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Let f be a density function on y= [0, 1]N such that p = log f is bounded on

y Consider the normalized approximation (p* to (p having the form of a

specified sum of functions of at most d of the variables and, subject to this

form, chosen to maximize expected log-likelihood, and let p be a suitably

defined lower bound to the smoothness of q*. Consider a random sample of

size n from f. Maximum likelihood and sums of products of polynomial

splines are used to construct estimates of (p* and its components having the

optimal L2 rate of convergence n pl(2p+d).
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1. Introduction. In this paper we will consider models for continuous data that are

analogous to log-linear models for discrete (categorical) data. In order to motivate the

form of our models, we first consider discrete random variables Y1,. YN that range

over finite sets y1,... 'YN respectively. Let f denote the joint probability function of

these random variables or, equivalently, the probability function of Y = (Y1, . . . YN)9
suppose thatf is positive onY=Y x ... xYN, and set p = logf. Then we can write

(1) (P(Y) = (PO + £ j(.Y.) + j£ £ k + Pjkl(yj' Yk' Yl)

The right side of (1) is referred to as the saturated log-linear model for 9 or as its

ANOVA decomposition. In order to obtain a unique such decomposition, suitable

constraints have to be imposed on the main effects (p1, the two-factor interactions vjk the

three factor interactions (Pjkl" and the other nonconstant components of (.

In practice, unsaturated submodels of (1) are commonly employed. Let d be the

maximum number of variables that are allowed in any one component of the model.

When d= 1, we get that

(2) (p(y) = (P0 + j (j .(Y

which corresponds to the assumption that Y1, ... YN are independent; when d = 2, we

get that

(3) (P(Y) = (PO + jS (P (Y ) + (P<fjk(Y Yk)

Given a random sample of size n from the distribution of Y, we can use finite

parameter maximum likelihood to come up with the estimate (p of (p given by

(4) O(Y) = (Po + £ j'Y1) + j£ k(YPj Yk)+yj << Yjjklj(Y' Yk' Yi)
Again, in order to obtain a unique such ANOVA decomposition, we need to impose

constraints on the various nonconstant components. Examination of the main effect

components @ , the two-factor interactions jk' and so forth can give insight into the

shape of ' and hopefully of (p as well.

An example of a hierarchical, unsaturated log-linear submodel with d = 2 when

N = 3 is given by

(5) T(yl')y2ly3) --`. 'PO' 'Pl(yl) + 'P2(y2) +P3(y3) +'Pl2(ylly2) +'PI3(yl9y3)'
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The joint probability function of Y1, Y2 and Y3 has the form given by (5) if and only if

Y2 and Y3 are conditionally independent given Y1. The corresponding maximum

likelihood estimate is given by

(6) '(y1,y2,y3) = q'0+ 0i&1) +(P2(y2)+ ep3(Y3) + ^ 12(Y1,Y2) + 13(yl1 Y3)
If we do not know that (p has the form given by (5), we can think of ip as an estimate of

the corresponding best theoretical approximation

(7) (p*(Y1' Y2' Y3) = (P + 'Pj(Y1) + (P2(Y2) + (P3(Y3) + 'Pj2(y 1' Y2) + (Pj3(Y1 Y3)

to (p, where best means having maximum expected log-likelihood subject to the indicated

form.

Equations (1)- (7) are also applicable when Y, .... 9YN are a mixture of discrete

and continuous random variables having joint probability-density function f. In order to

employ finite parameter maximum likelihood estimation in this more general context, we

can associate the continuous variables with polynomial splines. From a methodological

viewpoint, an attractive approach would be to use adaptive model selection techniques as

in MARS [Friedman (1990, 1991)]. In the interest of mathematical tractability, however,

we will confine our attention to nonadaptively selected models, which have the form of a

multiparameter exponential family. We will further restrict attention to continuous

random variables Y1,... YN that each range over a compact interval. Without further

loss of generality, we can assume that each of these variables ranges over [0, 1].

It is then natural to conjecture that (under suitable conditions) the integrated squared

error of (p as an estimate of the corresponding best approximation (p* and the integrated

squared error of each component of ' as an estimate of the corresponding component of

(p* should approach zero as n -. oo. Suppose the components of (p* all have p derivatives.

