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Let X1, .... ,XM, Y be random variables with E(Y2) <0 and let , denote

the regression function of Y on X = (X1, . . . ,XM). Consider the approxima-

tion A* to A having the form of a specified sum of functions of at most d of

the varlables xl,. ..,xM and, subject to this fonn, chosen to minimize the

mean squared error of approximation. Suppose X has a density function and

let p be a suitably defined lower bound to the smoothness of AW*. Consider a

random sample of size n from the joint distribution of X and Y. The least

squares method and nonadaptively selected sums of products of polynomial

splines are used to construct estimates of A* and its components having the

optimal L2 rate of convergence n pl(2p+d.
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1. Intoduction. Consider random variables X1,...,XM, Y and let A denote the

regression function of Y on X = (X1 ,.. . ,X), so that g(x) = E(YIX = x). We can write

(1) 0(x)= A+O ()A'(+ 1 k(xxk)+ %Ajkl(x 'xk'xl) +**
j ' j<-k1Ji j<<

The right side of (1) is referred to as the saturated model for A or as its ANOVA

decomposition. In order to obtain a unique such decomposition, each nonconstant

component should be theoretically orthogonal to the corresponding lower order

components [see Section 9.5.3 of Hastie and Tibshirani (1990)].

In practice, unsaturated submodels of (1) are usually employed. Let d be the

maximum number of variables that are allowed in any one component of the model.

When d = 1, we get the additive model

(2) 8(X) = go + Xg.(X.);

when d = 2, we get the model

(3) A(x) = po + £j(xj)+1£ £k(xj,xk).
i J j<kJi

Consider an estimate ft of A based on a random sample of size n from the joint

distribution of X and Y. Associated with this estimate is the ANOVA decomposition

(4) A(x) =ftO +X.(x.) + X'Aik(xr.Xk) + X£ (x.x,XI) +k
In order to obtain a unique such decomposition, each nonconstant component should be

empirically orthogonal to the corresponding lower order components (see Section 9.5.3

of Hastie and Tibshirani (1990)]. Examination of the main effect components ft, the two-

factor interactions Qik' and so forth can give insight into the shape of f and hopefully of

A as well.

An example of a hierarchical, unsaturated submodel with d = 2 when M = 3 is given

by

(5) A(x1,x2,X3) = 0 + Al(xl) + 82(X2) + 3(X3) + A12(XV,x2) + A13(xl,x3),
which includes the constant effect, all three main effects, and two of the three two-factor

interactions. Consider an estimate

(6) ft(x1,x2,x3) = f0 + f1(xl) + 82(x2) + f3(x3) + f12(xl,x2) + f13(x1'x3)

having the same form. We can think of the right side of (6) as an estimate of the
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regression function p. Alternatively, we can think of it as an estimate of the

corresponding best theoretical approximation

(7) g*(xlx2 x3) = 1.0 + 9i(xl) + A2(X2) + 3(x3) + Aj2(xP,x2) + A*3(xl, 3)
to this function, where best means having the minimum mean squared error of approxi-

mation subject to the indicated form and each nonconstant component is theoretically

orthogonal to the corresponding lower order components.

Although we mainly have continuous random variables X1,. ..,XM in mind, we

note that equations such as (1) -(7) are also applicable when some of these variables are

discrete (categorical) or deterministic (controlled). In this manner, we can include the

ANOVA models that are commonly used in the analysis of designed experiments. In

order to employ the finite-parameter method of least squares in this general context, we

can associate the continuous variables with polynomial splines.

The highly adaptive model selection techniques in MARS [see Friedman (1990,

1991)] are very attractive from a practical viewpoint. The asymptotic properties of such

methodologies do not appear to be mathematically tractable, but there can be a

synergistic relationship between the development of practical methodologies and the

theoretical study of suitably simplified versions of their primary building blocks. In the

remainder of this paper, in the interest of mathematical simplicity and tractability, we

will treat continuous random variables and nonadaptively selected polynomial spline

estimates. Similarly, we assume that X1, .. . ,XM each range over a compact interval.

Without further loss of generality, we can assume that each of these variables ranges

over [0, 1].

It is then natural to conjecture that (under suitable conditions) the integrated squared

error ofy as an estimate of j* and the integrated squared error of each component of ft as

an estimate of the corresponding component of y* should approach zero as n -4 oo.

Suppose the components of ,A* all have p derivatives. In light of results in Ibragimov and

Hasminskii (1980) and Stone (1982, 1985), it is natural to conjecture that these

integrated squared errors should converge to zero at the optimal rate n-2p/(2p+d) and

hence that choosing d < M should mitigate the "curse of dimensionality." The main
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purpose of the present paper is to verify the latter conjecture and thereby add theoretical

support to the practical demonstration in Friedman (1991) of the utility of polynomial

spline estimation in multivariate regression modelling. In the course of this work, several

more technical properties involving polynomial spline estimation will be established.

