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Abstract:

In the first half of this paper, a Fubini type identity in law - which was previously
developed by two of the authors - between quadratic functionals of Brownian motion
is extended in two directions:

- an analogue of this identity in law holds when Brownian motion is replaced by a
symmetric stable process of any order a E (0,2), provided the function: x -* x2 is
replaced by: x -> I x la;

- such Fubini type identities in law yield, as a particular case, an identity in law which
resembles the integration by parts formula; as a consequence, some extensions of the
Ciesielski-Taylor identities in law are obtained.

The second half of the paper is devoted to showing that such Fubini type identities
in law "nearly" characterize the symmetric stable processes.

A characterization result of lesser scope is obtained for two particular classes of
processes which satisfy the integration by parts identity in law: the class of Gaussian
processes on one hand, and the class of squares of Gaussian processes on the other
hand.

Key Words: Fubini's theorem, integration by parts, stable processes, Ray-Knight
theorems, Ciesielski-Taylor identities, diffusions.
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0. Introduction.

(0.1) We first recall the following identities in law

(0a) ds (B - dt) ds

-0 -0 J0

where B is a real valued Brownian motion, and B is a standard Brownian

Bridge, indexed by [0,11,

and:

(O.b) Jds I(R (s)a1) T(R ),
(R d+210 d2

where Rd (resp. Rd+2) is a Bessel process of dimension d (resp. (d+2))

starting from 0, and T (Rd) is the first hitting time of 1 by Rd.
The identity in law (0.a) has been obtained independently by Chiang - Chow -

Lee [41 and Chan - Jansons - Rogers [3], using the - by now, classical -
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diagonalization procedure due to Paul Levy [1II to compute Laplace, or

Fourier, transforms of quadratic functionals of Brownian motion.

The identity in law (O.b) has been obtained by Ciesielski and Taylor [5] for
integer dimensions, and then extended to any dimension d > 0 by Getoor and
Sharpe [9]. Biane [1] subsequently obtained a wide class of identities in law
which extend (O.b) to suitably related functionals of pairs of diffusions,
which satisfy a certain duality assumption. However, in all cases, the proofs
of such results by these authors rely exclusively upon the computation of

Laplace transforms of the two functionals.

(0.2) In [6] and [13], the authors have obtained the identities in law
(O.a) and (O.b) as a consequence of the following Fubini type theorem
if B and C are two independent real-valued Brownian motions, then

(0.c) { dB { dC q(u,s) a_s { dC f dB q(u,s),
Jo 0o 0o 0o
2 2

for any (p e L ([0,1] ,du ds),

or rather as a consequence of its corollary

(O.d) du ({ dB (u)) (w) du( dB p(s u)

%P0 % 0 0

(0.3) The aim of this paper is to prove some extensions of this Fubini theo-

rem, and to present in a unified manner a large class of identities such

as (O.a) and (O.b).

We now describe the organization of the paper.

In the first section, we present an identity in law which resembles the
classical integration by parts formula, from which we then deduce, with the
help of the Ray - Knight theorems for Bessel local times (see [13]) some

interesting extensions of the Ciesielski - Taylor identities (O.b).
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In the second section, we extend Fubini's theorem in several direc-

tions: we first replace in (O.c) the independent Brownian motions B and C

respectively by two symmetric stable process C (), and C(), with respec-

tive indexes a et 3, which allows us to obtain some interesting extensions

of (O.d), relating the laws of certain integrals of C(a) on one hand, and

C($3) on the other hand ; in a second direction, we show that it is possible
to polarize the identity in law (O.d) with two independent Brownian motions B
and C, which, as a consequence, allows us to extend the identity in law (O.d)
into an infinite dimensional identity in law between two sequences of random
variables which are associated to (p(s,u) on one hand, and to q(u,s) on the
other hand.

In section 3, we are interested in the converse of the property (O.d)
for the Brownian motion (or the identity in law (2.d) for stable processes

see section 2) ; namely, we want to characterize the processes (X ,O s t s 1)
which satisfy the identity in law:

(O.e) f du I dX w(u,s)l (l=w) f du fl dX p(s, u)I
Jo Jo JO Jo

for any bounded simple function (p [0,1]2 - , and 0 < a < 2.

We show that Xt is "nearly" a symmetric stable process with index a (cf.
Theorems 4 and 5).

We also prove a precise characterization of a stable symmetric process combi-

ning a Fubini-type identity in law in the discrete case ((L.a) in [141) and

in the continuous case: this is the aim of Theorem 6.

