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Abstract: In a companion paper, the authors obtained some Fubini type identities in
law for quadratic functionals of Brownian motion, and, more generally, for certain
functionals of symmetric stable processes, the function: x -* x2 then being replaced
by: x e IxIa.

In this paper, discrete analogues of such identities in law, which involve a
sequence of independent standard symmetric stable r.v.'s of index a, are presented.

It is then shown that such identities in law characterize the symmetric a-stable dis-
tribution. Some related characterization results, either for some finite or infinite
dimensional r.v.'s are also presented.
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0. Introduction.

(0.1) The present work takes its origin in the simple proofs given by two

of the authors of certain identities in law between some functionals of

Brownian motion or Bessel processes (see [3] and [6]).

Precisely : (i) if (Bt,t 2 0) denotes a one-dimensional Brownian motion

starting from 0, and (B t; 0 s t 11) a standard Brownian bridge, then:

(0.a) f ds(B-G)2 (law) f ds B2, where G df ds B

- 10 0 0

(see [3], where this identity in law is obtained, together with several ex-

tensions).

(ii) if, for 8 > 0, (Ra(t),t : 0) denotes a 6-dimensional Bessel

process starting from 0, then:
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go
(law)(O.b) I ds l = (R(R6+2 <

defwhere T (X) inf{t Xt = 1}.
1 t

The identity in law (O.b) is due to Cielsielski-Taylor (1962) for integer

dimensions ; for a detailed discussion and further extensions, see [6] and

[7]. The proofs of both identities in law (O.a) and (O.b) rely essentially

upon the following (Fubini type) identity in law:

(O.c) f ds (f p(s,u)dB) (law) [ ds (F p(u,s)dB)
Jo Jo Jo J

where p E L2(R2,ds du).

(0.2) In the first section of the present work, we show that some discre-

te analogue of the identity in law (O.c) holds for a sequence of i.i.d.

Gaussian variables, namely: if G = (GI,...,G ) is a random vector which

consists of n independent N(0,1) random variables, then the identity in

law

(1.a) e (AG ) w (A G

n 1/2
holds, where A is any n x n real matrix, and t2(x) = (E x) 2 denotes

the euclidean norm of x = (x ,. ...,x ) e R .
1 n

In fact, more generally, we show that, for any 0 < a s 2, we have

(cc) (law) * (X)(1.a) e (AC() ( e (A C )
(X (X -n oX -n

where C ) = (C ),...,cO) now denotes a random vector, the components of
-n I n

which are n standard symmetric stable r.v's, with parameter a., and
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n l/at

(X) (iE lxI I

(0.3) In the second section, we are interested in the study of a converse

to the property (1.a)a , namely: if X , X ,. .. ,X,... is a sequence of

i.i.d. random variables which satisfies, for any n e ON, and any n x n

matrix A:

(law)(l.a)' e (AX ) (- (A X)
cc CC n cc -n

defwhere X = (X ,...,X), then we show that X is a symmetric stable ran-
-n 1

dom variable of index a.

Hence, in this sense, the property (l.a) characterizes the symmetric stable

law of index a.

(0.4) In section 3, we consider a fixed finite dimension n, and we try

to characterize the laws of n-dimensional random variables X = (X ,.. . ,X )

such that (1.a)' is satisfied, but we do not assume any other property on the

vector X
-n

We obtain a complete description of such vectors for a = 2, but our descrip-

tion remains incomplete for a * 2.

(0.5.) In section 4, we go back to the infinite dimensional case ; if

X1,X2,... ,X ,... is a sequence of random variables which satisfies, for any

n e IN, and any n x n matrix A, the identity in law (1.a)' and, if moreover,

(law)X _-X , then, we prove that
-co -co

(law) (ac)(O.d) X ( (HC ne N)
-oo n

where (C(; n E N) is a sequence of independent symmetric standard stable
n

variables of index a, and H is a 2 0 r.v. which is independent of the

sequence Ca . In fact, we may even get rid of the assumption X (a)-X-an -00 ct

and the general result is that (O.d) holds up to the introduction of a
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Bernoulli, ± 1 valued, random variable (see Theorem 3 below for a precise

statement).

