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Let X .I,X , Y be random variables and set X = (X1,...,XM). The

conditional distribution of Y given that X = x is assumed to belong to a

suitable one-parameter exponential family. Let 9(x) denote the dependence

of the parameter of this family on x. Consider the approximation 6* to the

function 6 having the form of a specified sum of functions of at most d of

the variables xl, . . . ,xM and, subject to this form, chosen to maximize the

expected conditional log-likelihood. Suppose X has a density function, and

let p be a suitably defined lower bound to the smoothness of 6. Consider a

random sample of size n from the joint distnrbution of X and Y. Maximum

conditional likelihood and nonadaptively selected sums of products of

polynomial splines are used to construct estimates of 6* and its components

having the optimal L2 rate of convergence n pl(2p+d)
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1. Intrduction. Consider a one-parameter exponential family of distributions on [R

of the form eB(O)Y-C(O)p(dy), 09eER. In Section 2, some regularity conditions are

imposed on this family, which are satisfied by most of the familiar exponential families,

including the following [see Stone (1986)]: normal with mean 0 and fixed variance,

binomial-logit, binomial-probit, Poisson, and gamma with inverse-scale parameter 0 and

fixed shape parameter.

Let X1, ... ,XM, Y be random variables and set X = (X1, . . . ,XM). Suppose that the

conditional distribution of Y given that X = x belongs to the indicated exponential family

and let 0(x) now denote the dependence of the parameter of this distribution on x. This

model is referred to as an exponential response model and 9 is referred to as the

canonical response function.

We can write

(1) 0(x) =o0+ .(x.)+~XO]k(xj,xk)+ x 3OklxXk,)Xl) +(1) z ) °0 Jj(i <k jk j' k <k<IkC' 'I

The right side of (1) is referred to as the saturated model for 0 or as its ANOVA decom-

position. In order to obtain a unique such decomposition, each nonconstant component

should be theoretically orthogonal to the corresponding lower order components.

In practice, unsaturated submodels of (1) are usually employed. Let d be the

maximum number of variables that are allowed in any one component of the model.

When d =1, we get the additive model

(2) 0(x) = Oo + 0(X);
J

when d =2, we get the model

(3) O~~~~~(x) =00o+ jSo(x') +'j<k k(xj'Xk)-
j j j<k J

Consider an estimate 0 of A based on a random sample of size n from the joint

distribution ofX and Y. Associated with this estimate is the ANOVA decomposition

(4) 6(x) = 0% + 1.(x.) + 0S ojk('Xk)+ < .kl(Xk,Xl)

In order to obtain a unique such decomposition, each nonconstant component should be

empirically orthogonal to the corresponding lower order components. Examination of the

main effect components 0., the two-factor interactions jk, and so forth can give insight
J j
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into the shape of 6 and hopefully of 6 as well.

An example of a hierarchical, unsaturated submodel with d = 2 when M = 3 is given

by

(5) (x1,x2, x3) = 6o + 61(x1) + 02(X2) + 63(x3) + 612(x1, x2) +013( X3
which includes the constant effect, all three main effects, and two of the three two-factor

interactions. Consider an estimate

(6) "(x1 x2, x3) = 00+ "1(x1) + 02(X2) + 93(X3) + 012(xl, x2) + 613(x1 x3)

having the same form. We can think of the right side of (6) as an estimate of the

canonical response function 6. Alternatively, we can think of it as an estimate of the

corresponding best theoretical approximation

()(1x2, 3) = %+ 6l(x1) + 62(x2) + 63(x3) + 612(x,x2) + 6*3(x1, x3)
to 6, where best means having the maximum expected conditional log-likelihood subject

to the indicated form and each nonconstant component is theoretically orthogonal to the

corresponding lower order components.