The last section is devoted to studying the processes (X ,t > 0) which

satisfy the following identity in law, which resembles an integration by part

formula:

(Of) { dx f'(x) X() + f(b) X (law) g(a) Xf(a) + dx g'(x) Xf(x)
a Ja

for any functions f,g: [a,b] IR two C1-functions with f decreasing
and g increasing.
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In section 1, we proved that t = Ct | satisfies (O.f) where C(0) is a

stable symmetric process with index a.

We obtain a complete description of processes satisfying (O.f) when we res-

trict our study to two classes: the first one is the class of Gaussian pro-

cesses, the second one is the class of square of Gaussian processes.

To conclude this introduction, we now explain how this paper relates to

its companion [14]: in both papers, we try to gain an insight into the iden-

tity (O.c) and more precisely, we are interested in converse problems i.e. to

characterize a Brownian motion (or a stable process) via some identities in

law like the Fubini-type identity (O.c).

In [14], we restrict our attention to the case of a sequence of random varia-

bles X which satisfy a discrete Fubini type identity, namely

|AX 11 ) |A*X 1

where X is a n sample of X, A is a n x n matrix, A is the trans--n

pose of A and ||xl|ix = (Z|jxl C')1/ 0 < a s 2) for x E Rn. In this paper,

we consider continuous processes and we discuss identities in law such as

(O.d) (or (2.d)) and (1.d).

1. Fubini's theorem and some identities in law

(1.1) We give some applications of the identity in law (O.d), whose proof

follows immediately from Fubini's theorem (O.c). First, we recall, following

[6], how (O.a) is obtained as a corollary of (O.d).

Proposition 1 Let f [0,11 - R be a C' function such that f(1) = 1.

Then, we have

(2.a) { ds(B - dt f'(t)BJ (w) ds(B - fB2

0 0 0

and
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f| ds(B dt B (law) ds B

0 0 0

where B is a standard Brownian bridge.

Proof: The identity in law (l.a) follows from (O.d), where we take:

O(s, u) = (1 (u's) - (f (1) - f(u))) 1 2

The identity in law (1.a') is a particular case of (1.a), with f(u) = u. o

As a second application of (O.d), or rather of a discrete version of (O.d), we

now prove a striking identity in law (1.b) which resembles the integration by
parts formula.

Theorem 1 : Let (C ),t - 0) be a symmetric stable process with index act

(0< o: s 2), starting from 0.

Let 0 s a s b < co, and f,g [a,b] > R be two right-continuous functions,
with f decreasing and g increasing ; then, we have:

I]a,b]
df(x)ICg(c )I + f(b)ICg(b) Ia

(law) g(a)OCX))a +

]a,b]

dg(x)C(a.) caIf(x)I

-df(x) C(a ab)a C(a) x
g(x g(b

(law) (a:)
(l= g(a) Cf (a)) I1 +

J]a,b]
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First, we recall the discrete version of the Fubini-type identity in law (O.d)

Theorem (1141): Let 0 < a 5 2 and C = (C ),...,C( ) be a n-dimen-
-n 1 n

sional random vector whose components are n independents standard, symme-

trtc, stable variables with index a.

Then, for any n x n real matrix A, we have

(1.c) 11IAC~II(cc) (law) (Aa)-n -=nIA
where A is the transpose of A, and

n 1/A

11I=a (E XI I) for x e PR<.

Proof of Theorem 1: a) First, let us state a corollary of (l.c).

Corollary I: Let (Y ,...,Y ) and (Z1t...Z ) be two symmetric stable n-

n
dimensional vectors with index a (i.e. E ak Y is a symmetric stable

(oc) r.v. for all (ak) IRnj such that:

i) YI'Y -Y,... ,Yn-Yn are independent,

ii) Z,zn Zn-1,...*z2-z are independent.

Define the increasing sequence (3 0 S k s n) by
k

85 = 0 ; E[exp(iAYk)] = exp(-6k A ) VA s R, 1 s k s n,

and the decreasing sequence ( k,1 S k s n+1) by:

E[exp(iXZk exp(-7k AI ), 1 s k s n ; 7n+ = 0.

Then, we have:
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n
oc ~~(law) n~

(1.d) - ((l-aw1)I (,3 - )ZI .
i= 1 + I i=1 I 1

Proof: We apply (1.c) to the matrix A = (a ,l s i s j s n) with

aij = l 13 lj<l; we then obtain:

n
XcI (ix)a (law) (n) E

JS i i=l

where C(a), ... ,C ) are n independent, symmetric standard stable r.v. 's
1 n

with index cx.

