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Abstract

The effort of recovering the features (such as the number of modes and overall shape)

of unknown densities leads to nonparametric curve estimation under order restrictions.

We introduce a flexible class of nonparametric densities called a-regular shaped den-

sities, and propose the Piecewise Maximum Likelihood Estimate (PMLE) which has

an attractive "automatic" bandwidth selection feature. Spline techniques are used to

further smooth the PMLE. Simulation studies are presented to illustrate the usefulness

of the proposed techniques. A case study of estimating the densities of the size of

lipoprotein is also included.
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1 Introduction

Nonparametric density estimation provides a useful explanatory technique of examining

the overall structure of a set of data. Popular approaches include kernel and spline methods.

However, the performance of these methods depends strongly on the choice of smoothing

parameters. The sensitivity to this choice makes the practical use of the methods time

consuming and requires expertise. Data-driven bandwidth selection methods have been

studied recently [Rice (1984), Wahba (1985), Hardle, Hall and Marron (1988), and among

others]. One tries to minimize the Integrated Square Error (ISE) or the Mean ISE (MISE)

or other related objects, and uses one of them as a measure of global effectiveness of a curve

estimate. In practical density estimation, shapes such as the number of modes of the curve

are very important [Silverman (1986)]. If one is interested in number of modes, then ISE

and MISE might not be good criteria. For example, the ISE of two curves can be very

small, while the number of modes of the two curves is quite different. Thus, it is clear that

a more objective method with variable window sizes determined automatically by the data

would greatly enhance the usefulness of practical curve estimation. To achieve this goal, we

consider estimating a density under some flexible shape restrictions.

An early paper on shape restricted estimation is Grenander (1956), who estimated a

decreasing density by using a maximum likelihood approach. The asymptotic distribution of

the MLE was found by Prakasa Rao (1969), and Groeneboom (1985). Recent developments

in estimating a monotone density can be found in Birge (1987a,b). Wegman (1969, 1970a,

b) pioneeringly studies the problem of estimating a unimodal density whose mode location

is unknown, and finds the asymptotic distribution of his estimator. See also Wegman (1975)

for other modifications and development of maximum likelihood methods. Ramsay (1988)

gives an illuminating development of the isotonic approach, and its applications including

data transformations. Various applications can also be found in Ramsay and Abrahamowicz

(1989), Kelly and Rice (1990), Bickel and Fan (1990), among others. Related ideas to our

proposal in this paper are independently proposed in Machler (1989), Mammen (1990). Of
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course, there is a long history of isotonic regression and related problems. See Barlow et al.

(1972) and Robertson et al. (1988).

2 Problems and Models

The problem we are concerned with is not only to estimate a density, but also to recover the

features (such as the number and locations of modes) of the true density f. In applications,

we are interested in modes which are reasonably far apart. Let xJ be the (ja)-th population

quantile. For simplicity of our discussion, we will always assume that 1/a is an integer.

Definition. Call a density a-regular shaped if there is at most one local extremum

(minimum or maximum) on [Xa,X,+i)a] ( for 0 < j < 1/a - 1).

Let f be a-regular shaped. On the interval [x>., X* +l)a] having probability a, the den-

sity f has only four possible shapes: increasing, decreasing, U-shaped, and unimodal. From

now on, we will use the term "unimodal" to also include monotone (increasing, decreas-

ing) curves, because a monotone curve has maximum over the interval [x>X*+1)aI at the

boundary.

With small a, a-regular shaped densities model almost all interesting densities of prac-

tical interest. For example, 10%-regular shaped densities include all increasing, decreasing,

unimodal densities, bimodal, trimodal, quadramodal densities whose area between a valley

and its nearest peak is at least 10 %, and many other bimodal, trimodal, quadramodal

densities. Thus, a-regular shaped densities describe many useful density curves.

The objective of this paper is to estimate an a-regular shaped curve. We emphasize that

a is not a parameter one can determine from statistical estimation, but it is determined by

users from prior knowledge and practical concerns. For a finite set of data at hand, one can

not really tell how many modes the data may have: it could come from a density having

5 modes, and could also come from a density having 6 modes or more. In other words,

from a statistical viewpoint, one can not give an upper bound on the number of modes of

a density, but can give a lower bound on the number of modes (see Donoho (1989)). Thus,
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a-regular shaped densities model the unknown density by putting an upper bound (1/a)

on the number of modes. This explains why a is not estimable.