In light of Stone (1982, 1985, 1986, 1991a, 1991b) and Hasminskii and Ibragimov

(1990), it is natural to conjecture that these integrated squared errors should converge to

zero at the optimal rate n 2p/(2p+d) and hence that choosing d < N should mitigate the

"curse of dimensionality." The main purpose of the present paper is to verify the latter

conjecture and thereby to provide theoretical motivation for the use of polynomial spline

estimation as a building block in modelling the joint distribution of random variables
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some or all of which are continuous.

N2. Statement of Results. Given a function h on y= [0, 11 set c(h)=

log J,exp(h(y))dy; if c(h) < oo, then exp(h - c(h)) is a density function on y. Given a

subset s of { 1,. ... ,NJ, let M denote the space of functions ony that only depend on

the variables yl, I E s. Let <0 be a nonempty collection of subsets of 1,... ,N). It is

assumed that <0 is hierarchical; that is, that if s is a member of <0 and r is a subset of s

then r is a member of s Let M%'o be the collection of functions of the form h = e hs
with hs E d6s fors E <0 and such that c(h) <oo.

Let fbe a density function on,

CONDmON 1. The function log f is bounded on y.

The expected log-likelihood function A(h), h E 4Mg, is defined by

A(h) = J[h(y) - c(h)]f(y)dy = J h(y)f(y)dy - c(h).
Y Y

The first two parts of the following theorem will be proven in Section 3; the third part,

which is contained in the information inequality, is a consequence of Jensen's inequality.

THEOREM 1. Suppose Condition 1 holds. Then there is a h* E MO such that A(h*) =

maxhEM A(h). The function p* = h* - c(h*) is essentially uniquely determined. If (p =

h - c(h) for some h E MO, then q,* = (p almost everywhere.

Set (hi, h2) = f hl(y)h2(y)f(y)dy and 1Ilhl2 = (h, h) = Jyh2(y)f(y)dy for square

integrable functions h1, h2, h ony For s E <Y, let M2s be the space of square integrable

functions in MS and set

d6S= {hEM2: h LM2forrcswithr.s}, SE&.

(Here h l c2 means that (h, k) = 0 for k E Mr.)r r

Set cY=cY'0\{0) and d=maxSE?)(s). It is assumed that d. 1. Let denote the

direct sum of AO-, S E e(Y. Then each h E M2 can be written in an essentially unique
s

manner in the form h= h5 = ~h5 with%h EcJ forS EeY [see Lemma 1 of Stone

(1991a)].
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Suppose the function q* in Theorem 1 is square integrable. Then it can be written in

an essentially unique manner as qp* = I (p* - c(X p*) with q* E o for s E 1.

Let 0 < p < 1. A function h on yis said to satisfy a Holder condition with exponent

13 if there is a positive number B such that Ih(y) - h(yo)I < B y - yo I for yO,y E y;
here Iyj is the Euclidean norm (y+2 +y2)1/2 ofy=(y1,... yN) Given an N-tuple

a = (a. aN) of nonnegative integers, set [a] = a, +* + aN and let Da denote the

differentiable operator defined by

a ____a a]
a1 aN

OY) 1 1 NN
Let m be a nonnegative integer and set p = m + 13. It is assumed thatp > dl 2.

CoNDmoN 2. The function (p* is bounded and, for s E ( and [a] = m, the function

( on y is m-times continuously differentiable and Da!* satisfies a Holder condition

with exponent 13

Let Y1, .... , Yn be a random sample of size n from the distribution having density

functionf, and let ( , n denote the semi-inner product defined by

(hi, h2)n = n Xih1(Yi)h2(yd)
The corresponding seminorm is given by -lh2 (h, h).

Let K = Kn be a positive integer and let Ik, 1 < k < K, denote the subintervals of

[O, l] defined by Ik = [(k - l)/K, kIK) for 1 < k < K and Ik = [l1 - 1/K, 1] for k = K. Let m

and q be fixed integers such that m .0 and m > q. Let 2 = 2n denote the space of spline

functions g on [0, 1] such that

(i) the restriction of g to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q .0,

(ii) g is q-times continuously differentiable on [0, 1].