Now, we remark that the two sequences

Y= E RJ C( ) and Z= E c C 1 s i s n,

satisfy the independence properties stated in the Corollary.

Finally, it remains to define 6 = and = E IaJ to obtain
j<i ~~~~j>i J

the identity (1.d). o

b) i) We apply (1.d) with

Y = C(t )(f ) )Z = f(t1) a3 = g(t1), 1 s i s n.

It follows

n (c

- (f(t ,)- f(tg)) (t | a + f(tn)lCg(t ) OCi=1 IgtI f(nIC()

(law) (oa) a n ( )

W t si 1a,=2

When the mesh of the subdivision of [a,b]I tends to zero, we obtain

7



- df(x)ICg(x )_I + f(b)IC(a)Ia
Ja,bl

(l.e)

(law) (c)c x() (cx) Ix + [ (cx) cc(a)g(a)Icf(a)I'm g(a) IC(())| + .|l,] gx I Cg(x)-
]a,bJ

(a ) . (ax)where C = I rm C
sstt

(we recall that the process (C (a),t 2 0) is right-continuous and has left

limits).

Now, we replace the two functions f and g by f+c and g+c (£ > 0) in

(1.e), and letting c 0O, we obtain (1.b).

ii) We apply (l.d) with

Y (= C Z1=C(7c) , = f(t),a =g(t) 1 i s n.

It follows

n-I (cx) c c) c
- E (f(t ) - f(tI))ICg(t + f(tn)ICg(t

i=l 1+1 ~~~~1+1 n*1

(law) (cx)cx )n- t)C(a )Ig(t 21 Cf(t )I (+ (9( i+dx g(d)| x(t )I
1 =2

with the subdivision T = (a = t < t <... < t = b < t ).
n 1 2 n n+l

As in i), when the mesh of T tends to zero, we obtain (2.b'). o
n

(1.2) We now show how the Ciesielski - Taylor identities (O.b), or rather a

family of extensions of those idnetities, are deduced from the identity in law

(l.b), in the particular case ac = 2.
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We consider a transient diffusion on (O,a), whose infinitesimal generator is

given by

(.f) r =2 d d with s(O) = -c, s(a>) = 0.

s, resp. m, is a scale function, resp. speed the measure of X. We consider

the particular case where

I.g) r = 2id 2+ b(x) d
( ddx2 dx

By developing (1.f), it follows that (1.g) is satisfied if

(2.h) m'(x) s'(x) = 1 and b(x) = -2 s(x)
2 s(x)

Following Biane [1], we introduce two functions v and n defined by

(.0) v = - and dn =s din;
5

then, b can be written as

OAI) b(x) =
~v' ( x) 1V"(X)

(1ii') b(x) v(x ) - 2 v'(x)

Then, we have the following representation of X there exists a 3-dimen-

sional Bessel process R3 such that

(1.j) v(X) = R, ds v (X
0

(La(X),a > O,t > 0) denotes the family of local times of X, which we define

via the density of occupation formula: for any Borel function f: R R
+- +

f(X )ds = { f(a) La(X)da.
s t
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Using the representation (2.j), we can extend the version presented in [131 of

the Ray - Knight theorem in the following

Proposition 2: Let c > 0, v defined by (1.1) and

k(x) - 1 1 xX c ;v(x) - v(c) X C

then, we have

1) (La (X), a 0O) (law) (v4a IBV(a) 2 , a > O)

a(L (X), 0 a s c) ( -2) (LT (Law)< IBkc(a)I 2 0 <

C ~Ik'(a)I
a c) .

The proof of 1) follows easily from the identity in law for (La(R ),a > 0)

given in [13], and the representation (l.j).

For 2), we use (l.j), the identity in law for (L (R3),a s 1) given in [13],

in terms of a Brownian Bridge B and the classical identity

(B,v E [0,1]) (= ) (v B ,v E [0,lJ). o

V

In [1], Biane associates to pair (v,n) defined by (1.i) a new diffusion X,
2

=I d d Iid dwith infinitesimal generator F = 2 d2 + b(x) dx
2dvdn 2dx2 x

Thanks to the formula (1.0), we have

and 1 ~~n"(x)(l.k) v'(x) n'(x) = 1 and b(x) = n' (X)

',(x) 1vf(x) _-As in (l.i'), we can write b as b(x) = v 2 with v(x) =n(x)
v(x) v'x(nx()

where n is any function whose derivative is n'(x) = v'x
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(For r , n' has the same role as s' for r).