In conclusion, the restriction on a density has practical meaning. It includes a variety

of interesting curves such monotone, unimodal, and U-shaped curves, as specific examples.

It forces the density function to be not too wiggly, and models a "most explainable curve"

among the infinite number of curves which are indistinguishable by a finite set of data.

3 Methodologies

Let X1, * - , X, be a random sample from an a-regular shaped density and let X1, X..,Xn be

its order statistics. Our approach in estimating f is to first divide the data into ma = 1/a

pieces, and then apply the nonparametric maximum likelihood technique to each corre-

sponding piece to find an estimate of the density for each piece. The Piecewise Maximum

Likelihood Estimate (PMLE) puts an estimate on each piece to form an estimate of the

whole density curve.

3.1 Piecewise Maximum Likelihood Estimate

Divide the data into ma pieces: the jth piece contains data X(j_1)no+1, *- Xino, where

n,, = na. Note that X,n, is the ja-th sample quantile, which is a good estimate of

the population quantile xX., an end point of intervals on which the unknown density is

either unimodal or U-shaped. Now consider estimators which attempt to maximize the

approximate likelihood in the jth piece:

no

H f(X(j_ 1)n.+k)7 (3.1)
k=fl

subject to the constraint that f(.) on [X(jl)n0+l,DXjn] is either unimodal or U-shaped

with area a.

However, there is no solution to the problem (3.1) because one could always let the

density f(X(j_l)n.+ko) = oo at mode position X(j3l)na+ko to maximize the likelihood. Also,
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when f is U-shaped, one could let f(X(3.l)n0+l) = oo or f(X;na) = oo to maximize the

likelihood. Thus, some refinements appear necessary. Let's take X(j-l,)n0+k as a candidate

of the location of a peak or valley. Then, consider the following two separate problems:

* Problem L For 1 < k < n,,, maximize

nct

JIJ f(X(j..l)nc+i), (3.2)
i=l1,i.k

subject to the constraint that f is unimodal with mode location X(-_1)n,+k and the

total mass of f on the interval [X(3.l)n0+l, X,na] is a. Denote the solution by !Ik(x),

whose value at mode location is undermined. Now, define the log-likelihood of f.,k(x)

to be

Li}k = slog (fk(X(j_l)n,+i))
isk

* Problem II. For 2 < k < na, - 1, maximize

n.-1

rj f(X(j_1)n.+i)i 33
i=2

subject to the constraint that f is U-shaped with valley location X(j-l)nQ+k and the

total mass of f on the interval [X(j_.l)n0+l,XJn0] is a. Denote the solution by f"k(x),
whose values at both end points can not be determined by (3.3). Now, define the

log-likelihood of the function by
flQ 1

LIk = filog (fjk(x(j-1)ncl+i)).
i=2

Let fj(x) be the one of 2(n> - 1) densities

fJ1k(x) (k n, ,,,), 2 k(x) (k = 2,***,na-1)

having the largest value of the likelihood. Then, it will be shown that the support of fj(x)
is [X(j..l)nO+l,Xmnc]. The piecewise maximum likelihood estimate f(x) is the estimate that

combines f; on each disjoint subinterval [X(-_1)n,+I,Xjna,:
f /ax

/(x) = Zf,(x). (3.4)
1
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Note that the summation in (3.4) just combines f,(x) on each disjoint subinterval [X(j_l)n,+1,
Xinab] as f3(x) has support [X(j-1)na0+17xjn0].

For a more complete discussion on estimating a unimodal density (corresponding to

a = 1), see a serious of work by Wegman (1969, 1970a,b, 1975). The current method is a

continuation and development of his pioneering work.

3.2 Solution to the Optimization Problems

The solutions to the first and the second problems can be found by using isotonic regression

techniques [Robertson et al. (1988)].

Proposition 1. The solution to Problem I is given by

{ 0, if x < y1 orx > yn.

fj'k(x)= fi if yiSx<yi+17i=1,--,k-1

fi if Yi < x < yi+17i = k,7* **,na,-1

where yi = X(j_l)nQk+i(i = 1,. n,oa) and fi is defined by

f = mink>t>i max<,(nmax, )(yt-y) if i < k

mink<s<i maxt>t (nc,z (ytys) if i > k

The result of Proposition 1 is contained in Barlow et al. (1972), and can be computed

by using the "pool-adjacent-violator" algorithm [see Robertson et al. (1988), page 8-10].