Let B1, 1 <j< J, denote the usual basis of £ consisting of B-splines [see de Boor (1978)].

Then, in particular, B..0 on [0, 1] for 1 <j <J and IB.=1 on [0,1]. Observe that

K < J < (m + 1)K. It is assumed that J 2 2.
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Given a subset s of 1,. ... ,N), let Y denote the space spanned by the functions g

on yof the form g(y) = 1ESgl(yl1), where y = (y 1, * * * yN) and g E 2 fOr 1 s. Then S

has dimension J(S). Set sg=s gs E Y for s E ef) and

Os= {g E v: n rfor every proper subset r of s), s E OY.

(Here g Ln± r means that (g, h)n = 0 for h e d Then =

The space I is said to be identifiable (relative to the random sample of size n) if the

only function g E such that g(YP) =0 for 1 < i < n is the zero function; otherwise, Y is

said to be nonidentifiable. Suppose > is identifiable. Then ( * , * )n is an inner product on

Y and 11 1nis a norm on Y; that is, lIgIln > 0 for every nonzero function g e Moreover

[see Lemma 2 of Stone (199la)], > is the direct sum of S, s E QY; that is, each g E can

be written uniquely in the form g = 0where g5E forsEeds.

CoNDmIoN 3. J2d = o(n1) for some 6 >O.

It follows from Theorem 1 of Stone (199la) that if Conditions 1 and 3 hold, then

P(> is nonidentifiable) = o(l).

We refer to the model corresponding to the assumption that f= exp(g - c(g)) for

some g E as a multivariate log-spline model. The corresponding log-likelihood function

l(g), g E Y, is defined by 1(g) = Si[g(Y1) - c(g)]. If g E and l(g) = maxg l(g), then9 ~~~Ey
(P = B - c(i) is referred to as the maximum likelihood estimate of p and f = exp(p) is

referred to as the maximum likelihood estimate off* = exp(p*). IfY is identifiable and qx

exists, then I - c( where ps E YO is uniquely determined for s E Y. Accord-

ing to Lemma 8 in Section 4, if Conditions 1 and 3 hold, then ip exists except on an event

whose probability tends to zero with n.

The rate of convergence of - to p* is given in the next result, which will be proven

in Section 4.
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THEOREM 2. Suppose Conditions 1-3 hold. Then

II s-(Ps*I pi-=P[ +VYln s E e°,
so

O'(P- p*II = o4 -P +4 ]

Observe that if Condition 3 holds with J ln/1(2p+d) then p > d/2.

COROLLARY 1. Suppose Conditions 1 and 2 hold and that J - nl(2P+d) Then

11'- - p*11 = Op(n-p/(2p+d), s E Y,

so

11P<PI= o(n-p/(2p+d)).

The L2 rate of convergence in Corollary 1 does not depend on N. It is clear [see

Stone (1982) and Hasminskii and Ibragimov (1990)] with d = N that this rate is optimal.

When d = N, it is possible to use the tensor product extension of de Boor (1976) to obtain

the pointwise and L rates of convergence of p to p* [see Koo (1988)]. Stone (1990)

contains a more extensive theory of univariate (N =1) log-spline modelling, and the

corresponding methodological issues are discussed in Stone and Koo (1986), Kooperberg

and Stone (1991) and Kooperberg (1991). Koo (1991) uses AIC to select K adaptively in

an asymptotically optimal manner in the context of univariate log-spline modelling.

Presumably his techniques are applicable to multivariate log-spline modelling. The

analog of Theorem 2 for interactive spline regression was obtained in Stone (199la) and

the analog for generalized interactive models was obtained in Stone (199ib).

3. Proof of Theorem 1. Let h1 and h2 be in M0. Set

h(t) = (1- t)h1+ th2 E Mo9C(t) = c(h(t)) and f(t) = exp(h(t) - C(t)), t E [0 1

Then C is a continuous function on [0,1] and

(8) C"(t)=J [h2(y) - h1(y)] tJ(y)dy- [h2(y)- h(y)]f '(y)dyI
y 0 th

for 0 < t < 1. (It follows by a standard argument in the context of one parameter

exponential families or that of moment generating functions that the various integrals
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appeanng in (8) are finite.) We conclude from (8) that C is convex on [0, 1] and that it is

strictly convex unless h2- h1 is essentially constant ony Moreover,

(9) A(h( )) = (1- t)A(hl) + tA(h2) - [(1- t)c(h1) + tc(h2) - C(t), 0 < t < 1.