These properties will be used in future papers to provide theoretical support for the use of

polynomial spline estimation in generalized multivanate regression modelling and in the

modelling of multivariate distributions and conditional distributions.

2. Statement of results. Consider random variables Xi,... ,XM, Y, where

X1,... ,X. are [0, 1]-valued and Y has finite mean. Then X = (X1,. .. ,XM) ranges over

= [0, 11 . It is supposed that the following condition is satisfied.

CoNDmoN 1. X has a density functionf that is bounded away from zero and infinity

on .

Let M andM be positive numbers such that M1 <f< M2 on2. Then M1 ,M2 .1.

Set

(hi, h2) = E[h1(X)h2(X)] = Jhl(x)h2(x)f(x)dx
and

lthul2 - (h, h) = E[h2(X)] = Jh2(x)f(x)dx

for square integrable functions hi, h2x h on X. Two such functions are regarded as being

equal if they differ only on a set of Lebesgue measure zero. Let p denote the regression

function of Y on X, which is defined by u(x) = E(YI X = x) for x E S.

In the context of (7), we have used 1k(xI,xk) to denote the component of At* involv-

ing the interaction of x1 and xk. We can also write this component as gjk(x), x E , with

the understanding that gjk(x) depends only on the coordinates x; and xk of x=

(x1,...,XM). For the purpose of generalization, it is more convenient to write this

component as Ajt k) (X), x E S. Similarly, we can denote the space of square integrable

functions of x that depend only on the coordinates x1 and xk as 6 or, more convenient-

ly, as 7$'/ k) In general, given a subset s of (1, . . . ,M}, we let c7' denote the space of
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square integrable functions h on W that depend only on the coordinates xl, 1 E S, of

x = (xl,... ,XM). (In particular, 0 is the space ' of constant functions onv%.)

Let @9 be a collection of subsets of {1,... ,M} and set

$=={Sh hh E d7M fors E@}

and d = maxSEO #(s), where #(s) is the number of members of s. Observe that d = 0 if

and only if X = ' and that d = 1 if and only if every function in 76 is additive. It is

assumed that dM is hierarchical; that is, that if s is in v1 and r is a subset of s, then r is in

o9. Set

MO = {h E M h ±L4 for every proper subset r of s), s E e/.

(Here h l±7r means that (h,k) = 0 for k E Mr.) Then (under Condition 1) each heE X

can be written in an essentially unique manner in the form h = X5h , where h5 E MS for

s E @9 (see Lemma 1 below). Clearly, h0 = E[h(X)]. We refer to A°s's E tSY, as the

components of X, to e=' as the constant component, to 0 with #(s) = 1 as a mainS

effect component, and to MO( with #(s) 2 2 as an interaction component. There is a uniqueS

best approximation j* in X to g:

E[(u(X) - p*(X))2] = minhE E[(u(X) - h(X)) 2].
(This follows from Lemma 1 below by a standard completeness argument in the context

of Hilbert space.) We can write u = for uniquely determined * E MO s E @9;

clearly M* = Ep*(X) = Ei(X) = EY. Observe that p* = ji if and only if u E c'. We refer to

S5p5as the ANOVA decomposition of ,*.
Let (X1, Y1), .. . , (X , Y,) be a random sample of size n from the joint distribution

of X and Y, and set Y = (Y1 + * + Y )/n. It follows from Condition 1 that X1,...X

are distinct (with probability one). Let (.,)n denote the semi-inner product defined by

(hi9h) = nh,(Xi)h2(i
and let 1, denote the corresponding seminorm (IIhI2 = (h, h) ). Then jjl 1 2= 1.

Let K = K be a positive integer and let I 1 < k < K, denote the subintervals ofn k

[0, 1] defined by Ik= [(k-l)lKpk/K) for 1.<k<K and Ik=[l-lI1K9lI for k=K. Let m

and q be fixed integers such that m . 0 and m > q. Let 2 =2n denote the space of
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functions g on [0, 1] such that

(i) the restriction of g to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q> 0,

(ii) g is q-times continuously differentiable on [0, 1].

A function satisfying (i) is called a piecewise polynomial; if m = 0, it is piecewise

constant. A function satisfying (i) and (ii) is called a spline. Typically, splines are

considered with q = m - 1 and then called linear, quadratic or cubic splines according as

m = 1, 2, or 3. Let Bj, 1 < j < J, denote the usual basis of 2 consisting of B-splines [see

deBoor (1978)]. Then, in particular, Bj.0 on [0,1] for 1<j< J and SjB =1 on [0,1].