Proposition 2. The solution f]k to Problem II is given by

0, if x < y1 or x >yn.

2k = | fi+1 if yi < x < yi+17i = 17...,k - 2 (3.6)

fk if Yk-..<X <yk+1

fi ifYi <x< yi+1, i= k +1, * *,na,-1
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with

mins<j maXk>t>, (n-3) ) for 1 < i < k

fi = mint>jMaXk<,s<i a(t-s)YtY) fr k < i < na (3.7)

min{min,<k (n o(k-s) ,mint>k (t(n1t-k)} for i = k(n.-2) (yk+1 s)n 2(Y-k T

where yi = X(jpl)nf+i, i = 1 ,n.,, and

4= yi, when i < k,y =Yk+l; YI =Yk-1,Y'=Yi, when i > k.

The proof of Proposition 2 is given in the appendix. The estimate fk can also be

computed by using the "pool-adjacent-violator" algorithm. The C program for computing

the PMLE is available from the authors.

With solutions given in Propositions 1 & 2, one could easily find the PMLE (3.4). Even

though we have to solve quite a few optimization problems, the computation of PMLE is

very fast: it takes a few seconds to compute on a SUN 4.

3.3 Spline Smoothing

The PMLE f is a step function (histogram) whose bin width is automatically determined by

the data. See Figures 1.1-3.1. The discontinuity of the curve PMLE seems unsatisfactory.

Thus, further smoothing of the estimate f appears desirable. Let (xl,Z1),., (XN, ZN) de-

note the midpoints of the histogram estimate f (i.e., xi is the midpoint of the ith histogram

bin and zi is the height). We want to find a smooth density that eventually (in a least

squares sense) passes through the midpoints of the histogram.

There are two popular cubic spline bases

* power bases: 1, x, x2, x3, (x - t.)3, where tj is a knot;

* B-spline bases (see de Boor (1978)).
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The problem is how to locate knots. There are two popular techniques for locating knots:

fixed knots and knot deletion.

fixed knots

Let's take x,, x2s,* *, Xm, (m =[Nf ]) as interior knots, where s denotes knot span.

Let the corresponding cubic spline bases (e.g. power bases) be Bj(x), -. , Bm..t+4(X). We

propose to use logsplines [see Kooperberg and Stone (1990)] to smooth the PMLE. Let

log(f.(x)) = x+4 OkBk(X). Find 0k to minimize

N

E[log(Z2) - log(fS(X1))]2W1, (3.8)
1

and then renormalize the estimate f,(x) to have area one, where wi is the area of the

histogram estimate on the ith bin.

In principle, the smoothed density need not be a regular. However, since the shape

of the unknown density is captured by the PMLE, it is relatively easy to select an s such

that the spline smoothed curve has a shape similar to the PMLE. See section 4.3 for more

discussion.

An advantage of using logsplines is that the positivity constraints (f8(x) > 0) become

automatic. Thus, one only needs to use ordinary least squares method instead of using

constrained least squares.

knot deletion

Instead of using a fixed number of knots, we can start out with a larger number of knots

and then remove those knots that appear to be unessential for the given data.

Let's take x3, x6,---, X3m (m = [N3 1), as initial knots that may be deleted. Let corre-
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sponding power bases be

IBj(x) = (X - X3j)+ ( )

{ Bm+l(x) = 1, Bm+2(X)= X,Bm+3(X) = X2 Bm+4(X) = x3

Let log(f,(x)) = E +4OkBk(X). Use the usual least square to find 0k that minimizes

N m+4
[log(zi) - Z 9kBk(Xi)]2WU, (3.9)
1 1

where w3 was defined in (3.8).

Denote the least square estimate of (3.9) by O, with standard error SE(Oj). Then, delete

the jt knot (1 < jo < m) having the smallest absolute t-value: IO,I/SE(Oj), (1 < j < m).

Repeat the above deleting process (at each step delete one knot). We arrive at a sequence

of models indexed by j (0 < j < m): the jth model contains m + 4 - j free parameters

with residuals of sum of square RSSj. Choose j to minimizes the modified Mallow's Cp
criterion:

Cj = RSSj + 3(m + 4 - j)&2, (3.10)

where a2 is the standard deviation at the oth model (full model).