We are now ready to prove the following extension of the Ciesielski - Taylor

identities in law.

Theorem 2: Let 0 ' a < b s c and X,X defined as above.

We then have

F ~~~~~~~~b(law)a
J ds 1asX sb + (n(c) - n(b)) v'(b) L(X) (L v(a)n'(a) LT (X)
0 s c

.e)
F (X)

+ I a b ds.

J0 s

Proof We first remark that from Proposition 2, the identity in law (1.e) is

equivalnt to

Tb B2
JV()dx + (n(c) - n(b)) Bv(b
a

(1.m)

B2
(law -12

b k (x
- v(a)n'(a)Ik'(a)1' B2 + -dx

kc( a ic(X

where

(l.n) k (x) = __ - 1 = n(c) - n(x)
v(x) v(c)

(here, we have taken B to be a real valued Brownian motion).

Now, (l.m) is a particular case of the identity (l.b) with g(x) =v(x),

f(x) = k (x), since, from (1.n) and (1.k), we have: that
c

f'(x)I = n'(x) = v'(x)3
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Corollary: In the particular case where X is a (d+2)-dimensional Bessel
d

process, v(x) = x and X is a d-dimensional Bessel process, then (II)
takes the particular form

,(; d 1 (bd-I fC dx )
p ds LasR (s)sb + (b d1 b ( Lb(Rd )

(law) a a (Rd
LR )+fT(didsLdaTRd aSR (s)b

where (Rd(t),t 0) denotes the d-dimensional Bessel process starting
from 0.

2. Some extensions of Fubini's theorem, and more applications.

(2.1) We first present a fairly general extension to symmetric stable
variables of the identity in law (l.a) obtained in Theorem 1 in [141.

Proposition 3: Let 0 s as 3 < 2. Consider, for E = a, or f3,

X( ) = (X ),.. .,X( ) an n-dimensional random vector, whose-n 1 n

components are independent, symmetric, stable variables, with exponent 0,

that is E[exp(iXX )] = exp - (A E R).

Then, for any n x n real matrix A, we have

(2.a) ||AXn 11 (T )1/3 (law) n( 11

where /= / T7 is a one-sided stable random variable with exponent I

(that is E[exp(-AT )] = exp(-A ) (A ' 0)),
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which is assumed to be independent of X(n and | ( xI

In the particular case a = (3, we have T = I a.s., hence the iden-

tity (2.a) takes the simpler form:

(2.b)~ ~ (oc (law) *(x(2.b) ||AXIIIn = IA X

which is the identity (1.a) obtained in [14].

Proof: We may consider that X(a) and X($) are independent.
-n -n

From the a.s. identity:

(AXn X = (X( AX

we deduce, by taking the characteristic functions of both sides that, for any

~~~~~~~~n n

E[exP - IXI~(IIA Xn I1IS)] = E[exP - IAI (IIAX(3)IK) ].

Taking Ai = IA as a new variable, we obtain

E [exp - A 7(IIAX 11 ) = E [exp - ( llAX- 1

The right-hand side is equal to

E exp -{HA (IIAX)IK)(3}7] = E[exp - 11 AX T]

Hence, we have obtained that:

(IA3~)~fT (law) (
(3

(I|AX( |cc) T (11)(|A X IIf)"11(3)
which is equivalent to (2.a). o
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(2.2) We now derive an infinite dimensional analogue of (2.a) and (2.b) ; to

this end, we consider (C( ,t : 0) and C(is),t 2 0) two stable symmetrict t

processes, with respective indexes a and,.

The a.s. identity (O.c) extends easily as follows

dC dC (u s) dC dC ( (u,s),

0 0 O To

for any bounded Borel function (p: [0,1] - >R,

and arguments analogous to those we have just used lead us to the following

Proposition 4 Let 0 < a ' (3 < 2 ; define 7 =

Let X3a=x du dC( v(u,s)l a and -X =
1

du'' dC sp(u,s)j
%0 0 0 0

Then, we have:

(2.c) (X ) 7 T (law) X

where T has the same meaning as in Proposition 3, and is assumed to be

independent of X.13

In the particular case where a = (3, we obtain the identity in law

(2.d) [1 du ~~~~~~~ (ix) ox (aw) f1 fI(2.d) J|1 du1 |1 dC p(u,s)I = du ] dC p(u,s)
0o 0o Jo Jo

We now give some interesting application of the identity in law (2.c).
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Theorem 3: We use the same notation as in Proposition 4, and we write:

G(() = dC(a)du C
u

-0

Then, we have

(2.e) du

0

(2.f) (f du

0

(2.g) (1 du

0t

In the particular case

(13) a) 13/ T (law) | u C(o |isc T du I
0

3) 0G((3)I Ti (law) du (a)- uC 3
wo

IC1 uC' )Ij T (lw) du Ic( - G

wo

,3 = 2, we obtain:

(P I( 2( (law) 1 (cc) - o)(2.g') ( du IBII T du (C - G
u oc~~/2 J

where B B - uB , u < 1, is a standard Brownian bridge.
u u 1

(in the even more particular case a = (3 = 2, this is precisely (O.a)).

Proof 1) The identity in law (2.e) follows from (2.c), when we take

(p(u,s) = 1(su), together with the identity in law

(2.h) (Cs ; s'1) ( (C1 -C ; s Sl)

2) The identity in law (2.f) follows from (2.c), when we take

qp(u,s) = 1(SU) - (l-s), and we use again the identity in law (2.h).
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3) We then obtain (2.g) by exchanging the roles played by qp and p

to prove (2.f). o

Theorem 3 may be used to interpret some Laplace transforms computations made

for a particular symmetric stable process, say Brownian motion, or the Cauchy

process for instance, in terms of the other symmetric stable processes.

As an example, we write the identities in law (2.e) for , = 2, and (2.g'), in

terms of Laplace transforms; we obtain:

(2.0)c E [exp - A du (C Z E= exp - A du a

0 ~~~~~~0
and

(2.j) [x [12/c (ol) G(())2l E[xa1x..2j) E[exp - A du (C - = exp - A du
J0 UJ uj

In particular, in the case a = 1, we obtain the following identities, where

we have simply written (C ,u - 0) for the standard symmetric Cauchy process,

'1
and G = du C

u

.~~~~ 2

(2.) Eexp X du )] exp( f du IB)]
o o

and

(2.j) E[exp(- xA du (C - G)2J] = E[exp(- A P du BI)]

0 0

Now, the right-hand sides of (2.1) and (2.j) have been computed respective-

ly by Kac [10] (see also Erd6s-Kac [71) and by Shepp [12] (see also Biane-Yor

[2], p. 75) ; here are the results of those computations
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(2.k) Elexpi- A du - c1 exp(- A(13 k

for certain constants cl and k , related to the Bessel functions J1/3 and

J ,and

-1/3~ ~ ~ ~ ~ 3 /

(21) E [exP(- AIN du BU I 2 (K2) (3

where N is a reduced, centered, Gaussian variable, which is independent of

B.

With the help of the identities (2.0) and (2.j) , we now deduce from (2.k)

and (2.e) that

(2.i') E[exp(- A du C =2 e exp(-1/k3)

and

(2.j') E[exP- A2 N6 du (CU-G)) 2' K1/3)
0 2/3

where N is a reduced, centered, Gaussian variable, which is independent of

C.

(2.3) Polarization of the identity (O.d) with two independent Brownian motion.

In this section, we always represent the function (p(s,u) by q(u,s),

and B and B' are two independent Brownian motions, starting from 0.

We first give a general result

Proposition 5: Let e s L2([0,1]2,du ds) ; we have the following identities

in law:

17



(2.m)

du ttdB sp(uts)) Wd8 p(u,s)]
%P0 f 0 0

(law) 2 t du {(f dB (p(u,s)) - ( dB' (u,s)