(0.6) As a conclusion of this introduction, we describe how this paper

relates to its companions [3], [6] and [7] : whereas in [3] and [6], the

authors presented some applications, mainly (O.a) and (O.b), of the Fubini

identity (O.c), the aim of this paper, together with [7], is to unsderstand

in a deeper way the role of the identity (O.c):

in the present paper, we restrict ourselves to the case of a (possibly finite)

sequence of variables, and, therefore, we discuss identities in law such as

(1.a) and (3.a)a , whilst, in (7], we consider continuous time processes

and, in particular, we characterize all the process (Xt,t : 0) which satisfy

(O.c)' f ds ({ p(s,u)dXJ (law) f ds (p(u,s)dX)
to0 0 0 0

for all simple functions p R x IR > R.

1. The main identity in law.

Let 0 < a s 2, and n e 0J \ {0}. We consider the application et Rn

n 1/a
defined by: e (a) = l Iai

We also consider an n-dimensional random vector

(o) (cr) (oc)C =(C I...,C ),
-n 1 n

the components of which are n independent, standard, symmetric variables,

which are stable with exponent a, that is:

E[exp(iC(o)] = exp(-I1AI') (A i R).

Then, we have the
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Theorem 1: For any n x n real matrix A, we have

Ul.a)a e(AC (A*C)
(X-n ot~~~~~ Tn

where A is the transpose of A.

Proof: We introduce C(a) an independent copy of C(, and we write
-n -n

(AC ,C )=(C A C )
-n -n -n -n

We then compute, in two different manners, the characteristic function of the

above random variable ; we obtain thus:

E[exp AX| (x( (AC)()) = E[exp - JX|(l (A Cn ) )]

for every X e R.

(a) (law) .()Using the fact that C = C and the injectivity of the Laplace
-n -n

transform, we obtain (1.a)

Remark 1 In the case a = 2, there is also the following alternative proof

if G = (G ,...,G ) is an n-dimensional random vector, with the G's inde-
-n 1 n

pendent, centered, each with variance equal to 1, then we have

2 (law)

(e(A G ,AG ,AAG (G,AA G),2 n -n nn -n -n -n

since - AA and A A have the same eigenvalues, with the same order of multi-

plicity, and the law of G is invariant by orthogonal transforms.
-n

Then, the proof is ended by remarking that:~~~~~2
(G ,AA Gn) = (t2(A Gd))

Obviously, these arguments cannot be used for a * 2.
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2. A characterization of the symmetric stable laws.

We now consider a given application e FS RIR, where FS is the set of

finite sequences a = (a ,... ,a,O,O,...) for some n, and al e IR, such that

the following hypotheses are satisfied:

(2.a) t(a) > 0, for every a * 0

(2.b) e(Va) = IX I t(a), for every a, and A e R.

We also consider a real-valued random variable X and a sequence of i.i.d.

random variables X ,X,.2...,X ,..., with the same distribution as X, and we

write X for the truncated sequence (X ,... ,X ,0,0,...), which we sometimes

identify with the Rn-valued r.v: (X ,...,X ).
1 n

We can now state and prove our main result.

Theorem 2: The following properties are equivalent

1) X is a symmetric stable random variable, with parameter a

2) there exists e FS RI which satisfies the properties (2.a) and

(2.b) and such that, for every n E , and every n x n real matrix A, we

have

(2.c) e(AX ) (lw) e(AX)X
-n -n

3) there exists an application : FS R1 such that

(2.a) l(a) > 0, for every a 0,

and

(2.d) for every a = (a,...,a ,0,0,...), E ax ( )(a)X

Moreover, when 1) is satisfied, the applications e and 1 are given by

t(a) = c t (a), for some c > 0, and I(a) = e (a).

6



Remark 2: In the statement of Theorem 2, we have tried to make some minimal

hypothesis about the application e FS ) IR , namely (2.a) and (2.b).

However, even these hypotheses may be superfluous, as the following seems to

suggest: if X is a symmetric stable random variable with parameter a, and

f R-+ ) R is a Borel function, then: t = foe obviously satisfies (2.c).