At the `th model, one obtains knots il, , z;, with bases B,*(X) = (X - z)3j =

1,... ,j, and B +1(x) = 1, B%2(x) = x, B%3(x) = x2, and Ba(+4(3)= z3, and estimates

9j,j =1,.,j + 4. Now, form the function

f*(x) = exp j (x)

Normalize f*(x) to be a density and denote the resulting function by f**(x). Then, f**(x)
is the smoothed version of PMLE by using the knot deletion procedure.

3.4 Comparison with other spline techniques

The usual spline technique involves selecting knots among n possible data points. In our

approach, we locates knots at the N possible midpoints of histogram bins. Thus, an advan-

tage of using the PMLE as preliminary estimate is that we reduce the possible number of
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knots from n to N P n2/3 and also get a good preliminary estimate of the density. In our

simulations, n = 200, and N t 30. Thus, it is much easier to implement stepwise deletion

procedures and to use fixed knots spline techniques.

3.5 Some remarks on the procedures

Remark 1. When na = na is not integer, it is easy to modify our procedure by dividing

the data as follows. Let n* = [na], and n* = n - man* be the residual, where maf = 1/a.
Now, the modified procedure is to let the first n* pieces contain (n* + 1) data points, and

the rest contain n* data. In other words, the jth piece contains data

{ X(j- 1)(n*+i)+l, ,Xj(n* +i) (n* + 1 data points), when 1 < j < n

tX(j- 1)n*,+n*+1 i Xjn-,+n- (na data points), when n*< j . ma

Remark 2. A very useful extension of our procedure is to find an a-regular estimate

with a certain number, 2 say, of derivatives via the maximum penalized likelihood criterion:

find f to maximize
n oo

f f(Xi) + j [fu'(x)]2dx,
1-o

subject to f is a-regular, where , is the penalty. See Good and Gaskins (1971) for further

discussion on maximum penalized likelihood estimator. The advantage of this procedure is

that the resulting estimate itself is smooth with knots determined by data. In this case, the

spline smoothing is not necessary, as the estimate itself is smooth. However, we haven't yet

found a good algorithm for the estimate.

Remark 3. These spline smoothing techniques are proposed as supplementary data

analysis tools. They can be used to produce a smooth curve estimate. They are optional,

if one is satisfied with PMLE estimate.

10



4 Simulations

4.1 Unimodal Example

A random sample of 200 data is generated from N(0, 1). Suppose that we don't know that

the data is from a unimodal density, but are interested in recovering 0.25-regular densities.

Roughly speaking, we believe the underlying density has no more than 4 modes. Then, we

apply the PMLE technique with a = 1/4. The resulting estimate is plotted in Figure 1.1.

As one can see, there are peaking phenomena at the estimated modes. As we discussed

in section 2, for a set of 200 random data, we can not really distinguish whether the data

comes from a the density like the one plotted in Figure 1.1 or from a standard normal

density, unless we have some other knowledge. If one ignores the thin bins and the valley

around zero which are the points where the data are partitioned and are artifacts of PMLE,

however, one can see that the estimate is unimodal.

We then use the spline smoothing techniques discussed in section 3.3. Figure 1.2 plots

the spline smoothed versions with both fixed knots (s = 5) and deleted knots. The resulting

estimate is clearly a unimodal density.

From this example, we can see that the spline techniques are proposed not only to

smooth the discontinuity of the PMLE, but also to repair the artifacts at locations where

the data are partitioned.

The following table shows the resulting knot locations produced by our rules of locating

knots.

Table 1. Knots resulting from the two selection rules for Figure 1.2-3.2.

Fixed Knots Knot deletion

Unimodal -1.60, -0.59, 0.14, 0.76 None

Bimodal -3.68, -2.27, -1.08, -0.14, 1.52, 2.70 -0.78, 0.22, 1.64, 2.70

Trimodal -1.70, -1.27, -0.08, 1.00, 1.91 -2.62,-1.63, -1.39, 0.05, 0.72, 1.51

In the above table, unimodal means the resulting knots for the data set generated from

the unimodal density. "None" indicates that all knots are deleted by the knot deletion rule.
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Bimodal and Trimodal cases are to be discussed.