Although we mainly have continuous random variables X1,... ,XM in mind, we

note that equations such as (1)- (7) are also applicable when some of these variables are

discrete (categorical) or deterministic (controlled). In order to employ the finite-

parameter maximum likelihood method in this general context, we can associate the

continuous variables with polynomial splines. From a methodological viewpoint, an

attractive approach would be use adaptive model selection techniques as in MARS [see

Friedman (1990, 1991)]. [Buja et al. (1991), Friedman (1991) and Stone (1991a) have

briefly discussed modified forms of MARS that would be applicable to generalized

multivariate regression modelling.]

Since the asymptotic properties of estimates based on such highly adaptive

methodologies do not appear to be mathematically tractable, we will treat nonadaptively

selected polynomial spline estimates [which correspond to generalized linear models, as

treated in McCullagh and Nelder (1989)]. We will also restrict our attention to

continuous random variables X1,...,XM that each range over a compact interval.

Without further loss of generality, we can assume that each of these variables ranges
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over [0, 1].

It is then natural to conjecture that (under suitable conditions) the integrated squared

error of 6 as an estimate of 6* and the integrated squared error of each component of 6 as

an estimate of the corresponding component of 6* should approach zero as n^

Suppose the components of 6* all have p derivatives. In light of results in Ibragimov and

Hasminskii (1980) and Stone (1982, 1985, 1986, 1991b), it is natural to conjecture that

these integrated squared errors should converge to zero at the optimal rate n 2p/(2p+d)

and hence that choosing d <M should mitigate the "curse of dimensionality." The main

purpose of the present paper is to verify the latter conjecture and thereby to furnish

theoretical support for the use of polynomial spline estimation as a building block in

generalized multivariate regression modelling.

2. Statement of Results. Consider an exponential family of distributions on R of the

form eB(O)y -C(6)p(@), where the parameter 9 ranges over R. Here p is a nonzero

measure on 0R which is not concentrated at a single point and

JeB(O)Y-C(O)p(dy)= 1 E R.

The function B(.) is required to be twice continuously differentiable and its first deriva-

tive B' ( ) is required to be strictly positive on R. Consequently B( - ) is strictly increasing

and C(-) is twice continuously differentiable on R. The mean u of the distribution is

given by ,u=A(O) = C'(0)/B'(6) for 6e R. The function A(.) is continuously differenti-

able and A'(.) is stnrctly positive on 0R, so A(-) is strictly increasing on IR. Given any

positive constant T, there are positive constants 3 andD such that

etyeB(OA)y-C(O)p(dy) <D, 161 < T and I tI <..

Finally, it is required that there be a subinterval S of 0R such that p is concentrated on S

(that is, p(SC) = 0) and

(8) B"(6)y - C"(0) < 0, 6 e and y e S.

(If B"(*) =0, then (8) holds automatically.) Now A(o) E S for 9 e 5, so it follows from (8)

that

(9) B"(O)A(O% - C"(0) <0, 6,0 e 5R.
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Set

XQT, 6) = B(p)A(6) -C(p), 4, 6 E IR,

'(p, ) = B'(qp)A()- C'(p), ,, ORE,

and

X"(p 9) = B"(p)A(0)- C"(), ,Oe IR.

Then (9) can be written as

(10) X"(qp,9)<zO, (p,E [R.

Let T be a positive number. According to Lemma 1 of Stone (1986), there are positive

numbers M1 and M2, depending on T, such that

(11) A(p,60)<M -Mj1II, 161<Tandpe R.

Let X1,... ,XM, Y be random variables with X1,... ,XM each ranging over [0, 1]

and Y ranging over R. Set X = (X1,. . . ,XM) and W= [0, 1]M. The following two condi-

tions are required.

CONDITION 1. The distribution of X is absolutely continuous and its density function

f is bounded away from zero and infinity onX.

CONDmTION 2. E(Y IX = x) = A(O(x)), x eX, where O is bounded onW.

Given a function h on , let

A(h) = E[(h(X), 6(X))] = JX(h(x), 6(x))f(x)dx

denote the corresponding expected conditional log-likelihood. Let T now be an upper

bound to 01. Then, by (1 1),

(12) A(h) <M - M I h(x) lf(x)dx;

thus if fI1 h(x) If(x)dx = co, then A(h) = -Xo.