Observe that K < J < (m + 1)K.

Given a subset s of I 1, .M..,M}, let s denote the space spanned by the functions g

on %7of the form

g(x) = H gl(x), where x = (xl,. . . ,&m) andg, E g forl E s.
lE S

Then ]5 has dimension J#(S). Set g={Sg: g5 E for s E el and

0¶ = {g e 5: g .i.vr for every proper subset r of s), s E/.
(Here g means that (gh)n =0 for hE Then 0= We refer to >5, S E cY',

as the components of ', to '0 = ce as the constant component, to >5 with #(s) = 1 as a

main effect component, and to 0 with #(s) . 2 as an interaction component.

The space > is said to be identifiable (relative to X1, ..,Xn) if the only function

g E > such that g(Xd) = 0 for 1 < i < n is the zero function; otherwise, > is said to be

nonidentifiable. (The space > is identifiable if and only if the design matrix

corresponding to X1, . . . ,Xn and a basis of > has full rank.) Suppose > is identifiable.

Then ( * - )n is an inner product on > and 11 lln is a norm on > (lIglIn > 0 for every

nonzero function g E >). Moreover (see Lemma 2 below), each g E can be written

uniquely in the form g = Xsgs, where g5Es5fors EeY. Clearly, g0= n 1(, g).

Set d1= max{#(r u s): r,s E QYI. Then d < d1 < 2d.

CONDrrION 2. d = o(n1) for some 3 > 0.
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The next result follows from Lemmas 4 and 7 below.

THEOREM 1. Suppose Conditions 1 and 2 hold. Then P(Y is nonidentifiable) = o(1).

Let Y(-) be defined by Y(Xi) = Yi for 1 < i < n. (Under Condition 1, the points

X1, ... ,X, are distinct with probability one.) Let f = I, where f5 E y fors E ,

minimize IjY(.) - gll2 = n 1i [Yi - g(Xi)]2, g E,. Then f is the least squares fit in > to

the sample data and ft0 = Y. We think of ft as an estimate of g* and of ft as an estimate

of for s E QY. IfY is identifiable, then f and 'I s E oY', are uniquely determined and we

refer to X ft as the ANOVA decomposition of f.
s s

CONDmTION 3. The function E(Y2 I X = x), x E X, is bounded.

Given the positive number bn and the random variable Zn for n . 1, Zn = Op(bn)
means that limc.limsupnP(IZZnI> cbn) =O.

THEOREM 2. Suppose Conditions 1-3 hold. Then

supXEX var(ft5(x) I X1 * Xn)=O 'In), S E e,

so

supXE, var(ft(x) I X1 ' 'Xn) OPV In).

Let 0 < 3 . 1. A function h on X is said to satisfy a Holder condition with exponent

,B if there is a positive number B such that I h(x) - h(xo)I B I x - xo I0 for x0, x E ;

here IxI is the Euclidean norm (x2+ +x2)1/2 of x = (xl,... ,xM). Given an M-tuple

a = (at,..., aceM) of nonnegative integers, set [a] = a1 + + aM and let Da denote the

differentiable operator defined by

Da- a]
aMdx 1 dxM

Set p = m + 13. When the following condition is satisfied, p can be thought of as a lower

bound to the smoothness of j*.
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CONDITION 4. For s E v9 and [a] = m, the function M* on . is m-times continuouslyS

differentiable andD satisfies a Holder condition with exponent ,B.

THEOREM 3. Suppose Conditions 1-4 hold. Then

so

IIE( I X1 X .. XXn> -*11 =Op[JP +VFl1

Theorems 2 and 3, which will be proven in Section 3, have the following

consequence.

COROLLARY 1. Suppose Conditions 1-4 hold. Then

IIft5-AkII1=o4PY[P+ ]~'EY
so

11M-*II =°op[JP + Ji]`
Given positive numbers an and bn for n . 1, let an- bn mean that anlbn is bounded

away from zero and infinity. Observe that if Condition 2 holds with J - n11(2p+d), then

p > (d1 - d)/2. The next result follows from Corollary 1.

COROLLARY 2. Suppose Conditions 1, 3 and 4 hold and that J - n1(2Pd). Then

-lifu - L*1;I = Op(n- 5 E(pY,
so

11#- i11 = op(n-pl(2p+d)).

Theorems 2 and 3 and their consequences answer a question raised by Golubev and

Hasminskii (1991). Analogous results hold with X, ...Xn being replaced by suitably

regular deterministic design points xl, *.. .,Xn The L2 rate of convergence in Corollary
2 does not depend on M. It is clear from Ibragimov and Hasminskii (1980) and Stone

(1982) with d =M that this rate is optimal. When d = M, it is possible to use the tensor

product extension of de Boor (1976) referred to in the proof of Lemma 12 below to
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obtain the pointwise rate of convergence nP1(2P+d) and the L. rate of convergence

(nF log n 2p+d) of Q to Y* [see Koo (1988)]. It is natural to conjecture, but not

obvious how to prove, that these results continue to hold when d < M.