4.2 Bimodal Example

We simulate a random sample of size 200 from 0.6N(-2, 1) + 0.4N(2, 0.82) and again im-

plement the PMLE with a = 1/4. The resulting PMLE is plotted in Figure 2.1, which

looks pretty satisfactory (ignoring artifacts like thin bins.) The smoothed versions of the

PMLE are plotted in Figure 2.2. Again, we take s = 5 in fixed knots spline smoothing. The

resulting knots used in the computation are shown in the third row of Table 1.

4.3 Trimodal Example

In this simulation, a random sample of 200 is taken from a normal mixture:

0.3N(-2, 0.72) + 0.4N(0, 0.52) + 0.3N(2, 0.72).

The underlying density is trimodal. We again apply the PMLE with a = 1/4, and plot the

estimate in Figure 3.1. We again use s = 5 for the spline smoothed curve with fixed knots,

and plot the estimate in Figure 3.2.

In this example, the knots selected by the fixed knot span rule are not quite satisfac-

tory. An artificial mode was produced in the resulting smoothed version. We knew it was

artificial because the result looked sufficiently different from the PMLE. With the PMLE, it

is relatively easy to locate knots. For example, after examining Figure 3.1, one can choose

knots like -2, -1, 0, 1, 2. In Table 1, the fixed knots are determined by using s = 5 and then

deleting unnecessary knots.

4.4 How Sensitive is the method to the Choice of a?

To examine the effect of a (hence, the model assumptions), we simulate a sample of 800

from the standard normal distribution. We apply the PMLE with a = 1 -, and 1. The31 5, 7

smaller a is, the higher the number of implicit parameters of the model and the rougher

the result. Figure 4.1-Figure 4.3 presents the results.
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In spline smoothing with fixed knot spans, we use s = 9,9,11 for the cases of a =

1/3,1/5,1/7. The following table shows the resulting knot locations.

Table 2. Knots resulting from the two selection rules for Figure 4.1b 4.4b.
Fixed Knots Knots deletion

a = 1/3 -1.09, -0.36, 0.89, 2.26 -1.09

a = 1/5 -1.09, -0.56, -0.24, 0.90, 1.85 -0.85

a = 1/7 -1.05, -0.21, 0.67, 1.57 -1.00, -0.57, 0.67, 1.37

a = 1 -1.09, 0.67, 2.09 -1.62, 0.23, 0.67, 1.42

It seems that there are too many knots remained in the knots deletions for the case

a = 1/7. With a PMLE estimate, we could easily delete some unnecessary knots by hand

or add more weight to penalize the number of variables (e.g. change 3 to 4 in (3.10)).

Figure 4.1-4.3 suggest that the underlying density is unimodal. Thus, we can estimate

the density by using a more informative model-unimodal (a = 1). The results are shown

in Figure 4.4a-4.4b with s = 9 for the fixed knots rule.

In summary, with a PMLE as preliminary estimate, one can easily determine where to

locate important knots. If knots determined by either a fixed knots rule or a knot deletion

rule turns out unsatisfactory so that the resulting spline smoothing curve is qualitatively

differs too much from the PMLE, suitable modifications are required and these can easily

be done by hand with the help of PMLE. It should also stress that PMLE itself provides

informative knowledge about the structure of data sets.

5 Applications to Lipoprotein Data

In this section, we apply the PMLE techniques and spline smoothing techniques to the two

sets of lipoprotein data.

The measurements are as follows. Each individual gave a blood sample and a suitably

treated fraction of the plasma was subjected to gradient gel electrophoresis and stained
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with a protein stain. The measurements are diameters (in Angstroms) of the location of the

major peak in the low-density lipoprotein region, the values being obtained by calibrating

a densitometric scan.

Figure 5.1 shows the PMLE of the major sizes of lipoprotein for 244 people in Boston

area. The estimate is computed with a = 1/5: we allow an unknown population density

having up to S modes. The result shows that the underlying density is bimodal with modal

locations around 250 and 265. The estimate is smoothed by using the spline techniques

described in section 3.3. In the fixed knots case, we use knot span s = 6. The following

table shows the knots used in the computation.

Table 3. Knots resulting from the two selection rules for Figure 5.2-6.2.