Given a subsets of {(,... ,M), letds denote the space of functions oneX that only

depend on the variables xl, I E s. Then MO is the space if of constant functions onX. Let

QY be a nonempty collection of subsets of (1,....,M). It is assumed that 1' is

hierarchical; that is, that if s is a member of aY and r is a subset of s then r is a member of

eY.LetX be the space of functions of the form Ishs5= ISE hS with hS e7S forsee,
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and set d = max Eo(s). Observe that d = 0 if and only ifo =$ and that d = 1 if and

only if the functions in X are additive.

The following theorem will be proven in Section 3.

THEOREM 1. Suppose Conditions 1 and 2 hold. Then there is an essentially uniquely

determinedfunction 6 E d6 such that A(t) = maxh,6A(h). If 6 E c76, then 6 = 6 almost

everywhere.

Let M2 denote the space of square integrable functions inX and, for s E 9, let M2
5

denote the space of square integrable functions in os. Then X2 is the space of functions

of the form X5h5 with h5 E X for s E eY [see Lemma 1 of Stone (199lb)].

Set (hi, h2) = Jt.h1(x)h2(x)f(x)dx and 11h1l2 = (h, h) = Jwh2(x)f(x)dx for square

integrable functions h , h2, h onW. Given s E Y, set

AO-= {hE X25 h±oA2forrcswithr.s), se Y.5 5 r

(Here h l A2-means that (h, k) = 0 fork e M2.) Then 72 is the direct sum of MO-, s E ?Y;rr s

that is, each h E d'2 can be written in an essentially unique manner in the form h =shS,
where hs E MO6 for s E QY [see Lemma 1 in Stone (1991b)].5

It follows from (12) that the function 6* in Theorem 1 is integrable. Suppose this

function is square integrable. Then it can be written in an essentially unique manner as

6* = s6, where 6* E MO for s E eY. We refer to st6 as the ANOVA decomposition of

Let 0 < B < 1. A function h on$ is said to satisfy a Holder condition with exponent

,3 if there is a positive number B such that I h(x) - h(xo)l <B I x - x0o1I for x0,x E W;

here Ix is the Euclidean norm(XI 12OfXM)ofx=(xl,...,xM).GivenanM-tuple
a = (a1,... , aM) of nonnegative integers, set [a] = a1 + + aM and let Da denote the

differentiable operator defined by

Da= d[a]
1 * M

1 M
Let m be a nonnegative integer and set p = m + /3. It is assumed that p > d/2.
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CONDrTION 3. The function 6' is bounded and, for s E e and [a] = m, the function

s on £ is n-times continuously differentiable and Da0& satisfies a Holder condition

with exponent (3.

The conditional distribution of Y given that X = x is not required to belong to the

exponential family described above, but the following conditions are required.

CONDMTION 4. P(Y E S) = 1.

COND1TION 5. There are positive constants 6 and D such that

E(etYIX=x)<D, ItI.<andxEs

Let (X1l Y1), . . . , (Xn, Yn) be a random sample of size n from the joint distribution

of X and Y, and let (. , )n denote the semi-inner product defined by (hi, h7)n =

nF1X,hl(Xd)h2(XY). The corresponding seminorm is given by IlhIl2 = (h, h) . Observe

that 1i1i2 = 1.

Let K = K be a positive integer and let Ik, 1 < k < K, denote the subintervals ofnk
[0, 1] defined by Ik = [(k - 1)/K, k/K) for 1 < k < K and Ik= [1-1/K, 1] for k = K. Let m

and q be fixed integers such that m .0 and m > q. Let 2 = denote the space of spline

functions g on [0, 1] such that

(i) the restriction of g to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q .0,

(ii) g is q-times continuously differentiable on [0, 1].

Let B1, 1 Sj < J, denote the usual basis of2 consisting of B-splines [see de Boor (1978)].

