=| [h2(ylx)-hl(ylx)]2f(t) (yIx)dy

- [f [h2(yIx)-h1(yIx)]f(t)(yI x)dy]

for 0 < t < 1. (Observe that the right side of (6) can be written as a variance. It follows by

a standard argument in the context of one parameter exponential families or that of

moment generating functions that the various integrals appearing in (6) are finite.) We

conclude from (6) that C(x; ) is convex on [0, 1] and that it is strictly convex unless

h2(* x) - h( * x) is essentially constant on Y< Observe that

(7) A(h(t)) = (1 - t)A(hl) + tA(h2) + |f[(I - t)c(x; h1) + tc(x; h2) - C(x; t)]fX(x)dx.

The first part of Theorem 1 will now be verified. It follows from Condition 1 and
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the information inequality that

A(h)=J h(y Ix)f(y x)dy]fX(x)dx - c(x; h)fX(x)dx
y

< J [ [logf(y j x)]f(y| x)dy]f,(x)dx < xo, hE MO
and hence that the numbers A(h), hE have a finite least upper bound L. Let IA I
denote the Lebesgue measure of a subset A of $ x Y. Choose hk E "o for k . 1 such that

A(hk)-4L as k-oo. Set fk(ylx)=exp(hk(ylx)-c(x;hk)) for XEff and yEy. Since

fk(* ; x) is a density function on yfor x E X,

I ((X, y) Exy: hk(yIx) -c(x;hk).B)I < exp(-B), BEER.

It follows from the inequality

fk fklog<T-l
that

(8) limB, limsupkI ({(x,y)E$xy Ihk(yIx)-c(x;hk)I .B)j =0.

It is a straightforward consequence of (6)-(8), Lemma 1 of Stone (199ib), and the

definition of L that there is a function h* E Mo such that hk - c(* ; hk) -. h - c(* ; h*) in

measure as k -e oo. Necessarily, A(h*) = L = max A(h).

In order to verify that h* - c( ; h*) is essentially uniquely determined, suppose hi

and h2 are in MO and that A(hi) = L and A(h*) = L. It then follows from (6) and (7) that,

for almost all x E ff, h*(y I x) - hi (y I x) is essentially constant inYand hence that

[h*(y I x) - c(x; h2)] - [hi(y I x) - c(x; h]
is essentially constant in y. Since

Jfexp[h*(yIx) - c(x;hi)]dy =1 and f exp[h*(yjx) - c(x;hi)]dy = 1,

the constant difference must equal zero. Therefore h- c( ; h*) =h- c( ; h*) almost

everywhere onf x ,
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4. Proof of Theorem 2. Throughout this section it is assumed that Conditions 1-3

hold. Let llhll, = supXW, YE h(y I x) denote the L. norm of a function h onW x y.

LEMMA 1. Let T be a positive constant. Then there are positive numbers M1 and M2
such that

- Ml Ilh - c( * ; h) - P*112_< A(h) - A((p*) < - M211h - cf * h) - *p 1
for all hE MOsuch that lh- c(. ;h)II.< T.

PROOF. Given h E MO0 with Ilh - c( ;h)lloo < T and given t E [0, 11, set

h(t)(yIx) = (1 - t)p*(yIx) + th(yI x), XEW andy E Y,
and C(x; t) = c(x; h(t)), x E X. Then

d A(h(t)) =0

and hence, by (7),

A(h) - A((p*) = (1- t) dA(h(t))dt= 1t) t)fx(x)dxIdt.
J o dt70 l

Thus, by (6), there is a positive number M1such that

A(h) - A((p*) 2 -Ml lih - c. ; h) - q*II2, hEM8 with Ilh - c(. ; h)II. < T.

By another application of (6), in order to complete the proof of the lemma, it suffices to

show that if hk E O and lIhk- c( ;hk)II < T for k . 1, then there is an E >0 such that

IL0[hk(y Ix) - c(x; hk) - *(y lx)]f*(y l x)dyj dx

< (1-E)J [hk(ylx) -c(x;hk)- *(ylx)]2f*(ylX)dy] dx, k 1.
y

This result is easily established under the additional assumption that

I iminfk|[| [hk(yIx)-c(x;hk) 0(Y|I)] f*(y I ])ydx>
(Note for a given he o and xeX that if h(y x) - c(x; h) - p*(y x) is essentially

constant in y, then this constant equals zero.) Otherwise, we can assume that

1imk[0J [hk(Y I x) c(x;k)- *(yI x)]2*(yIx)dy]dx=.
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Then there is a bounded function R such that

*1=J[f exp(hk(y x) - c(x; hk))dy dx
y

= |f[[ exp(hk(y x) - c(x; hk) - (p*(y x))f*(y I x)dy]dx
y

=1+J [[ [hk(ylx) - c(x;hk) - p*(yI xlf*(yI x)dy]dx

+ J4 R(y I x)[hk(y lx) - c(x; hk) - *(yix)]2f*(yI x)dy]dx

which yields the desired result. o

The next result is Lemma 3 in Stone (1991b).