Chen (1991) has obtained results along the lines of those of the present paper with

deterministic design points and penalized least squares estimation. For mathematical

convenience, however, he imposes the severe restriction on the design points that they

form a (suitably regular) balanced complete factorial design. [Under this restriction, his

results may follow from those of Cox (1984)]. He also assumes that g E X and (essen-

tially) requires that p . dm for some positive integer m with 2m > M, which is much more

restrictive than the requirement p > (d1 - d)/2 for Corollary 2. (In a private communica-

tion, Chen stated that the condition 2m > M in his paper can be replaced by the condition

4m>d.)

When d = 1, the results in this section were obtained by Stone (1985) and they have

been extended to a time series setting (and in other respects as well) by Newey (1991),

which was written independently of, but after, the original version of the present paper.

When d = 1 and M = 1, similar results were obtained by Agarwal and Studden (1980) in

the context of suitably regular deterministic designs. The results in Stone (1985) for

additive regression (d =1) have been extended to robust additive regression by Mo

(1990a, 1990b). Independently of and simultaneously with the present version of this

paper, Mo (1991) has used elegant methods to obtain clean and general results involving

the L2 rate of convergence for nonparametric estimation by means of parametric least

squares with increasingly many parameters.

3. Proofs. The arguments in this section were partly suggested by those in de Boor

(1976) and Stone (1985).

LEMMA 1. Suppose Condition 1 holds, set 6= 1 - E (0, 1], and let

h5 E AP fors Ee. Then

(8) E[[5£h (X)] ] 2< SE[h (X)].
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PROOF. Recall that Ml,M2 2 1. We will verify (8) by induction on #(ef). Observe

that it is trivially true when #(&') = 1. Suppose #(') . 2 and that (8) holds whenever QY is

replaced by QY' with #(QY') < #(es). Choose a "maximal" r E cY (that is, such that r is not a

proper subset of any set s in @1). We first verify that

(9) E [h (X)] A]2Ml E[h (X)].

If #(r) = M, then (9) follows immediately from the definition of AO. Suppose, instead,r
that 1 < #(r) <M - 1. We can write X = (X1, X2), where X1consists of X1, I o r, in some

order and consists of Xl, 1 E r, in some order. Then X is W1-valued and is

valued, where$1 = [0, 1jM-#(r) and 2 = [0, 1]#(r). Letfx denote the density function

of X1, fX the density function of X2 and fX X2the joint density function of X1 and

X2. Thenfxl andfx2 are bounded above by M2, so

X1,X2(x 1 x2) . Mj1M22fx2(xi)fx(X2), xIE1andX2E,
Correspondingly, we write hr(x) as hr(x2) for x = (xl, x2). Since fx is bounded below

by M1

E [hs(X)J ] =' Whr(x2)'+hhsx9+X2.r fXlX2(xl x2)dx2dxl

.M j hJ[(x2) + £ h (xlxLJfx2(x2)dx2f(xl()dx

=MjiM22J E[hr(X2)+ h(x X2)9] JfX,(xl)dxl
Now

E[thr(X2) + Xhs(x1X2)X] ]>E[hr(X)], XiE,E ,

by the definition ofMO, so (9) again holds.r

It follows from (9) that

E h r(X)-ml f h (X)r o aM. ua iE[hpl(X)]yom El.

Consequently, by the forrnula for the roots of a quadratic polynomial,

[E [h (X)h(X)]] < (1- AjM-2)E[h (X)]E [ I h (X)]r
s#r S

-
- Mi- M2 r s.r .
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Thus, by the induction hypothesis,

E[t£h(X)]] [i- IT-Mi71jKij {E[h (X)] + E h (X)

2>61 [E[h2(X)] + 8(Q)-2 2E[h(X)]]

2 <(') 1XErh2(X)].

LEMMA 2. Suppose > is identifiable, g5 E >° for s E vY and X5g5 = 0. Then gs= 0

for s r

PROOF. It suffices to show that if s is maximal, then 5=0O. To this end, let (,)

temporarily denote the inner product given by (h1, h2) = J,jz1(x)h2(x)dx and, for s E .Y',

let vSdenote the corresponding orthogonal complement of vSrelative to the sum of v

as r ranges over the proper subsets of s. Then the spaces vs, s E eYP, are orthogonal to each

other and, vr, r c s, are orthogonal spaces whose direct sum is vS [see Takemura

(1983)]. Consequently,

for s E e/,

g5= Xg5,. where gsr E>1Cvforrcs.
rcs

Thus

o =X£g =~££gs =X X s

and hence

> 1 2~~~~

r svr
Therefore,

srsr ssfor~~ ~ ~ ~~~5Drs = , E EY

In particular, if s is maximal, then = and hence s= yjs)g5, where £(s) denotes

summration over the proper subsets of s.