Then, in particular, B.20 on [0, 1] for 1 < j < J and £.B.= 1 on [0, 1]. Observe that
J iiJ

K < J < (m + 1)K. It is assumed that J . 2.

Given a subset s of (1, . . . ,M}, let Ys denote the space spanned by the functions g

on , of the form g(x) = H16E gl(xl), where x = (xl , ... ,XM) and g, E 2 for l e s. Then YS
has dimension J#(s), Set Y = (I g : g E 3s for s E ) and

ys = (g E _v g iL V. for every proper subset r of s), s e .

(Here g L± rmeans that (g, h)y = 0 for hE r.) Then = I 0
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The space Y is said to be identifiable (relative to X1 , ... ,Xn) if the only function

g E such that g(X.) = 0 for 1< i < n is the zero function; otherwise, Y is said to be

nonidentifiable. Suppose Y is identifiable Then ( n is an inner product on and

11 * ln is a norm on V; that is, liglin > Ofor every nonzero function g E Y. Moreover [see

Lemma 2 in Stone (1991b)], Y is the direct sum of °, s E , that is, each g e can be

written uniquely in the form g = sgs, where gs E s fors E Y.

CONDiTION 6. J =o(n 1)for some6 >O.

It follows Theorem 1 of Stone (1991b) that if Conditions 1 and 6 hold, then

NY is nonidentifiable) = o(l).

Let l(g) = Ji [B(g(X1))Y- - C(g(Xi))], g E Y, denote the conditional log-likelihood

function corresponding to the random sample of size n. If 6 E and 1(o) = maxgEl(g)
then 6 is referred to as a maximum conditional likelihood estimate of 6. If I is

identifiable, then l(g) is a strictly concave function of g and hence there is at most one

maximum conditional likelihood estimate. According to Lemma 10 in Section 4, if

Conditions 1-6 hold, then O exists except on an event whose probability tends to zero

with n. If Y is identifiable and 6 exists, then 6= s 6 where 6l E ?1 iS uniquelys s ss
determined for s E (9, and we refer to I 6 as the ANOVA decomposition of 9.s s

The rate of convergence of 6 to 6* is given in the next result, which will be proven

in Section 4.

THEOREM 2. Suppose Conditions 1-6 hold. Then

110 - 6s11 = °p[J + V Yln; s E ,

so

116-t61 = [rP+4 ]I

Observe that if Condition 6 holds with J - n11(2p+d), then p > d/2.
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COROLLARY 1. Suppose Conditions 1-5 hold and that J - nl1/(2p+d). Then
Os - tes = Op(nP/(2P+d)), sEQY,

so

110- t11 = Op /(2p+d))

Results similar to Theorems 2 and 3 hold with X1,...,Xn replaced by suitably

regular deterministic design points xI1 ... , xn. The L2 rate of convergence in Corollary

1 does not depend on M. It is clear from Ibragimov and Hasminskii (1980) and Stone

(1982) with d =M that this rate is optimal. When d = M, it is possible to use the tensor-

product extension of de Boor (1976) (referred to in the proof of Lemma 8 below) to

obtain the pointwise and Lx: rates of convergence of 0 to 6r [see Koo (1988)].

Presumably, the techniques in Burman (1990) could be used to select l andK adaptively

in an asymptotically optimal manner. When d = 1, the results in Corollary 1 were

obtained by Stone (1986). Some methodological aspects involving the use of polynomial

splines in generalized additive modelling were discussed in Stone and Koo (1986).

Hastie and Tibshirani (1990) contains a wide ranging discussion of the methodological
aspects of generalized additive modelling. The analog of Theorem 2 for interactive

spline regression was obtained by Stone (1991b).

3. Proof of Theorem 1. We start with a result that should be useful in other

contexts.

LEMMA 1. If hk E J for k . 1 and hk converges in measure to afunction h, then h is

essentially equal to afunction in M.