LEMMA 2. There is a positive numberM such that II . M3J'd/2jIgjl for g E .

According to a simplification of the argument used in Section 3 to prove Theorem

1, there is a function gnE Y such that A(g*) =min A(g). The function =
n ~~~n gEY Pn

g- c( ;g ) is uniquely determined. (Actually, 9n* depends on J rather than n, but we are

mainly thinking of J as depending on n.) If Y0 + Y is identifiable, then gn = (spe with

TS E YO being uniquely determined for s E oY. The proof of the next result is essentially

the same as that of Lemma 3 of Stone (1991c).

LEMMA 3. 11q9*- (p*112 = Q(J 2p) and 1lpnl- p*IIX = Q(Jd/2-P).

LEMMA 4. Suppose o +Y is identifiable, and let i= -c( ; ) where

n= Ts E Y with E vs being uniquely determinedfor s e OY. If

11 -_PnI2 = Op(J-P + Jd/n),
then

14 _ns- I2= - 2P+ Jd/n), SE Y.

PROOF. Let ( * denote the inner product corresponding to Lebesgue measure on

W xy, let 11 j11 denote the corresponding norm, and let Y(O) denote the space of

functions in
E 3Y s that are orthogonal to Yo relative to the inner product )0.
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Then( =h -c(;h)and(pn* = h* - c(. ;h*), where h ,h* E >(). Now

lIhn C( ;hn)-[h -c( ;h )]IO= Op(J2P +JdIn,
so

| h[^n(yl| x) - h*(yl| x)]dy - [c(x;hhn) -c(x; h*)]] dx = Op(J 2P + J/In).

Also, Iyhn(ylj)dy is in Yo on the one hand and it is orthogonal to Yo on the other

hand. Thus J hn(y I )dy =0. Similarly, fh*(y *)dy =0. Therefore,

J[c(x; h,)- c(x; ha)] dx = Op(J + Jd/n),

so IIIik - hhI = + Jd/n) and hence Ilh - h*II2 = (J2P +J

Set &an=E Yo and a*=hn-g*E . Then

119- * + a - a* 112 = O (.F2P +

Thus, by Lemma 7 of Stone (199la),

119- - Bn + an - a* 112 = opvJ2 + Jd

Since an a* E Yo and - *
I , we conclude that

n n g~~lin- gn ln =pJ09 J/)j19 -g*j12 =Q0(J2p+Jd/)
Thus, by Lemma 8 of Stone (199la),

I1P, - (PI12 = Op(JF2p + Jd,n), s e(.

The desired conclusion now follows from another application of Lemma 7 of Stone

(199la). o

LEMMA 5. IRes - qsII2 - Q_(J P-2p J /n) for s E O.

PROOF. Suppose Yo + Y is identifiable, and let g denote the orthogonal projection

of p* onto Y relative to ln Then = s where 9;n E YO is uniquely determined for

s E 1. Set = - c(- ;g). It follows from Theorem 3 in Stone (1991a) that

(11) - PsII2=-p(F +J In), se cs,
and hence from Lemma 2 that

II -_ *12 = op(J-2P + JIn).
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Thus, by Lemma 3,

IIfn- PjIl,-= (J P + jdn.
Consequently, by Lemma 4,

(12) 11 - _1S12 = O(J2P +Jd/n), s EQ.

The desired result follows from (1 1) and (12). o

Let rn . 1, be positive numbers such that Jd = 0(1) and Jdlog n = o(nVn). The

next result follows from Lemma 2 and Bernstein's inequality (see the proof of Lemma 5

in Stone (1990)].

LEMMA 6. Given a > 0 and e > 0, there is a 6> 0 such that, for n sufficiently large,

j(P)[(|P ) - [A(g) - A(qp*)] .2ev] .2 exp(- 6nt)
for allgEE with llg - c(. ;g) - 9 II < atr.

We define the "diameter" of a set B of functions onX xyas

SuPtI 112 - 91l°Ho: '92 E B}.
The proof of the next result is essentially the same as that of Lemma 8 of Stone (199ib).

LEMMA 7. Given a > 0 and 6 > 0, there is a positive constant such that

{g-Cc( ;g):g E and jig- c(. ;g) -4P1 < arn)

can be covered by O(exp(M4Jdlog n)) subsets each having diameter at most &n.