Let s be maximal. Then

lII5gI2 = (g,I(s)g9 ) = 0.
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Since Y is identifiable, we conclude that gs =0. o

In the next result, p1 andp2 are tensor products of polynomials of degree m; that is,

pl(X) =Pll(Xl) ..PJM(XM)7 x= (xl, . - . xM) I

where P 1 ...*p1M are polynomials of degree m, and similarly for P2. In the proof of

the result, if x = (x ,... ,XM) and k = (k1,.. . , k ) is an M-tuple of integers, then

k k1 kM

-1Given a function h onW, set En[h(X)] = n Yi h(X.).

LEMMA 3. Suppose Condition 1 holds and let t > 0. Then, except on an event having

probability at most 2(m + 1)Mexp(-2nt2), the inequalities

n1(X)P2(X) - (X)P2(X)|< tcmM1j4 2]
hold simultaneouslyfor all tensor products p1 'p2 ofpolynomials of degree m. Here cm is

a positive number that depends only on m.

PROOF. By an elementary compactness argument, there is a positive number cm such

that ifp is a polynomial of degree m, then

(10) [ (kc0j cJp (x)dx.
It follows from Hoeffding's inequality (Theorem 1 of Hoeffding, 1963) that, except on an

event having probability at most 2(m + 1)2Mexp(-2nt2), the inequalities

(1 1) En(XklXk2) - E(XklXk2) < t

hold simultaneously for all choices k and k2 of M-tuples of integers in {O,. ... ,mi. It

follows from (10) and (1 1) that

En[P1(X)p2(X)] - E[p 1(X)p2(X)] 12 . t2 4M 1fp2(x)dx J2p2(x)dx.
Since

E[p1(X)] = 2(x)f(x)dx > l 1J p1 (x)dx 2e MlF 1(x)dx

and, similarly, E[p2(X)] .Mj Jp2(x)dx, the desired result holds. o
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LEMMA 4. Suppose Conditions 1 and 2 hold and let e > 0. Then, except on an event

whose probability tends to zero with n,

(12) - E[g1(X)g2(X)] x)

g1g2 E > Ms for some r,s E C?.

PROOF. It suffices to verify the desired result when q = -1 and d = M. Then d =M,

is the span of all functions g onW of the form

g( ) =gl(xl) ...gm(xm), t=(Xl,..XA),
where g E for 1 < I < M, and (12) simplifies to

1 (91'g2)n- E[g1(X)92(X)l I - gl1 sg9X1 192 E >
Given kl, .. .,kME { 1,...,K}, set k=(kl, ...,kM)and

Ik={X= (Xl, . XM):X,E1k ,*.,xMEIkM
Let g E >. Then, for all k,

g(x) =Pk(x), X E Ik,
where is a tensor product of polynomials of degree m. Similarly, for g1 ,g2 E we

can write

g1(x) =Plk(x) and g2(x) =p2k(x) xeIk
Thus

E[g1(X)g2(X)] =XP(X E Ik)Eplk(XP2k(I IX E Ik)*
k

Set7k= i < i < n and Xi E Ik}. Then

En[gl(X)g2(X)I = XPn(X E Ik)En(Plk(X)P2k(X)IXE Ik),k
where

n[gl(X)g2(X)] = (g112)n =n191(Xd92(Xi3
£

P (X E =-Pn( Ik) nn-(Ak)
and

En(Plk(X)P2k(X) XE Ik) 1
1k(Xi)P2k(XikiEjk
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Choose e£ E (0,1) such that e2 + 2e < e. It follows from Conditions 1 and 2 and

Bernstein's inequality [see (2.13) of Hoeffding (1963)] that, except on an event whose

probability tends to zero with n, I Pn(X E Ik) - P(X E Ik) < E1P(X E Ik) for all k and

hence

-1 (1 + 1)*21<KPn(X E Ik) < KM(M for all k.