Such applications e may well be the largest class of applications from FS

to IR which satisfy (2.c).

Proof of Theorem 2: a) From Theorem 1, we already know that 1) : 2), with

e = e .ac

To prove that 2) * 3), we remark that, if we take

aa 0....0

A = . 0...0 , so that

a
0...0

Ia ....a
1 n

: A= O... O ,

O . ..O
%O . .. O

we obtain,

1

a = . ,and
a
n

0j

from our hypothe-

e(aX )
I 0

0

and now, using (2.b), we have:

|lxi e(a) (law)
n(

i=1

Therefore, 3) is satisfied with : (a) = t(a)/et 0

b) It now remains to prove that 3) = 1), and that, when 1) is satisfied,

e and I are determined as announced in the last statement of the Theorem.

7
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Indeed, let us assume for one moment that we have proved the implication

3) - 1), so that X is symmetric, stable, with exponent a.

Then, we deduce from (2.d) that 1(a) lXi (l=w) e(a)IXjI, so that =

and we deduce from (2.e) that

t(a) = ce(a), with c = e1o].

c) We now prove that 3) 1).

To help the reader with the sequel of the proof, we first assume that X is

symmetric ; then, we deduce from (2.d) that we have, by taking a [] (1

is featured here n times)

X (law) I(
n =1

This implies (see Feller [4], p. 166) that A - n , for some 0 < a < 2,
n

and that X is symmetric, stable, with exponent a.

d) Now, we give the complete proof without assuming a priori that X is

symmetric.

1

1By taking a = | the (2n)-dimensional vector, with its n first compo-

- ~~-l

nents equal to 1, and the n last ones equal to -1, we obtain, from our

hypothesis (2.d), that:

(law) I n
jX~ = - i (X -X)I

n i=1
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and, consequently, the (symmetric) law of A (Xl-X;) does not depend on
n i=1

n. Consequently, just as above in c), we obtain that X -X' is (symmetric)

stable with some exponent a.

e) It now remains to show that X is symmetric.

To do this, we shall use the hypothesis (2.d), with a = (1,1), and

a2 = (1,-1). Thus, we deduce from (2.d) that

(2.f) |+ |(law) sl|Xt|, and I 1 (law) vIXI.

This identity (2.f) is equivalent to

(2.f) 1(X 2) (l) X and: X (law)

where c is a symmetric Bernoulli variable, which is independent of the pair

(XI,X2).
We define +(t) E(expi(t X1)), and we remark that, since we now know

X1-x2 to be (symmetric) stable, with exponent a, we have

(2.g) I(t) = exp(-cItJIx), for some c.

Hence, the identity (2.f') may be written as the following pair of identi-

ties

(2.h) - (0(t) + O(t)) = W t))22 (0(t))2

and

(2.0 (X(t) + (t)) = I¢(i)I2 = exp(-2cll), from (2.g).

Now, we remark that the right-hand side of (2.h) is (obviously) equal to

1 t)+ ¢(t)2 2
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and then, using (2.g) and (2.0), the identity (2.h) may now be written as:

exp(-2c2I) = exp - I I - exp(-2c1-I )$IV~~~~~~~I

which, if we write s = 2cItI , m = la , n = - , is equivalent to
c v

2 exp(-2mns) = exp(-ms) + exp(-ns), for all s > 0.

From the injectivity of Laplace transforms (for instance !), we now deduce

that 2mn = m = n, so that = v, and we now deduce from (2.f) that

(2.j) X I (law)X +X

This relation (2.j) implies, by Lemma 1 below, that X is symmetric, and the

proof of our Theorem 2 is finished. o

It may be helpful to isolate the following characterization of a symme-

tric random variable.

Lemma 1: A real-valued random variable X is symmetric if, and only if

(2.k) X+X I (aw) X-X

where X' is an independent copy of X.

Proof All we need to show is that, if (2.k) is satisfied, then X is symme-

tric.