0 0 0

and

f du dB VW(us)) ( dB' p(u,s)
0 0 ~~~~0MOO(2.n)

(-aw)1J du (f dB c(u,s)) (1 dB; (u,s).
0 0 0

Proof 1) From the identity 4ab = (a+b)2 _ (a-b) 2, we deduce

2ab = (a+b)(a b)

B +B' B -B'
Now, using that (s s s s, s > 0 is a planar Brownian motion, we

obtain (2.m).

2) (2.n) is then a consequence of (2.m) and (O.d). o

We give two applications of Proposition 5.

Proposition 6: Let X > 0.

1) For A small enough, we have

(2.o) E[expV2 j ds B B'J] Y E[exP(2 { du ds BJ)]
0o 0 u

((cos A)(chA)

18



2) We write G ! du B and G G; we define in the same way G' andIsju 1S
0

G' with B'. Then, we have

(2.p) [ ds(B -G)(B;-G') = [ ds (B -G )(B'-G').

o 0

If (B,s < 1) and (B',s < 1) denote two independent standard Brownian

bridges, we have, for A small enough

E[exp A {| ds(B -G)(B'-G')] (-V) E[exp A { ds B B'

0o 0

(it') (sh A2 1/2
t(sh A)(sin A)J

The formula (2.o) has been obtained by Bearman [0].

Proof: 1) i) is a consequence of the representation of { ds B B' as a
Is s

stochastic integral with respect to dB' , that isS

dB' (ids B)

0 u

The identity ii) follows from (2.m) and the well-known formula

E [exp 2- { du B2] = (cos A)

2) ii') follows from (2.m) and the well-known formula
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E[exp A2 du B = ( A)

On the other hand, the a.s. identity (2.p) is a consequence of the polariza-
tion of Hardy's identity (see section 3 of [13]):

ds (f(s) _ f)2 = fds (f(s) - ,[ f( )du)2
0 0 J0

where f ds f(s); we apply this polarization to f(s) = B and

0
g(s) = B'

S

i') follows from (2.n) with q(u,s) = S<u - (l-s).

Now, we extend the identity (O.d) into an identity in law between two sequen-

ces of r.v.'s; we recall some notation used in section 4 of [6]

H(s,h) = du p(u,s) s(u,h)
0

and K(s,h) = du (p(u,s) (u,h) = { du v(s,u) (p(h,u).
0 0

In the following, we consider the kernel M(n) (M = K or H) defined by
induction

M(n)(s, h) du M (n-1)(s,U) M(u,h).
.0

If we look at the polarized form (2.n) of the identity in law (O.d), we notice

that the left-hand side of (2.n) is equal to:
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f dB' f dB H(s,h),

O 0

whilst the right-hand side is equal to

f dB' dB K(s,h).
JO Oo 0

Thus, we can deduce from (2.n) - in the same way as (O.d) follows from (O.c) -

the identity in law

(2.q) dh dB H(s,h)J (law) j dh(f dB K(s,h)J.
s s~0

Using the same transformations as before, we obtain a polarized version of

(2.q) with two independent Brownian motions B and B', and we write it as an

identity in law between two stochastic integrals with respect to B'. Then,

taking the conditional variance, it follows:

(2.r) J dh(J dB H 2)(s, (law) j dh(J dB K (s,h))2.
o 0 0 0

Proceeding on with this method, we obtain, more generally, the following

identities for any (m,n) e (N2)

.|dh dB H( (s,h) dB H( (s,h)

(2.s)m,n

(law) F [(nn F1)
'- .|dhii dB K (s,h) (. dB K (s,h)

J an J a S J

and some analogous identities when we replace
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1
n r(n 1

ndB H( (s,h), resp. dB K (s,h) by dB' H (s,h),
0 0

resp. dB' K(n)(s,h).
0wo

With this method, we have not been able to draw the conclusion that the

identities in law (2.s) , indexed on (m,n) e N x N, hold simultaneously.m,n
To prove this result, which is nonetheless true, we now use the spectral

method, developed in section 4 of [3].

There exists an orthonormal basis Qp) E L2([0,1]) of eigenvectors of the

kernel H, with eigenvalues (g), that is

J

Hqp (s) - ds H(s,u) qpi(u) = ;I (pi(s)
%0

and H(s,u) = Ei (Cs) (p (u).

In the same way, there exists an orthonormal basis ((p) of eigenvectors of

K, with the same eigenvalues (ii) i.e.J

Kp =Ai p and K(s,u)=E ,p(s) vp(u)

Thus, the left-hand side of (2.s)m,n is equal to

E A1
m .n dB (J(s)

We deduce, from the identity in law between the two sequences

(N = f dB (p (s), j > 1) and J= dB qp.(s), j > 1J,
0 0
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the following improvement of (2.s) n

Proposition 7: We have the following identity in law

(2t dB (sm) (law I dB(2.t)(0 dB I dB H(m)S,u) ; m 1) (fdB dB K(m)(s,u) ; m

Remark The identity (2.t) is really an improvement of all the identities

(2.s) and (O.d) simultaneously ; in fact, thanks to Ito's formula, we havem,n
the a. s. identities

f du(f dB p(u,s)) = 2 dB f dB H(s,u) + J du f ds (p2(s,u)

0 0 0 0 0 0

and for m,n 2 1