PROOF. Let h be a real-valued function on S. Given 1 E {1, . . . ,M} and x e R,

consider the function PF Xh on , defined by

Il xh(w) = h(wl,*,wll,x,wl+l,..,wM), w=(W1 , WM)9
which corresponds to replacing the Ith coordinate w, of w by x. Consider also the

function Vl xh on W defined by V1 xh = F1 xh - h. Given a subset s = (1i . . . z1} of



10

(1, ... ,M) of size m and given x E 5, consider the function IF h onW defmed bys'x

rx h(w) = F11 r1* h(w), WEX,
lmXl

which corresponds to replacing the lth coordinate w1 of w by x1 for l e s. Consider also

the function V Xh on< defined by

vSIXh(w) =V1vlxl X VI X h(w), W E 5X.s,x ~ ~ ~ ~ ~

(We set f7 h = h and V h = h.) Now

vsh= £X(- 1)#(s) #(9)FP vxh'

from which we can easily verify that

(13) h(x)= V Xh(w), W,XE .
S

Observe that, for fixed w E X, VS xh(w) depends only on the coordinates xl, I E S, of

x= (x1, . .. xM).
Let s, r be subsets of 1,... ,M) such that s is not a proper subset of r and let h be a

function on X that depends only on the coordinates xi, I E r. Then V Xh(w) = 0 for

w, x E S. Suppose now that h E M. Then V Xh(w) =O for s cet and w, x E S.

Let h now be as in the statement of the lemma. By taking a subsequence if

necessary, we can assume that hk converges almost everywhere to h. Then, for almost all

choices of x,wEWX, V Xhk(w) -4 VSh(w) as k -.oofor s c (1, . . . ,M}. Hence, for some

choice of w E 9,VSV xhk(w) -4 V xh(w) as k-. co for s c (1,. . . M) and almost all xEX.

Since V xhk(w) =O for k 2 1, s cC' and W, e X, we conclude that V Xh(w) = 0 for

s e Y and almost all x E X. It now follows from (13) that h is essentially (almost

everywhere) equal to a function in M. o

Throughout rest of this section it is assumed that Conditions 1 and 2 hold. Given

functions h and h2 onX, set h(t) = (1 - t)h1 + th for t E . Suppose that h and h are

bounded. Then

(14) dA(h(t)) = |f[h2(x)-h(x)hX] (h(t)(x), &(x))f(x)dx, t E 0,

so it follows from (10) that if h is not essentially equal to h2, then d2A(h(t))/dt2 <0 for
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t E R and hence A(h(t)) is a strictly concave function of t. In general, however, when h

and h2 need not be bounded, the use of (10) in obtaining the properties of A(h(t)) as a

function of t is evidently more complicated, as the following proof of Theorem 1

illustrates.

It follows from (12) that the numbers A(h), h E X), are bounded above. Let L denote

their least upper bound. Choose hk E d' for k . 1 such that A(hk) > -00 for k . 1 and

A(hk) - L as k -. xo. Then, by (12), the numbers Jt.j hk(x) If(x)dx, k . 1, are bounded. Let

IA I denote the Lebesgue measure of a subset A of S. We claim that

I im I (xE: I hk(x) - hm(x) I 2 E} I = 0,9 E > 0.
k,m-o

As a consequence of this claim, there is an integrable function 6* such that hk -4 6* in

measure as k -* oo. By Lemma 1, we can assume that 6* E M. It follows from (1 1) and

Fatou's lemma that A(t) . L and hence that A(t) = L = maxhEMA(h). It follows from

the indicated claim that if h E M and A(h) = A(t), then h = 6* almost everywhere.

Therefore, the first statement of Theorem 1 is valid. Observe that, for 0 e i, the function

A(p, 9), p E i, has a unique maximum at T = 0. The second statement of Theorem 1 is a

simple consequence of this observation.