The first part of Theorem 1 will now be verified. It follows from Condition 1 and

the information inequality that A(h) = f1/(y)f(y)dy - c(h) < f,Jlogf(y)]f(y)dy < Xo for

h E MO and hence that the numbers A(h), h E 'o, have a finite least upper bound L. Let

IA I denote the Lebesgue measure of a subset A ofY. Choose hlk E o for k . 1 such that

A(hk) - L as k -4 o. Sincefk = exp(hk - c(hk)) is a density function on ,

Y{yey:hk(y)-c(hk)M)iIexp(-M), MeR.

It now follows easily from the inequality

fk fklogT<T-1,
that

(10) limM_w limSUpk_ I (Y E Y: I hk(y) -c(hk) I .M}I =0

It is a straightforward consequence of (8)-(10), Lemma 1 of Stone (1991b), and the

definition of L that there is a function h* E O such that hk- c(hk) -th*- c(h*) in

measure as k-4e . Necessarily, A(h*) = L = max A(h).

In order to verify that h* - c(h*) is essentially uniquely determined, suppose that hli

and h2 are in and that A(h*) = L and A(hl) = L. It then follows from (8) and (9) that

h--i is essentially constant on Y and hence that [hl - c(h*)] - [lih - c(hi)] is

essentially constant. Since Jfexp(hi(y) - c(hi))dy = 1 and Jfexp(hl(y) - c(hl))dy = 1,

the constant difference must equal zero. Therefore hi - c(h*) =hl - c(hl) almost

everywhere on y

4. Proof of Theorem 2. Throughout this section it is assumed that Conditions 1-3

hold. Let llhll. = supyEYl h(y) I denote the L. norm of a function h onY.
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LEMMA 1. Let T be a positive constant. Then there are positive numbers M1 and M2
such that

M1llh- c(h) - 11j2 <_ A(h) -A(p*) < -M2I1h- c(h) -
2

for all h E MO such that Ilh - c(h)IIC. < T.

PROOF. Given h e M6O with Ilh - c(h) II < T and given t e [0, 1], set

h(t) = (1- t)p* + th and C(t) =c(h(t)).
Then

d A(h(t)) =06Tt t=O
and hence, by (9),

A(h) - A(O*) = 1( d2tA(P())dt= 1(-t)")d
O dt O

Thus, by (8), there is a positive number M1 such that

A(h) - A(*) 2 -M1 Ilh - c(h) - qII2, h E MO with Ilh - c(h)IL. S T.
By another application of (8), in order to complete the proof of the lemma, it suffices to

show that if hkE MO and lIhk - c(hk) II < T for k . 1, then there is an e > 0 such that

[f[hk(y) - c(hk) - P*(y)]f*(y)dy] <(1-e)J [hk(y) - c(hk) - (p*(y)]2f*(y)dy, k > 1.

This result is easily established under the additional assumption that

l iminfk- J [hk(y) - c(hk) - (P*(y)] dy >0.
y

(Note that if h E MO and h - c(h) - (p* is essentially constant on y, then the constant

equals zero.) Otherwise, we can assume that

1 imk_ J[hk(y) - c(hk) - (P*(Y)]2dy -0.
Then there is a bounded function R such that

1 = f exp(hk(y) - c(hk))dy
y

= J exp(hk(y) - c(hk) - (p*(y))f*(y)dy
y
+Jhk- c(hk) - (p(y)]f*(y)dy+| R(y)[h+)-c(hk) - p*(y)12f*(y)dy,
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which yields the desired result. o

The next result is Lemma 3 in Stone (1991b).

LEMMA 2. There is a positive numberM3 such that llgll.< M3Jd'12jgllfor g E J.

According to a simplification of the argument used in Section 3 to prove Theorem

1, there is a unique function gn Ey such that A(g*) = min A(g). Set = g - c(g*).

(Actually, gn and ' depend on J rather than n, but we are mainly thinking of J as

depending on n.) If Y is identifiable, then g* = E (p* , where 9S e YS is uniquelyn ns ss)
determined for s E OY.