{ du({ dB H(m) (u,s)) (f dB H (u,s)) = 2 { dB { dB H(m (s,u)

o % 0 0 0 0

+ du ds H(m)(s,u) H (s,u)

= 2 dB 0 dB H(m+n) (s u) + 1 du H(m+n) (u,u)0 s TO
with analogous formulas when p is replaced by (p and H is replaced by K.

3. A characterization of the stable processes.

(3.1) We present a characterization of the processes (Xt; 0 s t s 1),

starting from 0, which satisfy the identity in law:
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(O.d)simple f du (1 dX5 V(u,s)) (I_w) f du(f dX5s u)

0 0 0 0

for any bounded simple function p: [0,112 IR.

In this paragraph, we shall use the notation: (HW t; 0 < t s 1) to
denote the product of a standard one-dimensional Brownian motion
(W ; 0 < t 5 1), and of a random variable H such that HI and

(Wt; 0 s t s 1) are independent (the same convention applies to

(H'W O s t s 1), or (H W ;O < t l< 1), and so on...).t

We may now state and prove the following

Theorem 4: Let (X ; 0 s t 5 1) be a real valued process starting from 0.

The following properties are equivalent

1) X satisfies the identities (O.d)simpie

2) there exist a random variable c, which takes only the values -1 and
+1, and a real valued random variable H such that

(law)(3.a) (X O s t s 1) (HW O s ts 1).t t

3) there exist a Bernoulli random variable c* , that is

P(C* = +1) = P(C* = -1) = 1/2

which-is independent of X, and a positive random variable H. such that

(law)(3.a) ~ (c X Os tsl) = (H W ;Ost 1).
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Comments: 1) Particular cases of processes X which satisfy the equivalent

properties of Theorem 4 are the processes (Xt,t 51) such that:

(law)(3.a') (Xt; O s t s 1) = (H'Wt; O t < 1).

The natural question now arises whether any process which satisfies (3.a)
does in fact satisfy (3.a').

2) Another natural question is the following

given a process X which satisfies (3.a), or even (3.a'), to find a "direct"

procedure to construct a Bernoulli variable c* such that (3.a), is satis-

fied. Here is an example of such a situation : consider the process

Xt = sgn(W)Wt , O< t s 1,

which appears thus under the form (3.a').

(law)Since W ( -W, we see that £- sgn(W) is-independent of

(Xt,t s 1), and we have, obviously:

X* Wt (O S t s 1);

hence, the property (3.a)* is satisfied, and we remark that the process X

is not a Brownian motion, since X = |W1|.

3) Comparing again the identities in law (3.a') and (3.a) , it

would be interesting, in the light of the above example, to know whether, if

we have:

Xt = Wt , Os t s 1,

where 'v takes only the values +1 and -1, and is measurable with respect to

the o--field given by W t, 0 s t s 1,

then, there exists a Bernoulli variable e* , which is also measurable with

respect to W t, 0 s t < 1, but independent of X t, 0 < t 5 1, and such

that:
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(law)(3.a)* (e.X ,t s 1) = (H W ,t s 1), with H* O.

It is now immediate that we must have Ho = 1, a.s., and therefore, the

question is:

can we find e* such that (c,Xt ; t S 1) is a Brownian motion ?

4) It may also be interesting to find out some examples of pro-

cesses X which satisfy the equivalent properties of Theorem 4, and which

are Brownian motions. In this direction, we have the following elementary

lemma, the proof of which is left to the reader.

Lemma 1: Let (W ,t > 0) be a Brownian motion starting from 0, and let e.
be a symmetric Bernoulli variable.

We assume that c. and X - c*W t, t 0, are independent.

The following properties are equivalent

(i) X t :O, LS a Brownian motion;

(ii) c* is independent of W.

(In fact, what is important here is only the property of the law of W to be

(law)symmetric, that is W = -W).

Proof of Theorem 4: a) Property 3) obviously implies 2)
b) If X satisfies 2), then we have, for a simple function (p

. du(f dX (p(u,s)) (I_w) H2 f du({ dW cp(u,s)

and

f' du(fd1 _(us))2 (law) H2 f du(f dW 2(u1s))
0 0 0 0
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it now follows from the independence of H and W, and from the fact that W

satisfies (O.d), that X satisfies 1).

c) We now prove that 1) implies 3).

Hence, we assume that (O.d)simpe is satisfied.

Then, introducing a Brownian motion (B t; 0 s t s 1) which is independent of

X, we remark that (O.d). is equivalent to

(3.b) f dB dX (p(u, s) (law) dB dX (u,s)
%P0 0 0 0

for any simple function p.