Fixed knots Knot deletion

Boston 247.40, 254.65, 261.05, 267.23, 274.55 j 250.53, 254.65, 261.05

Montreal 249.50, 255.10, 260.33, 267.74, 271.24, 277.01 249.04, 251.35, 265.48, 266.29, 277.02

Similar measurements were used in the Montreal area, where the blood plasma of 684

individuals were measured. The PMLE with a = 1/10 for the Montreal data set is plotted

in Figure 6.1. In this case, we specified a very flexible model which allows the unknown

density to have up to 10 modes. Ignoring the thin bins which are usual the artificial mode

produced by the PMLE, the resulting estimate still looks bimodal. The spline smoothed

versions are plotted in Figure 6.2. In the spline technique with fixed knot span, we initially

take s = 9, and then delete some unnecessary knots. The resulting knots are shown in Table

3.

From the analysis above, we can fit a more informative model: the population density is

unimodal in the intervals (230,255) and (255,280), as suggested by Figure 6.1-6.2. Thus, we

separate the data into two subsets: data no larger than 255 (59 cases) and data larger than

255. We apply the PMLE with a = 1 to each data set. The resulting combined density

estimates are shown in Figure 6. 1a-6.2a. Note that this more informative model makes

Figure 6.2a looks nicer than Figure 6.2.

It is of interest to note that both populations have the same intrinsic features: bimodal
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with mode locations around 250 and 265 and a valley at 255. However, there are a larger

proportion of people having lower sizes ( S 255) of lipoprotein in Boston area (about 37.5%)

than in Montreal area (about 8.6%), while the dispersion around their modes are almost

the same. To explain these results, one might need to study the diets and ethnic groups in

both areas, which might be of interest in the Public Health.

The data sets were made available by Dr. Ronald M. Krauss of Lawrence Berkeley

Laboratory via Professor Terry Speed.

6 Concluding Remarks

The major conceptual innovation of this paper is the introduction of the notion of regularly

shaped densities. The PMLE is then introduced to take the shape restrictions into account.

It is an intuitively appealing method, having the attractive feature of determining the

smoothing parameters automatically. The PMLE itself is very informative. With the PMLE

as a preliminary estimate, it is easy to used the fixed-knot spline technique to produce a

smoothed version. We expect that the method will become a useful exploratory data analysis

tool after some further modification and study.

7 Appendix-Proof of Proposition 2

First, let's show why the solution should have the form (3.6). For any U-shaped curve g(x)

with total area a on the interval [yi, yJ,] one can always define another U-shaped curve

g*(x) by (3.6) with fi = g(yi). Then, the likelihood (3.3) remains the same for both g and

g*, but the total area under the curve g* on the interval [yi,y,ln] is no larger than that

under g: (because g*(x) < g(x) due to the U-shaped constraints)

YnjggYn(
g*(x)dx < J g(x)dx.
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Now, define a new function

g**(x = fr'yc g(x)dxg**(x f
=

a g*(x) x g*(x) > g*(x).

Then, g and g** have the same area in the interval [yi,yno], but

n.-1 nma-1 na-1

1 g(yi) = g*(Yi) < H g**(yi).
i=2 i=2 i=1

This completes the first part of the proof.

Now, let's show why fi is given by (3.7). Since the solution must have form (3.6),

Problem II is equivalent to finding the solution to the problem

nf,-1
max E logfi, (7.1)

i=2

subject to (U-shape) f2 > ... > fk-l > fk < fk+1- < fA.-ii (7.2)
n0-1

(area a) , wifi = a. (7.3)
i=2

where

wi = Yi-Yi,i = 2,*,k-1;UWk = Yk+I - Yk- 1; Wi = Yi+1 - yi, = k + 1, * -1.

Denote g9 = (n a2)W.. Then, the equality constraint (7.3) can be written as

nag-1

Z (fi - gi)wi = 0. (7.4)
2

Consider the isotonic regression problem
n

min (fj _ gj)2W3 (7.5)
f1

with a partial order 2> *. >- k - 1 >- k -k + 1 q -< na- 1. Then, the solution to

the problem (7.5) is given by (3.7) (see page 23 of Robertson et al. (1988)) and satisfies

also (7.4) [Theorem 1.3.6 of Robertson et al. (1988)]. Finally, by applying Theorem 1.5.1

of Robertson et al. (1988), the solution to the problem (7.5) is also the solution to the

problem (7.1). The conclusion follows.
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