By Condition 2, KM = o(nl ) for some 3 > 0. Thus there are positive numbers M and 3

such that, except on an event whose probability tends to zero with n, #(Jk) 2 Mjfn3 for

all k. We conclude from Lemma 3 that, except on an event whose probability tends to

zero with n,

En(plk(X)p2k(X) X E Ik) - E(plk(X)P2k(X) IX Ik)

- I1Elk(lXIXE Ik)02k |XIXE Ik)
for all k and all choices of Plk and P2k. Consequently, except on an event whose

probability tends to zero with n,

(glg12)n - E[g1(X)g2(X)] < I1E g1(X)g2(X)
+E l+E)jP(X E Ik)j(l(X) lX E Ik Eg(|X E Ik)
Se,/[g1 X)] g2(x) ' g1'k92E>

As a consequence of Lemma 4 and Schwarz's inequality, we get the following

result.

LEMMA 5. Suppose Conditions 1 and 2 hold and let E > 0. Then, except on an event

whose probability tends to zero with n,

I IIIgslI2-E([X5g5(X)]}I2 <elE[g2(X)1] g EsforsE '.

LEMMA 6. Suppose Conditions 1 and 2 hold and let 0 < 32 < 31 Then, except on an

event whose probability tends to zero with n,

(13) E[[Xgs(X)]] . l1E[gX(X)] g E yo forSE Y.
s 2 s s s~
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PROOF. We will verify (13) by induction on #(QY). Observe that it is trivially true

when #(1) = 1. Suppose #(1) . 2 and that (13) holds whenever KY is replaced by QY' with

#(e') < #(v.). Choose a maximal r E EY and choose e > 0. It follows from Lemmas 4 and

5, the definition of r, and the argument used to prove (9) that, except on an event

whose probability tends to zero with n,

E{[Xg (X)]2 M1 M2 E[g2(X)]-e£E[g(X)], egE 'd forS E vY.s s 1~' r
Thus, except on an event whose probability tends to zero with n,

E [gr(X) - ((x)j] 12 - e)E[g2(X)] - 3eSE[g2(X)]

when /3 E R and g E >5 for s E Y. Hence, except on an event whose probability tends to

zero with n,

2 E [gr(X) gs(X)] < + E[gr(X)] + E gs(X)
+ EXE[g 2(X)], g E >5 for s E e.

Consequently, by the induction hypothesis, except on an event whose probability tends to

zero with n,

E [ [s gS(X)] 2

1 - - -M2 + e] {E[gr(X)) +E[[ (X)JEg 2L l-M1M2 s.r ~~ -e~ELg#(XA]
2 ';2 [E"g2(X)) + d(QY)-2 E[gs(X)]1 -

2 [82()E _ e]X] el E[g2XX
provided that 1- / 1 2 + e .3.2* Since e can be made arbitrarily small, (13)
holds for eY. o

The next result follows from Lemmas 5 and 6.
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LEMMA 7. Suppose Conditions 1 and 2 hold and let e > 0. Then, except on an event

whose probability tends to zero with n,

(91 -2)n E[g1(X)g2(X)] I < c/g (iK ]i gI g2 E92

LEMMA 8. Suppose Conditions 1 and 2 hold and let 0 < <3. Then, except on an

event whose probability tends to zero with n,

III5gsil
> I 11gsil% g5 E YO for sE Qo.

PROOF. It follows from Lemma 4 that, except on an event whose probability tends

to zero with n,

I1gsIl2 < (1 + e)E[g((X)], g5 E for SE (2,
so

(14) IgsI|2< (1+0E[g)2g(X)], g5 E for s EY.
S S

Choose (53 E (32'1). It follows from (14) and Lemmas 5 and 6 that, except on an event

whose probability tends to zero with n,

III 5II 2. E{ [I5g5(X)]2) - eX5E[g52(X)]
2 (63#() 1- )EE[s()

_ 1 2

23 2 +gSE S forse g9.

Since £e can be made arbitrarily small, the desired result holds. o

Set Jo = (0} and Boo = 1. For s E QY with s. 0, let e' denote the collection of

ordered #(s)-tuples j', I E s, with j, E { 1, . . . ,J) for I E s. Then #Vs) = J#(S). For j E jS
let BSi denote the function on W given by

B _(x) = n1B (xl), x= (x1,. .xm).

Then, for s E eY, the functions BS, , which are nonnegative and have sum one, form

a basis of vs.
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LEMMA 9. Suppose Conditions 1 and 2 hold. Then there is a positive number M3?
which does not depend on J, such that, except on an event whose probability tends to

zero with n,

(15) b -B52l2M1J- d£ X.b2. if.b -B -e XforSE".IIsj sjBsIn.M~3 s j sj f SijSij
PROOF. It follows from the basic properties of B-splines and repeated use of (viii) on

page 155 of de Boor (1978) that, for some positive number M4,

[£jb.B.(x)]2dx>2 X1-#(.)£ b2
for all choices ofs E Y and bS EIR for j EOs. Thus, by Condition 1 and Lemma 4, except