LEMMA 8. Let a > 0. Then, except on an event whose probability tends to zero with

n, I(g) <l(*)for allg E such that lg - c(. ; g) - npI1 = arn.

PROOF. This result follows from Lemma 1, with qi* replaced by pn and MO replaced

by ,, Lemmas 6 and 7, and the inequality
1(g2) -1(g1)

n <IIlg2-c(e ;92)-[gl c( ;gdII.1 9'g92 Ev1

LEMMA 9. The maximum likelihood estimate of .p of the form p = g- c(* ; g) with

g E f exists and is unique except on an event whose probability tends to zero with n.

Moreover, II(P- (P;3I1I0 = op(l).
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PROOF. It follows from Lemma 8 and the concavity of A(g) as a function of g that

I - (pn*I = op($) and hence from Lemma 2 that II- PnIp,= op(/21) = op(l). o

For s e 1, let °s denote the collection of ordered #(s)-tuples ji, 1 E s, with

j, E { , . . . ,J) for I E s. Then # ) = J#(S) For j /E, let B denote the function on

$ xYgiven by

B5.(ylx)= H B (xl) Hn B (YM)Slei41,S[1... ,M)1 (l esn(M-i1, ,M+N) 1I
for x = (x1, ... ,xM) E and y= (Y1,.. .,YN) eYThen the functions B5J e/5, which

are nonnegative and have sum one, form a basis of YS.
Set K = V). Given a K-dimensional (column) vector 0 having entries tl , s e e

and j e /S' set

gs(I ;0 X 6.B. SEQY,
jE0% SJ SJ'

gQ ;O)=lg5( L;),
S

C( ; 0) = c( ; g(- 0)) = log |exp(g(y | ; dy,
y

and

fl 0) = exp(g(. 0) - C( ; 0)).
Then the conditional log-likelihood function can be written as

i £i i i I i i

Let

S(fJ= a%1(fJ

denote the score at 0; that is, the K-dimensional vector having entries

d i (E) £i [B5(Yi Xi) - J B5 (yIXi)fl(y Xi; ()dy]
Let

doddl
be the K x K matrix having entries
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(13) d ; () =-X SiJi(yI X)Bsj2(yI X1)fyty X;)dy

[B5 (y X1)fl(y X; 8)dy] [YBSd(YI X1)f(y X1; )] dy].
Set 0= (JOE : g ( I ;U)E yO forsE QY).

n snLet & be gilven by qn* = Is 9;S - Q. ; O'"), where O*S=gS .;f) E YO for s E OY.

Let 0 denote the maximum likelihood estimate of 0, so that ' = s 0 - C(0;6), where

s=9 (- I ;O) E O for s E o. Then O' and O are in e. The maximum likelihood equa-

tion S(6) = 0 can be written as

TTs(O* + t(0- ))dt = - S(0).

Thus it can be written as D(0- 8) = -S(O'), where D is the K x K matrix given by

D = J dal(8 + t(O- O)dt.

Let denote the Euclidean norm on RK. It follows from the maximum likelihood

equation that

(14) (0- 6)tD(0 g) = - (9 9)tS(G).
We claim that

(15) 1S(&)12 =Op(n)

and that (for some positive constant M5)

(16) ( - 0)tD(O -') < - M5nJFdI 0I 2

except on an event whose probability tends to zero with n. It follows from (14) -(16) that

10- 0I= Op(Ji/n) and hence that
(17) 1Is-_Psl2=0P(Jd/n), sE Y',
and

(18) 1I _(*112=2 p(JdIn).
Theorem 7 follows from (17), (18) and Lemmas 3 and 5.

To verify (15) note that

E[Bsj(Y IX)] = J[JBsj(yI x)f(yIx; O)dy]fX(x)dx, s E 9 andj E
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Consequently,

EIS() 1 =nXn var(B i(YIX))<nE X E[B2.(YIX)]=O(n),
j,S Si/ s j sj

so (15) holds.

Finally, (16) will be verified. It follows from (13) that

(19) [ g2(yIXi;)ff(yIXi;9)dy- [fg(YIXi;&)f(yIXi;O)dy]]
for 3,9 E RK. By Condition 2, the inequality p > d/2, and Lemmas 3 and 9, there is a

positive constant T such that

(20) limn P(11pInll < T and 11 .7 =1.