LEMMA 3. j(p* - (p* 1I2 = Q(J 2p) and pn* - (p*II = O(Jd/2-p)

PROOF. By Condition 2 [see Theorem 12.8 of Schumaker (1981)], there is a

function gn E y such that lgn - * II < M4J.P; here M4 is a positive constant. Set (pn =
g -c(g ). Then 1Pn- .p1<M5J P, where M= 2M4. Consequently, p-pn-* 2<

M2 F2p. Thus by Lemma 1 there is a positive constant M such that
5~~~~~~~~~~~~

(1 1) A(9pn) - A((p*) 2 - M6J 2p

Let a denote a large positive constant. Choose g E y with llg - c(g) - P*112 =a- 2p

Then llg - c(g) - M5J2 < 2(a 2 2p Since p > d/2, it follows from Lemma 2 that,
for J sufficiently large, llg - c(g) II. <11.*11. + 1 for all such functions g. Thus by Lemma

1 there is a positive constant M7 such that, for J sufficiently large,

(12) A(g)-A(P*)<-M7a2p for allgEE with IIg-c(g)-qriI2 = a 2p

Let a be chosen so that a >M andM7a > M6. It follows from (11) and (12) that, for J

sufficiently large,

A(g) < A(4) for all g E y with jig - c(g) *112 = at 2p.
Therefore, by the concavity of A(g) as a function g, II <2Ip for J suffi-

ciently large. This verifies the first conclusion of the lemma. Observe that II 9* - 'P12 =

OV- 2p) and hence by Lemma 2 that 119n - pnll = Q(Jd/2P). Consequently,

1 - p*llj = O(Jd/2 P), so the second conclusion of the lemma is valid. o
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LEMMA 4. IRPZs - = op(J2p + Jd/n) for S E C?.

PROOF. Suppose Y is identifiable, and let denote the orthogonal projection of r

onto Y relative to Then g = s where E YO is uniquely determined for

s E oY. Set = - c(Q). It follows from Theorem 3 in Stone (1991a) that

(13) 11i _SI=I2= O(f-2pP+Jd/n) sEc,

and hence from Lemma 2 that

11-_ *112 = op(J2P + Jd/).

Thus, by Lemma 3,

1 1 n-_Pn* 1 = Op(J2P+J /n)

Consequently, by Lemma 6 of Stone (199la),

(14) 11 -_p;s112 = Op(J2P +Jd/n), se Y.

The desired result follows from (13) and (14). o

Let r , n . 1, be positive numbers such that Jd =0(1) and Alog n = o(nT2). Then n n

next result follows from Lemma 2 and Bernstein's inequality (see the proof of Lemma 5

in Stone (1990)].

LEMMA 5. Given a > 0 andE >0, there is a 3> 0 such that, for n sufficiently large,

P [ nn - [A(g) - A(pn)] . < 2 exp(- 3nf)
for allgeE with llg- c(g) - 9pj < ar.

We define the diameter of a set B of functions onyas

sup{Ilg2 - g llo: gIg2E B).

The proof of the next result is essentially the same as that of Lemma 8 of Stone (1991b).

LEMMA 6. Given a > 0 and 3 > 0, there is a positive constant M4 such that

{g -c(g): g E and ||g c(g) -(np11 < arn)
can be covered by O(exp(M4Jdlog n)) subsets each having diameter at most &n.
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LEMMA 7. Let a > 0. Then, except on an event whose probability tends to zero with

n, 1(g) <l(p ) for all g E y such that jig - c(g) - qIn1 = ar.
lp~~~~~~~ ~~n

PROOF. This result follows from Lemma 1, with p* replaced by < and MO replaced

by Y, Lemmas 5 and 6, and the inequality
1(g2) -1(g1)

n l<IIg2-c(g2)-[g1-c(9d)II,, 91'992

LEMMA 8. The maximum likelihood estimate of p of the form p = - c(i) with

gE y exists and is unique except on an event whose probability tends to zero with n.

Moreover, II' - (p*II.0 = op(l).