on an event whose probability tends to zero with n,

||£jb jB .112 >M41J- #(s) jb 2
j sj sjn 4 jsj

for all such choices. The desired result now follows from Lemma 8. o

Suppose > is identifiable and let g E . Then g = I gs, where g5 e Yo,sEQ, are

uniquely determined. Moreover, g5 = Xjb -B - for s E QY, where the b5's are uniquely

determined. Let s and j be fixed. Let GSi E > denote the representor of the linear

functional g H b5j on > relative to the inner product ( n,) so that b5j = sj,g) n. Now
G . = , G . ,, where GSjS, E vsfor S E d/. Thus Gsjs,= X jy ,Bs ., for s' E e,

where the ,,'s are uniquely determined. Observe that

(G .,G5 n= sjs f ss' ec, jE/ andj' E/

In particular, y = IGsjIn> 0 for s E e andj E .

LEMMA 10. Suppose Conditions 1 and 2 hold. Then, except on an event whose

probability tends to zero with n,

(16) E i/<,,M 2J2d, se iandj e/X5.

PROOF. Suppose Y is identifiable and that (1 5) holds, and let s E ci and j e 4S. Then
AFlJ-dyA 5.Mlydi ,j,5 lGsjll =,Y.

so 3Sj5 5M3 and thereforss( ss n t si r

so ' M dand therefore (16) is valid. We now obtain the desired result from
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Theorem 1 and Lemma 9. o

LEMMA 11. Suppose Conditions 1-3 hold. Then, except on an event whose

probability tends to zero with n,

max5max E, var(I35 I x1 * Xn) = Op(Jd/n).

PROOF. Set 2(x) = var(YI X = x), x E %. It follows from Condition 3 that o2 has a

finite upper bound M4 on%.

Suppose Y is identifiable. Let Q denote orthogonal projection onto Y relative to n

Then (g,Qh)n = (g, h)n for all real valued functions h whose domain includes

(X1, . Xn) and all g E Y. Given such a function h, write Qh in the form

Qh =XYb .B , where lb B- E O forsE .

s iSi
I,

j sJ sJ
Then b (G.,Qh) =(G.,h) and henceSi Si, n sJ n

b =X£ tj,,(Bs.j ,,h) s E @Yandj E/5.

The least squares estimate f can be written as

ft=QY(*) =XY4B. whereXf3.B.e 0fors E?Y.
Si Si jiSJiJ

Thus

(G fjXXyBs,j,(B3Si, (sjY( ))n = ,7sj t(st Y( @))n =-n n,j1-7Sd,JS sjs''(Xi) Y

for s E QY and j E /f. Consequently,
2

var(131X1, ...* B = I[£, £ , -fB t,(X

<n 1nJsjlln
=M n-1y

The desired result now follows from Theorem 1 and Lemma 10. o

Theorem 2 follows from Lemma 1 1.

LEMMA 12. Suppose Conditions 1-3 hold and that p* = 0. Then

IIE( V aln ' 1) S E QY..fts I X,1... 'Xn)lln = OP
.0
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PROOF. Choose s E e9 and recall that Bj j form a basis of > . Lt g E .

Then g = bB where the b -'s are uniquely determined. Suppose Y is identifiable
J Si Si' SJ

(recall Theorem 1). Let G E >S denote the representor of the linear functional g H Si on