However, interverting the order of the integrals and then exchanging the names

of the variables s and u on the right-hand side, we obtain

{ dB dX (p(s, u) = dX f dB p(s, u) = { dX { dB (p(u s)

and so, (3.b) may be written as

(3.b') dB dX (p(u,s) (I_w) [ dX dB p(u,s).
o 0 O 0

Now, both sides of (3.b') are linear in (p, and so (3.b') is equivalent to

the identity in law between processes

(law)(3.c) (B X u s l,s s 1) 1= (XB u ' l,s ' 1).
u s u s

In particular, we have

(law)(3.c') (X B ;us (B X ;ul)
ul ul
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We now write: c* = sgn(BI), and X = c ,X

Hence, we deduce from (3.c') that:

(3.d) (B1 X; U < 1) (la) (lXlW ; u 5 1),

where W - sgn(X )B is a Brownian motion which is independent of X.

2~ (law) 2From (3.d), we deduce that: B <X> ( X

where we have denoted

<X>= P- im E (X A) P- I im T (Xt -Xt) =<X>
n aoo n 1+1 I n4 c 1+1 1

(n- (O = to < < t = 1) , n E- N, is a sequence of subdivisions of [0,1],
n

the mesh of which goes to 0, as n -* c).

Hence, if we write H = , we obtain

(law)lX1i = IB1IHIH with H 0, and independent of B .

Going back to (3.d), we now have the following identity in law

(3.e) (IB1 ; Uu )(a1w) (IB1IH.W; U < 1)

where, on the left-hand side, IBJ and X are independent, whereas, on the

right-hand side, |B , H. and W are independent.

It is now easily deduced, by a Laplace transform argument, that (3.e) implies:

l)(law)

(3.f) - (X u 1) (H*W u < 1),

which is precisely the identity (3.a)* . a

(3.2) Our aim is now to characterize the processes (X t; 0 t < 1) starting
from 0, which satisfy the identity:
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(Here, we assume 0 < a S 2).

(Od)me f duif dX (us) (law) { dui dX (s u)

0 0 0 0

for any bounded simple function : [0,112 R.

In order to state our answer to this problem, we find it convenient to intro-

duce the

Definition: An R -valued random variable Y is said to be simplifiable if

the following property holds

(law)if YX ( YZ , with X and Z taking their values in R and X, resp: Z,
(law)independent of Y, then X = Z.

The following lemma gives some interesting examples of simplifiable variables.

Lemma 2: 1) If Y takes its values in R \ {O}, and if the characteristic

function of (log Y) has only isolated zeros, then Y is simplifiable;

2) If Y = C )|, where C(a) is a symmetric stable random va-

riable, then Y is simpliftable.

In the following, we make the convention, similar to that preceding the sta-

tement of Theorem 6, that the product (HCG( , t < 1) denotes the product of a
t

variable H and a stable process C(, such that H and C(a) are inde-

pendent.

We may now state and prove the

Theorem 5: Let (X ; 0 s t < 1) be a real valued process starting from 0.

The following properties are equivalent:
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1) X satisfies the identities (O.d) a.

simple

2) there exists a simptifiable variable Y, a random variable c which

takes only the values +1 and -1, and a real-valued random variable H such

that

(law) (cc)(YcX ; O t 1) =O(HC O t S 1),

where, on the left-hand side, Y and X are assumed to be independent;

3) there exists a symmetric stable variable Ya, of index a, which is

independent of X, and a positive random variable H such that

(law) ((X) ts(YaXt ; O t5 1) = (H* C ;0 t<1).

Proof: a) The property 3) obviously implies 2), thanks to the second part

of Lemma 2.

b) If X satisfies 2), then, we have, for a simple function (p

y

F
du dX V(u,s)Ia (law) IH'a

[
du 1dC (u s)

Jo Jo Jo Jo

and

Y | du ddX (us)jl (l_w) IHI du Iu) dC(.
Jo 0o 0o 0o

It now follows from the independence of HI and C( , and from the fact

that C(O) satisfies (O.d) , that

du1 if1 d ( )lagl/o (law) y(fX
y du ~dX q(u,s) I (xJl 0 du f'dX ~(u,s)~I1/x
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Finally, since Y is simplifiable, we obtain that X satisfies (O.d).1a
c) We now assume that (OMd)smpie is satisfied, and we prove that 3)

holds.

Just as in part 3) of the proof of Theorem 4, we arrive without any new

difficulty to :

Ox) (X C()u 1)l

(Cu X1; u 1),

where C ) and X are independent (on both sides)

- (a) OX)thus, defining C = sgn(X )C , we obtain a symmetric stable process
U 1 u

which is independent of X , and it is now clear that 3) is satisfied, with

Y = c ,and H = |xi. o
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