It remains to verify the indicated claim. To this end, choose E> 0. There is a

positive constant M3 such that [5\ AkmI < e for k,mm 1, where

AkM=(XE: Ihk(x)I .M3and Ihm(x)I .M3)}

There is a positive constant such that f M41 on5 and X"(p, )<)M. 1 onX forM4 4 ~~~~~~~4
I I ' M3. Set yrk1(t) = A((1 - t)hk + thi) for 0 < t < 1. Then yf, is bounded above by L
and concave. Choose 6> 0. Then Vfk,(0) 2L-6 and ykrn(1)2L- 6for k,m > 1. Conse-

quently,

Vrkm(2/6)- VyrA(1/6) <./2 and Vkm(5/6) - Vk(416) - 6/2, km> 1,

and hence

pfkm(5/6) - ifhn(4/6) - [ifl(216) - lfm(l/6)] . -6, k,m> 1.

It follows from the concavity of X(p, 9), p E R, that
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ykm(5/6) - Vjp(4/6) - [Vfkl(2/6)--km(ll6)]

' 6J [hm(X) - hk(x)] U Xf ((1 - t)hk(x) + thm(x), (x))dfx)dx
Akm13

<-- 2 [hM(x) - hk(x)] dx.
18)11 Ak

Thus

J [h.(x) -hk(x)2dx 18M2;, k,m 1.
cm

Since 6 can be made arbitrarily small, we see that

I [hm(x) - hk(x)]2dx < e3,kmI l,

and hence that k(x E Akm: I h (x) - hk(x) | 2 e) |< e for k,m > 1. Consequently,

(X EX I hhm(x) - hk(x) E)2I} < 2£,, k,,m > 1.

Since e can be made arbitrarily small, the indicated claim is valid.

4. Proof of Theorem 2. Throughout this section it is assumed that Conditions 1-6

hold. Let lIhIL = supxdI h(x) denote the Lc, norm of a function h onW.

LEMMA 2. Let T be a positive constant. Then there are positive numbersM and

such that

-M3lh - tr 112 <- A(h) -A(6) I4lh _ W112
for all h e d such that lIhIl. < T.

PROOF. Given h E d with IIhL < T, set h(t) = (1- t)86 + th. Then

d A(h(t)) =

and hence

A(h)- A(6) = |(1 -t)
d A(h(t))dt.
dt

The desired result now follows from (10) and (14). o

LEMMA 3. There is a positive nwnber such that jIgIjo<M5JId121.gil for g E j-
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PROOF. Now g = sgs where gs e YS and g± r for r c s with s * r. It follows as in

the proof of Lemma 1 of Stone (1991b) that there is a positive constant M6 (not depend-

ing on n or J) such that lgli 2.M1 By the obvious multidimensional extension

of Lemma 1 1 of Stone (1985), there is a positive constant M7 such that
d/211gsi1w< M7J lIgSIl, se<Q,

and hence

118110 ' is I1l M7Id/2S ligsiI M7J'd/2[#(^e)M6]112ligil- 0

According to a simplification of the argument used in Section 3 to prove Theorem

1, there is a unique On e y such that A(6*) = max A(g). (Actually, On depends on Jn ~~n gEy
rather than n, but we are mainly thinking of J as depending on n.)

LEMMA 4. tie;*- 6*jj2 - Q(-2p) andl1e0 - t*0l0 O-O(Jd/2-p)

PROOF. We can assume that J - oo as n -. oo. By Condition 3 [see Theorem 12.8 of

Schumaker (1981)], there is a 9nev such that 116n - *11' M6F P; here M6 is a

positive constant. Consequently, 110 t6*l12<M2M.-2 Thus by Lemma 2 there is a

positive constant such that

(15) A() -A(6t) - M7JF2p.