PROOF. It follows from Lemma 7 and the concavity of A(g) as a function of g that

114- ' = Op(Trn) and hence from Lemma 2 that II4'- q)II00 = op(Jd/2zn) = op(l). o

For S E cY, let $s denote the collection of ordered #(s)-tuples jl, 1 E S, with

j, E (1,.. . ,J} for I E s. Then #CJ) = J#(S). For j E S, let BSi denote the function on

given by

B (y)= HEnB.(l(), Y=(Yj,...,YN).
Then the functions S, j E S, which are nonnegative and have sum one, form a basis of

YS.
Set K = Xs#(s). Given a K-dimensional (column) vector 0 having entries 0 -, S E e

andj E /S, set

gs(;;)= X 6KB.S,Es, and g(*; )= sgQ(.;6).

Also, set C(q) = c(g('; 0)) = log f<xp(g(y; 0)dy and f(*; 0) = exp(g(-; 0) - C(0)). Then

the log-likelihood function can be written as

1(0) = logf(Yi; 0) =[g(Y ; 0 C(O]

Let

S(itn=a 1

denote the score at 0; that is, the K-dimensional vector having entries
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ou1 (O = EBSi(Yi) - yB j(y(ty O)dy]-

Let

de(a

be the K x K matrix having entries

(15) i; (6)= n[ B .(y)B .(y)f(y;G)dy"Si1d'Sj2 y Sjji S1J2

[BS -(y)f(y, )dy)L yBSd(y)f(y )dy]].

Set0= fOe IRK:gg$;U) EOforseQY).

Let 6' be given by * = v5e - C(O"), where ps = gS(*; O") E 10 forSe9. Let 0

denote the maximum likelihood estimate of 0, so that = S -C(U), where

g5(A;6)E for s E PY. Then 6* and 0O are in E3. The maximum likelihood equation
S((*) =O can be written as

J eS(O* + t(0- O`))dt = - S(`).

Thus it can be written as D(9- 0') = -S(O`), where D is the K x K matrix given by

D = J d 1(& + t(O- O)dt.

Let denote the Euclidean norm on RK. It follows from the maximum likelihood

equation that

(16) (o Y)D(O_- 6) = - (6- t)tS(O)

We claim that

(17) S(t) 1 2 = Op(n)
and that (for some positive constant M5)

(18) (o- t)tD(O- O) < -M fd b 12

except on an event whose probability tends to zero with n. It follows from (16) -(18) that

j0-6"j =OOp(J2/n) and hence that

(19)and- _P* 2

= OpVdIn), s E O,

and

(20) I1<P- (P; II2 = °p(JdIn).
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Theorem 2 follows from (19), (20) and Lemmas 3 and 4.

To verify (17) note that

E[BSi(Y) = J Bsj(y)f(y; 6t)dy, s Ee and j E

Consequently,

EIS(0) 12 = n£ X var(B .(Y)) < n£ £ E[B 2 (Y= O(n),
s E/5 SJ sj05 sjSoS S jE,$S

so (17) holds.

Finally, (18) will be verified. It follows from (15) that

___i 2 r2 K.(21) 6 (0)3 n g (y; )fl(y; )dy - Ag(y; )f(y,d])dy 6OER.

By Condition 2, the inequality p > d/2, and Lemmas 3 and 8, there is a positive constant

T such that

(22) limn oP(llzTnilj < Tand1jfjj < 7) =1.

It follows from (21), (22) and Lemma 7 of Stone (1991a) that there is an e >0 such that,

except on an event whose probability tends to zero with n,

(23) 6tD6< -Enj g2(y; 6)dy, 6 E E
y

(Note that Xig(Yi; 6) = 0 for 6 E t) According to Conditions 1 and 3 and Lemma 6 of

Stone (1991a), there is an 8> 0 such that, except on an event whose probability tends to

zero with n,

(24) J g2(y;6)dy.8eJ g2(y;&)dy, 6E 8.
y sC

It follows from the basic properties of B-splines and repeated use of (viii) on page 155 of

de Boor (1978) that, for some E > 0,

Jg2(y;&)dy.d-#(s) 62. SE eYandE RA

and hence

(25) J g2(y;)$dy>ep-d1212 ERK.
s 'y

Equation (16) follows from (23) -(25) applied to 6 = 0- 0. This completes the proof of

Theorem 2.
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