It follows from (19) and (20) that there is an E > 0 such that, except on an event whose

probability tends to zero with n,

6tD6< - [f g2(yIX;8)dy- g(yIX;X)dy] BEaR

Consequently [see Lemma 7 of Stone (1991a) and its proof], there is an E > 0 such that,

for el > 0, except on an event whose probability tends to zero with n,

(21) 6tD6< -En{E 2(y X;)dy]- E [[Jg(y IX; )dy] 2]

- 1E[Jg (Y X;3)dy]}, E;

herez+ =zforz>Oandz+=Oforz<0.
Suppose that EE . Then g(* I * ; 6) Ln YO; that is,

(22) ig(YiX i; 6)h(Xi) = 0, hE Yo
Chooose E2 > 0. It follows from (22) and Lemma 7 in Stone (1991a) that, except on an

event whose probability tends to zero with n,

(23) | E[g(Y I X; &)h(X)] I < 2 ( 6EE and hE Yo
Set h(x; &)= lJvg(yIx;6) for XE$ and 6E0. Then h(.; ) E Yo for 6Ei. By

Schwarz's inequality,

(24) 1 E [g(YIX; )-h(X;S]h(X)) I < {[( X;-h(X;]S)2)/[h2(X)],
6e RKandhe Y.
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It follows from (23) and (24) that, except on an event whose probability tends to zero

with n,

jE[h(X; 6)h(X)] I X[;2 4) + 1E([g(YjX;6) - h(X; 6)]2)Jv[i2X)]
Se and hE y0.

Choosing h = h( ; 6), we conclude that, except on an event whose probability tends to

zero with n,

g4ih 5(X; 6)] . e2W4g2(Y X;6) + t{g(Y X;6) - h(X; b)]2, 35E 0.

Consequently, except on an event whose probability tends to zero with n,

(25) E{[g(Y I X; 6) - h(X; b)]2} 2 ( E[g (YI X; 6)], 6e 0.

It follows from Condition 1, (21) and (25) that there is an E > 0 such that, except on an

event whose probability tends to zero with n,

(26) tD6< -enJ | g2(yIx;65)dydx, 38E e.
y

According to Lemma 6 of Stone (1991a), there is an e > 0 such that, except on an

event whose probability tends to zero with n,

(27) J J g2(yIx;6)dydxEXJ | g2(yIx;6)dydx, 3E
Y s Y

It follows from the basic properties of B-splines and repeated use of (viii) on page 155 of

de Boor (1978) that, for some E > 0,

J J g2(y Ix; 6)dydx 2 eJ #(S)£2., sEeYandERDK

and hence

(28) J f 92(YI8x;)dydxEl- d SK2,UZK.
s y

Equation (16) follows from (26)-(28) applied to 6= 0- 8. This completes the proof of

Theorem 2.



18

REFERENCES

DE BOOR, C. (1976). A bound on the LO.-norm of L2-approximation by splines in terms of

a global mesh ratio. Math. Comp. 30 765-771.

DE BOOR, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.

FIENBERG, S. E. (1975). Comment on "The design and analysis of the observational

study-A review" by S. M. McKinlay. J. Amer. Statist. Assoc. 70 521-523.

FRIEDMAN, J. H. (1991). Multivariate Adaptive Regression Splines (with discussion).

Ann. Statist. 19 1-141.

HAsMINSK[, R. and IBRAGIMOV, I. (1990). Kolmogorov's contributions to mathematical

statistics. Ann. Statist. 18 1011-1016.

HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J.

Amer. Statist. Assoc. 58 13-30.

Koo, J.-Y. (1988). Tensor product splines in the estimation of regression, exponential

response functions and multivariate densities. Ph. D. Dissertation, Dept.

Statist., Univ. California, Berkeley.

SCHUMAKER, L. L. (1981). Spline Functions: Basic Theory. Wiley, New York.

STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression.

Ann. Statist. 10 1040-1053.

STONE, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist.

13 689-705.

STONE, C. J. (1986). The dimensionality reduction principle for generalized additive

models. Ann. Statist. 14 590-606.

STONE, C. J. (1989). Uniform error bounds involving logspline models. In Probability,

Statistics and Mathematics: Papers in Honor ofSamuel Karlin (T. W.

Anderson, K. B. Athreya, and D. L. Iglehart, eds.) 335-355. Academic Press,

Boston.

STONE, C. J. (1990). Large-sample inference for log-spline models. Ann. Statist. 18

717-741.



19

STONE, C. J. (1991a). Multivariate regression splines. Technical Report No. 317, Dept.

Statist., Univ. California, Berkeley.

STONE, C. J. (1991b). Generalized multivariate regression splines. Technical Report No.

318, Dept. Statist., Univ. California, Berkeley.

STONE, C. J. (1991c). Multivariate log-spline models. Technical Report No. 319, Dept.

Statist., Univ. California, Berkeley.

STONE, C. J. (199id). Asymptotics for doubly-flexible logspline response models. Ann.

Statist. 19.To appear.