Let a denote a large positive constant. Choose g E with llg t62= 2p. Then

ilg - 6n"2< 2(a +M2 -2p Since p > d/2, it follows from Lemma 3 that, for J suffi-

ciently large, ligil1.< I1*110 + 1 for all such functions g. Thus by Lemma 2 there is a

positive constant M8such that, for J sufficiently large,

(16) A(g) - A(6t) < - M8aV21p for all g E 3 with ag - *112=
2Let a be chosen so that a > M6 and M8a > M7. It follows from (15) and (16) that, for J

sufficiently large,

A(g) < A(9n) for all g E I with jjg _*112 = a 2p.
Therefore, by the concavity of A(g) as a function g, II0- 6112 < aJ 2p for J sufficiently

large. This verifies the first conclusion of the lemma. Observe that 110* - enII2 = (J-2p)

and hence by Lemma 3 that 110* - enIl = O(Jd/2 P). Thus 110; - 6*l0 = oQ(Jd/2-P), so
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the second conclusion of the lemma is valid. o

If Y is identifiable, then fin= 0* where 0* E IS is uniquely determined for

5 E QY.

LEMMA 5. II6211= °(1 P+Jd/n) fors E cY.

PROOF. Suppose Y is identifiable, and let 9 denote the orthogonal projection of 6*n

onto Y relative to ±n Then On = E 9, where 9 E is uniquely determined for~ n n, hr OnSE nsui
s E c. It follows from Theorem 3 in Stone (1991b) that

(17)
ns 112=o(=F2P + Jd/n), S Ee,

and

11 *II12=0o(JP + Jdn).
Thus, by Lemma 4,

li9, - O2. =°p.(J P + Jd/n)
Consequently, by Lemma 6 of Stone (199ib),

(18) lien5 - e 11O= J2P + Jd/n), S e Y.

The desired result follows from (17) and (18). D

Let r , n . 1, be positive numbers such that Jd12 = 0(1) and Jdlog n = o(n'r3). Then n ~~~~~~~~~~~~~~n
next result follows from Conditions 2 and 5 [see the proof of Lemma 10 in Stone

(1986)].

LEMMA 6. Given a > 0 and e > 0, there is a 3>0 such that, for n sufficiently large,

p () n- [A(g) - A( >)].Et2 ]< 2exp(- 3nT2)
for all g E with l18 - 0 11 < arn.

It follows from Condition 5 that n 1 Ji I Yi - E(Y1 I Xd) is bounded in probability and

hence that the following result holds.
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LEMMA 7. Given E > 0 and M6 > 0, there is a 3 >0 such that, except on an event

whose probability tends to zero with n,

I(92) 1(X1)1 T

for allg1,g2e Y with IIgj1l.<M6, 1Ig211o<M6andlg2-g9111.. n

We define the "diameter" of a subset B ofY as sup(IIg2-g Iloo g1 ,g2 e B).

LEMMA 8. Given a > 0 and 8> 0, there is a positive constant M7 such that

(g E 3. jig- 0;11 < ar )
can be covered by O(exp(M7Jdlog n)) subsets each having diameter at most

PROOF. Suppose g E and llg - .i1 ar . It follows from Lemma 3 that

11g - *1100 < M5aJ1d/2Ir . Consider the inner product (g1, g2) = Jt.g1(x)g2(x)dx on

and write g - * = 5g5 where, for s EQY, g5E 5 and g5 ± vr for r c s with r * s. It

follows from the extension of the main result of de Boor (1976) to tensor products [see

Stone (1989)] and the inclusion-exclusion formula for orthogonal projections [see

Takemura (1983)] that, for some positive constant M', lig51l, <M Jd/2vn for s E a>".

Consequently,

(g E Y: llg- 0* 11 < ar I
can be covered by

[_[M8A

subsets each having diameter at most 6X2. (Let A denote the points of [0, 11d each of

whose coordinates is an integer multiple of 1 /m and let Q be in the d-fold tensor product

of the space of polynomials on RI of degree m. If Q =0 on A, then Q = 0.) Since

log(Jd/2/,r ) = O(log n), the desired result is valid. o

LEMMA 9. Let a > 0. Then, except on an event whose probability tends to zero with

n, 1(g) < l(0*)for all g e such that jig - 0;11 = aT.

PROOF. This result follows from Lemma 2, with 6* replaced by On andX replaced
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by >, and Lemmas 6-8. o

LEMMA 10. The maximum conditional likelihood estimate 6 in Y of 6 exists and is

unique except on an event whose probability tends to zero with n. Moreover,

I0- IL* = Op(l).