relative to the inner product (*v ) so that b . = (Gsj,g). Then Gsj = y> ,B
~~~~S ~~~~n Sj SJ SJ J SJJ

where the ,'s are uniquely determined. (Alternatively, (1' .,) is the inverse of the

Gram matrix ((BSBS,)).)
Let s denote the orthogonal projection of A onto YS relative to Ln Then

ft =XA .-B -, whereS'SJ SJS

sj= j y, njSn S

Now

A'HSll llSjsjn SJS SJi SJ n

By Conditions 1 and 2, Bernstein's inequality applied to the binomial distribution, and

the basic properties of B-splines,
1p12 = ]#(s) , p2.)

It follows from Conditions 1 and 2 by an extension of arguments in de Boor (1976)

and Stone (1989) that there are numbers M4 E (0, oo) and c E (0, 1) (both independent of J)

such that, except on an event whose probability tends to zero with n,

S,l <M4J S

Consequently,

x20=O[J2#(s)4[£CIi II(B-121)nI Op #(s) ((B .,gfl2]

Since g*=O, we see that E((B -,gn) = E[B .(X)r(X)] =0 for j E 4s Moreover, by

Condition 3,

max- var((B sj )n) = max. var(B .(X)r(X)) = O(nQ1 J#(S)

Thus E[£J ((B .,A )2 =0(1/n) and hence E. ((B j,) 2 = Op(ln). Consequently,

- Q 2#(s)In) and therefore

2p O #(s) d

Let pS denote the orthogonal projection of u onto YO relative to L,n which equals
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the orthogonal projection of onto Y. ThennlyS1IIn < llft5lln and hence

F'S EQ911sin= °pJ /n), SE .

Observe that E(ft I Xi,... ,Xn) is the orthogonal projection (relative to Ln) of

onto >. We can write this orthogonal projection as Ys AS, where

UEs I X,)E S, SE e/.
Now gs is the orthogonal projection of Xsgs onto vs fors etQY, so

22I£uln =s(JAs?Ys-Us)n =1s£ks)( s)n < £sllAsilnIlAhsiln < [maxslislHslnI£ kllpsn
Since max 2Illn = O(IIX,'sIIn) by Lemma 8, we conclude that

IIE(jftX1,X' * *Xn)I12 = IIXsisln2= 0P( 1i'51 ) = Op(Jd/n).
The desired result now follows by another application ofLemma 8. o

LEMMA 13. Suppose Conditions 1-4 hold and that u* = A. Then
J1E(Q5 I X1, * * ,*,- 2 = op(j-2p + jd-1In)

PROOF. By Condition 4 [see Theorem 12.8 of Schumaker (1981)], there is a positive

number M4 not depending on n or J such that, for s E e/, there is a function gs E >r with

lhg -A*ILJ<M4J P; here llhllh=supxlI h(x) is the Lc,o norm of a function h on W.

Choose s E e/ and let r be a proper subset of s. Then E[B .(X)g*(X)] = 0 for j E Jr, sorj s

max. E[B (X)gs(X)] = ov- (r) p).J 'i 5
Moreover,

max. var(B .(X)g (X)) = O(J-#(r)).
J 'i 5

Suppose > is identifiable. Let -sr denote the orthogonal projection of g5 onto

Arguing as in the proof ofLemma 12, we get that

IIgsrII9 = O(Y-2p + J#(r)In) = O(J-2p + jd-1 )

Let gor denote the orthogonal projection of g5 onto Y0, which equals the orthogonal

projection of sr onto >0. Then l.g2 so

lIgI1I2 = 0p(J-2p + Jd1 n).
Writeg5g where g1.s E VO for r c s. Then gsr is the orthogonal projection of

(S)gs onto Y 0, where £(s) denotes summation over the proper subsets of s. Arguing as
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in the last part of the proof of Lemma 12, we now conclude that

lg gssll2 = I()g 12 = Op(J-2p+Jd-lIn)
Replacing g5 by g5 if necessary, we see that, for s E oY, there is a function g5 EO such

that lg _ 2 = O J-2p + jd-1 n) and hence

IIgI - *112 = Op(J 2p + Jd- lIn).
Write the orthogonal projection E(f IX1,... ,Xn) of p = y* onto as £SYSI where

Us=E(slX1, ... ,Xn) EO fors EeY. Observe that

11S5 5 Y*112 < 11, 9 - Y* 1
Thus

ill -_ A* 2 = oQ(J-2p + Jd-l/n)
and hence

SAS - sgsl= (J2P+Jd4/n)

We conclude from Lemma 8 that

lips_g5E2 = 2f,-2p + jd-1 n) 5 E e,

and therefore that

|IJU - AU*112= S(j-2p + jd-1 n) 5 E CY'. E

LEMMA 14. Suppose Conditions 1-4 hold. There is a positive number M4 not

depending on n or J such that, except on an event whose probability tends to zero with n,

jig-_i2M4(12 g - 112 + J2p), s Ee and g E

PROOF. Given s E QY, set h = and let g E >. Then (see the proof of Lemma 4) g

can be written in the form g(x) = Xkpk(x) ind(x E Ik)x eE. By Condition 4, there is a

function g1 of the same form such that IIg1- hllIo < M5YJ , M5 being a positive number

that does not depend on n or J. Then jig1 -hll <M5J P and j|gl-hllnh< M5J P, so

lig - hll2 S 2jlg - g 11j2 + 2MP2J )2p and llg 2-ll< 2lg - hll2 + 2M 2J 2p). It follows

from Lemma 4 that, except on an event whose probability tends to zero with n,

jig -_1ll < 211g -gll|2 and hence

llg - hll2 <41g - gl ll + 2M5J2P < 8g - hO12 + 1OM5 2p. 0
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PROOF OF THEOREM 3. It follows from Lemma 12 applied to the regression function

- g* and Lemma 13 applied to the regression function p* that

IIE4iIX,l *...Xn)-/X 2 = op(-2p +JdIn) s Y.
We conclude from Lemma 14 that

IE@-

X1 , . , ;_ 112 op(]-2 + J In), S )
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