Consider a symmetric Bernoulli random variable c, which is independent of the

pair (X,X'). Then, (2.k) is equivalent to

(2.e) x-xfi (law)

and, if we note z = E[eitx], we have, from (2.e)
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Izj2 = 1 2 -2
2 {z + z },

which is equivalent to Im(z) = 0 ; hence, E[eitx] is real, and X is

symmetric. o

3. The finite dimensional study.

Let n e IN, n > 1, and 0 < oa < 2. In this section, we should like to charac-

terize the n-dimensional random variables X = (X ,. ..,X ) which satisfy

(l.a)
a. tO(AXn) =

c
(A Xn).

The difference with the study made in the previous sections is that we do not

assume here that the components X1,X2,... ,X are independent, nor that they

are identically distributed.

Our first result in this study is the following

Proposition 1: The n-dimensional r.v. X = (X ,....,X ) satisfies (1.a)
-n 1 n a

if, and only if, for any (ai)l<i<n nR' we have

(.3.a) ~~~n(law) nf cx/O(3.a) Il aXi Eai j i x 1.

Proof : 1) Using arguments similar to those in the proof of Theorem 1, it is

easily seen that X satisf ies (Z.a) if, and only if, for every n x n

matrix A, we have:

(cc) (law) (xc)(3.b) (C ,AX n) (C ,A Xd)

where the vector C ) is assumed to be independent of X
-n -n

Letting A vary among all n x n matrices, we obtain that (3.b) is equiva-

lent to:
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(3.c) ~~~(a) (law) (ax)(3.c) (Cl X I s i si s n) ( (XC 1 s i,j sn).

n n
Now, if two vectors (a) and (a;) satisfy E ja,I E la;, then,

the variables

n n

E aC and E a;C(a)

have the same law. We then deduce from (3.c) that

{ E aX)C ; j s n} ( {(E a;x)X ; j }n

which is equivalent to (l w) nX aX |I.
i=1 i=1

Consequently, we have obtained that (3.a) is satisfied.

2) Conversely, we aim to show that if (3.a) is satisfied, then so is

(1.a)a. We remark the following equivalences, with the help of our above no-

tations for (3.b):

(l.a) - t ,AX) (law) ( A X ), for every n x n matrix A

il (cx) (law) (cc)- > (A C ,X ) = (AC ,X ), for every matrix A.
-n n-n -n

*(cx) (law) (cc)(3.d): (A C ,X) (AC ),Xn), for every A,

where we have denoted X = £X, with £ a symmetric Bernoulli variable
-n -n

which is independent of the pair of n-dimensional variables C(a) and X
-n -n

Now, the property (3.a) is equivalent to

(3.a)a EalXIn (law n
cc) cxcxwe sl1(3.d, e la fo I

and we shall deduce (3.d), hence (l.a) ffrom (3.a).
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Indeed, we have:

( (),) (law) * (ax)
(ACn ,Xn) = ccUACn )XI (from (3.a) )

(law) e (ACn ))XI (since C) satisfies O.a) )

(law) (AC) , (from ( )(Cwn (,d 3.apd).
Hence, we have shown (3.d), and the proof is finished. 0

In the case a = 2, we have the following characterization of all vectors X

which satisfy (1.a)2.

Proposition 2: An n-dimensional random variable X = (X ,...,X ) satisfies
-n 1 n

(1.a)2 if, and only if, it may be represented (possibly on a larger probabi-

lity space than the original one) as:

(3.e) X = ep U,
-n -n

where p is a r.v. which takes its values in I , U is uniformly distri-

buted on the unit sphere S 1, c takes only the values +1 and -1, and p

and U are independent (but no stochastic relationship between c and the
-n

couple (p,U ) is assumed).

Proof : As we have already seen, X satisfies (1.a) if, and only if, it
satisfies -

satisfies:

E a (law) (n la
i=l i=

X1 1

where: X = eX with c a Bernoulli random variable which is independent
-n -n

of X
.

-n

13
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Thus, X satisfies (3.a) if, and only if, its law is rotationnally inva--n 2

riant. Hence, we can write

(3.f) X = pU
-n -n

where p and U satisfy the properties stated in the Proposition.