PROOF. It follows from Lemma 9 and the concavity of A(g) as a function of g that

190- 60I = oP(r ) and hence from Lemma 3 that 1Iw- 0II, =Ip(I'n) = op(l). D

Set o= 0) and Boo = 1. For s E E with s * 0, let OSs denote the collection of

ordered #(s)-tuples j', 1 E s, with jl E { l, .. ,J) for 1 E S. Then #Vs) = J#(S). For j E

letB . denote the function onW given bySi
B5 (x) = HB(xI), x = (x1,... ,xM).

Then, for s E eY, the functions BSi" j E /S, which are nonnegative and have sum one, form

a basis of 3S.
Set K = 5#CV5). Given a K-dimensional (column) vector f having entries JsE ('

andj e /S5, set

S jE/ JS

and write l(g( ; J)) as l(p). Let

S(J5) - d1(p)
denote the score at P; that is, the K-dimensional vector having entries

dfi=B(D-s(X.)[B (g(Xi; 3)Yi- C' (g(Xi; D)].

Let

be the K x K matrix having entries

(19) d- --- l(p) = B5 (X.)B . (X.)[B"(g-X;i)Y- C (gZ; PA)'OsiJ 1 IJ 1 llISJ
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Let M be given by6* 6= where

0*s= X 3*.B.eE , sE of.

Let J denote the maximum conditional likelihood estimate of , so that 0= s where

os jE£ psj sj e S s

The maximum conditional likelihood equation S(P) =0 can be written as

J es(Jr + t(p- r))dt = - SOM).

Thus it can be written as D(I - )= - S((r), where D is the K xK matrix given by

D = I 1 + t(p- fi)dt.

Let denote the Euclidean norm on RK. It follows from the maximum conditonal

likelihood equation that
t ~~~~~~~t(20) (fi )bD(3 %) = - (J3 ") S(')

We claim that

(21) IS(r)1f2 =Op(n)

and that (for some positive constant M8)

(22) (jp )tD(AP- ).-MgnJ dlIMI2
except on an event whose probability tends to zero with n. It follows from (20)- (22) that

p jP = Op(J2d/n) and hence that

(23) 1O5-0,112 Op(Jd/n), S E e,

and

(24) 10_- O 112 = 0 d(Jd/ )
Theorem 2 follows from (23), (24) and Lemmas 4 and 5.

To verify (21) note that

E{B .(X)[B (9*(X))Y-C (0*(X)]I =0, S EQfandj E5.Si n n

Consequently,

EIS(f)12 nX X var(B5.(X)B'(0*(X))Y) <MgnE E[B2.(X)] = O(n)
S jE/,S SinSjE/~ sj

by Conditions 2, 3 and 5, Lemma 4, and the properties of B-splines, so (21) holds.
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Finally, (22) will be verified. By Condition 3, the inequalityp > d/2, and Lemmas 4

and 10, there is a positive constant T such that

(25) lim P(IIO0II.< T and 01 - 7)=1I

Given E > 0, set SO = (y E S: B"(9)y - C"(o) < -e for I 01 < T). By Conditions 2-5, E can

be chosen sufficiently small that

(26) P(YESOIX=X).E, xeW.

Set 7n = (i: 1 < i < n and YiE So). It follows from (19) and (25) that, except on an event

whose probability tends to zero with n,

(27) ftD6< - E' g2(Xi;&), 65EK.
iEY7n

Write g(';6) = sgs(-;&), where

4gs(-; X) = j B., S E e.jE/, SJ SJ

Let 65 now be chosen so that g5(-; i5) E YO for s e PY. It follows from Conditions and 6,

(26), Lemma 9 of Stone (1991b), and the properties of B-splines that, except on an event

whose probability tends to zero with n,

£~~~~mg2_;$2M<d | 612g(X6 .MnJdlI
n

for all such 6. Equation (22) now follows from (27) applied to 6= ,B- I. This completes

the proof of Theorem 2.
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