Finally, since we have X = eX, we deduce from (3.c) that
-n -n

(3.e) X = ep U
-n -n

In the case 0 < a < 2, we have not been able to decide whether or not every

n-dimensional variable X which satisfies (3.a) may be written in the

form

(3.e) X = ep U(X)
at -n -n

where p is i 0, independent of UO), a vector which is assumed to have a
-n

"universal" distribution depending only on n and a.

However, we are able to exhibit a number of examples of variables X which
-n

satisfy (1.a)a [or, equivalently, (3.a) ].

In order to do this, it is of interest to introduce the class of variables

T = (T1,...,T ), all components of which take their values in R, and which

satisfy

n (law) n 2
(3.a)

+
E aT = a T

(X2 i=1 Ii1

for all al 0, 1 < i s n.

We can now state and prove the following

Proposition 3: Consider two independent vectors g = ( n,1. ) and
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T = (T ,...,T) which satisfy respectively (3.a) and (3.a) + Then, the-n I n 2a-2

random vector

X = (Vr ; I s j S n)
-n J J

satisfies (3.a) .

Proof We remark that, by conditioning first with respect to T, we have
-n

for all a E IR, 1 < j < n:

EI a VT (law) (E a T) 11 (since g satisfies (3.a))

(law) n
a( 2/a) 1/2Ei la T sneT satisfies (3.a) 1)

j= ' J 1 (since -

(law) (n~IaI )/E la Ilxii.

Hence, X satisfies (3.a) .-na

In fact, the same arguments allow us to obtain the following generalization of

Proposition 3.

Proposition 3': Let 0 < a s< 2, and consider two independent vectors

= (,I... Ig) and T = (T I... ,T) which satisfy respectively (3.a) and
n 1 n -n 1 n

(3.a)OCAY

Then, the random vector X = (T I; 1 s j s n) satisfies (3.a)
-n J j

In order to obtain a better understanding of the class of vectors X which
-n

satisfy either (3.a) , for 0 < o s 2, or (3.a)+ , for 0 < a s 1, we find

it interesting to introduce the following
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Definition: An IR-valued random variable p is called a simplif table r.v.

if the identity in law:

(law)=X pY,

where X, resp: Y, is an R valued random variable which is assumed to be

(law)independent of p, implies X = Y.

The interest of this definition in our study shows up in the following

Lemma 2: 1) If T = p S satisfies (3.a)+ , for some a s 1, and Lf p is
-n -n L

a simplifiable random variable which is independent of Sn, then S satis-
-n -n

fies (3.a)4.

2) A simiLiar statement holds with X = p Y which is assumed to
-n -n

satisfy (3.a) , for some cr < 2.

The proof of this lemma is obvious from the definition of a simplifiable va-

riable, and the properties (3.a) and (3.a)

As an application, we remark that, if U and U' are two independent n-
-n -n

dimensional random variables which are uniformly distributed on the unit

sphere S then:
n-l

(3.g) U /U' (p4. ; 1 s i snJ satisfies (3.a)l

1/(U')2 (and iUi n) satisfies (3.a)

The property (3.g) may be proven as follows

if G = (G ,...,G ) and G' = (G',...,G') are two independent n-dimensional
-n 1 n -n I n

centered Gaussian vectors, each component of which has variance 1, then

nII-InI -U G/I lI U' G'/IGnI are independent, and

16



hence: IG' I is simplifiable; likewise, the second assertion in (3.g) is
-n

proven by remarking that

T _[;1 s i < n]
G2

is an n-dimensional vector which consists of independent one-sided stable (2)

random variables, hence T satisfies (3.a) .
-n 1/2

Consequently, since T = 12 ('2) and is simplifiable, then

1 satisfies (3.a)
( 2 1/2
(n)

In the preceding discussion, we asserted that certain random variables are

simplifiable ; these assertions are justified by the

Lemma 3: 1) If p is a simplifiable random variable, then

m(i) P(p > 0) = 1 ; (ii) for any m e R, p LS simplif fable.

2) A gamma distributed random variable is simplifiable.

3) A strictly positive random variable p is simplifiable if, and

only if, the characteristic function of (log p) does not vanish on any in-

terval of R.

Proof: The proof of this lemma is elementary ; hence, we leave it to reader.
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Now, we can state and prove the following converse of Proposition 3.

Proposition 4: Constder two independent vectors g = ( n,...) and

T (T,...*,T) such that :

(i)
n

satisfies (3.a)2 and (ii) X a (VTJg; 1 < j S n) satis-

fies (3.a)<.

Then, if moreover Ig11 is a simplifiable variable, the sequence T satts-

fies (3.a)+

nProof: From our hypothesis on X, we have, for any (aJSn EnR

n (law) n(
C

/
(3.h) a VT g ( E=la ,; Il, .

From our hypothesis on n, the left-hand side of (3.h) is equal in law to-n

(E a' T]l2

Hence, we have:

n
2

1/2 (law) (n~ a(iX 2T/OLCOA.') E a2 T) e lw E laIla)
-

If|

which, since 1 is a simplifiable variable, implies that T satisf ies

(3.a)+ .

4. The general infinite dimensional study.

The aim of this section is to bridge the gap which exists between section 2,

where we consider a sequence X, ... ,X,.... of i.i.d. random variables, and
1n

section 3 where we consider a finite dimensional sequence X ,...,X , for
1 n

which we make no a priori independence, nor distributional identity property

assumption.

In this section, we consider an infinite sequence X = (X1,... ,X ,...) such

18



that for any n e N the finite sequence X = (X ,...,X ) satisfies (1.a) ,

for some a, with 0 < a s 2.

Thanks to the infinite dimensionality of the sequence X", we obtain a

characterization result which completes Theorem 2.

Theorem 3: The following properties are equivalent

1) for any n e N , X satisfies

(law)(.a) e (AX) =- (A X ), for every matrix A,

2) for any n e N*, and (a) e 0R, X satisfies:
I ISn -n

in (n lAxi
(3.a) 1 E aXI (law) la ac IXI

(a) (x)O3) there exist c, H and C (C ; n E N) such that
-Co n

(law) ((X)(4.a) X = (H CC n E N)-0 n

where c takes the values ± 1, H is an R -valued random variable, C is
+ -00

a sequence (C ),n E N) of independent symmetric standard stable (a.)
n

random variables, and H and C(a) are independent (but no distributional
-Co

relationship is assumed about c with respect to the pair (H,C ))).

Proof a) Proposition 1 ensures the equivalence between properties 1) and

2) ; moreover, since C(a satisfies (3.a)a for any n, it is immediate

that, if X satisfies (4.a), then it satisfies (3.a) for any n E0N. Hence,

it remains to show that 2) implies 3).

b) We first introduce (if necessary on an enlarged probability space)
a symmetric Bernoulli random variable c which is assumed to be independent

of X . Call X =eX (c X ;n e N). Then, we deduce from 2) that X
-xo -a -Co n '-n

19



satisfies:

(3.a) E a)aX = e (a)X
n ~~i=l I 1

for any a = (a a ) e Rnv
1 n

In particular, the sequence X is exchangeable. Consequently, from Neveu

([5], Exercice IV.5.2, p. 137), or Chow-Teicher ([2], Theorem 2, section 7.2),

there exists a sub o-field 9 such that, conditionnally on ', the variables

(X; n e N) are i.i.d ; here, we may take for ' the a-field of symmetri-

cal events in {X , or the asymptotic ao-field n o(X ; m > n}.
n

We now show that the conditional distribution of X given 9 is the symme-

tric stable law of index a.

Indeed, from (3.a) , we have

defn(4.d) '1(a ,...a)a E[expi E a jX= (et (a)).
n 1 n ~j=l i o

Now, if we denote by ¢,(a) = E[exp(ia X )1'](M) the characteristic function

of Xl given !, then Bretagnolle, Dacunha-Castelle and Krivine ([11, p. 234-

235) show that, as a consequence of (4.b), one has

0 (a) = exp((-K(M)|aI|x),

for some 9-measurable R -valued r.v. K.

The proposition (4.a) now follows easily. o

Acknowledgments: We thank Shi Zhan for giving us a partial proof of Theorem 2

in the case a = 2 when it is assumed a priory that X has moments of all

orders ; we are also greatful to M. Ledoux for eradicating a superfluous hy-
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