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Abstract

Consider the problem of estimating a function f known to lie in
a convex, compact subset F of L2[0, 1], when one observes data on
f containing white Gaussian noise. We establish an upper bound on
the integrated mean-squared error of least-squares estimates which
uses the asymptotic properties of the Gel'fand n-widths of F. The
bound shows that if the Gel'fand n-widths tend to zero at a faster
rate than the Kolmogorov linear n-widths, least squares must outper-
form every orthogonal series estimator, at the level of minimax rates
of convergence. NVe rely heavily on Carl's Theorem, a recent devel-
opment in the Geometry of Banach Spaces. As an application, we
resolve a question about the performance of least-squares estimates in
estimating decreasing functions from noisy sampled data.
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1 Introduction
Suppose we observe data Y(t), t E [0, 1] characterized by

Y(dt) = f(t)dt + aW(dt) t E [0, 1] (1)

with W a Wiener Process and a a formal noise level parameter which we
think of as small. We know a priori that f E F, a convex, compact class of
functions, and we wish to estimate f using the information Y.

Section 2 below defines a notion of least-squares estimate f for this
infinite-dimensional setting. Define RIs(a) = sup FE1l!f- fll2; the worst
risk in F of a least-squares estimate. Define the Gel'fand n-widths

dn(F,L2)= inf sup{lf 112: Lif = 0, i = 1,...,n} (2)
Li linear F

These n-widths measure geometric properties of F; compare Pinkus (1985).
We show here that they may also be used to bound the risk of least squares
estimates. Section 3 and 4 below develop inequalities which imply

Theorem 1 Let F be convex, compact, and centrosymmetric. Let d' <
Con-a; there is a constant C1, so that

R2s(a) < C1(a2) 22T (3)

This result has interesting implications which stem from the fact that
Gel'fand n-widths, rather than Kolmogorov n-widths, are being employed.
Let Pn denote orthogonal projection onto an n-dimensional subspace of
L2[0, 1]. The Kolmogorov linear n-width is defined as

dn(.F,L) = inf sup Ilf -Pnf|IL2[0,1]

We note that dn < dn. In section 5 below we discuss orthogonal series esti-
mates fn = ZL1 yj0i, y' = foJ q$Y(dt), with (i)91 a complete orthonormal
system in L2[0, 1]. With Rbs(a; F) = infn inf(,Oi) sup, EIfn-f1127 the min-
imax risk among orthogonal series estimates, we have by an easy calculation
that dn na if and only if R*,(o) ()a2i. Comparison with Theorem
1 yields:
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Corollary 1 If the Kolmogorov linear n-widths satisfy dn n-a and the
Gel'fand n-widths satisfy dn < cn-1, then a > a implies that R,s(or) >»

In view of dn < dn, we have that least squares either performs about
equally as wefi as orthogonal series, or else it beats orthogonal series estimates
convincingly. Under certain geometric symmetry conditions on F (Donoho,
Liu, and MacGibbon, 1990) minimax orthogonal series estimates are within a
factor 4 of minimax among all linear estimates; so in such cases the condition
dn >> dn implies that least squares beats all linear estimates in a minimax
sense.

The n-widths are, of course, fundamental quantities outside of statisti-
cal estimation, in approximation theory (Pinkus, 1986) and computational
complexity (Traub, Wasilkowski, Woiniakowski, 1988). The relationship
dn(F, L2) << dn(, L2) is also of importance in those fields. Matei (1990),
for example, points out the following implications for the approximation prob-
lem. Suppose we wish to choose n linear functionals L1, ..., Ln, for the purpose
of approximating a function f. The values (Lif),L1 will be used to construct
an approximation to f, via some rule f = T(Llf,..., Lnf) [There is no
noise in this problem!] Then if all nonlinear rules T are allowed, and F is
centrosymmetric:

inf sup 11f-f = dn
T,L1i...,Ln JF

On the other hand, if we restrict ourselves to coefficient functionals Lif
f fqi with respect to an orthonormal set (0i), and to the reconstruction rules
T(Lif, ..., Lnf) =E-=1(Lif)i, then

inf sup Ilf- f dn

Hence the relationship d << dn implies that general approximation schemes
to f do better than orthogonal linear ones.

Hence a single geometric condition on F has parallel implications in sta-
tistical estimation and in optimal recovery. For other parallels between the
two subjects, see Donoho (1989).

Does the condition ever hold? In fact it is well-known (Pinkus, 1985)
that dn(F, L2) << dn(F,L2) whenever F = Wm,P a standard Lp Sobolev
ball, and p < 2. See section 5 for more details.
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Does the infinite-dimensional white noise estimation problem lead to re-
sults for recognizable estimation problems with finite data? Yes. In section 6
we apply these results to determining performance of least squares estimates

iidin the traditional sampled data model yi = f (ti) + szi, with zi i N(O, 1). We
determine the' rates of convergence of least squares estimates of a decreasing
function and thereby show that certain log n-type terms appearing in earlier
work of Nemirovskii et al. (1983) and van de Geer (1988) may be omitted.

The main tool of this paper is the theorem of Carl (1981) relating Gelfand
n-widths of sets to their Entropy numbers. Part of our paper amounts to
the interpretation of his inequality as a statement that the worst-case per-
formance of least-squares over a function class is always within a universal
constant of the minimax performance of orthogonal series rules over the same
class. The other part of our paper is to interpret differences between types
of n-width in statistical terms.

2 Least Squares in the White Noise Model
We begin with a few remarks on the definition of least squares estimates for
the white noise model (1). Let (0j)I be a complete orthonormal system for
L2[0,1]. Define

9i(f) |j i(t)f(t)dt i 1, 2, ...

Yi = j i(t)Y(dt) i 1, 2, ...

The 9i(f) are the Fourier-Bessel coefficients of f with respect to the system
(¢))j1, and the yi obey y, = 9i(f) + azi, with z. i%d]ON(O, 1); we call (y,) the
empirical Fourier-Bessel coefficients.

At first glance IIY-$(f)II2 =S1(Y,-9,(f))2 is the "squared distance" be-
tween f and y, and our impulse, based on experience with finite dimensional
least-squares, is to compare trial models f by the value of IIY-o(f)II2, seeking
a model for which this squared distance is smallest. Unfortunately, in this
infinite dimensional situation, we have almost surely that IIy - 9()II2 = +°°
for all f E F. To address this difficulty, we set JIvIj,n and write,
formally,

Q(f) = liM {Ily -_ (f)jII - IIYII2} (4)

4



the subtracted term is intended to make Q(f) finite. The least-squares esti-
mator is then, formally, the minimizer of Q( f):

f=argminQ(f): fEF (5)

To justify these formal definitions, we introduce the isonormal process, a
Gaussian stochastic process Z(f) indexed by f E F. It is defined by

00

Z(f) = OEi(f)zi (6)
i=l

where zi = fl ki(t)W(dt) are iid N(O, 1); equivalently Z(f) ffl f(t)W(dt).
For each fixed f E L2, Z(f) '-s N(O,f f2).

Lemma 1 Suppose that F is compact for the L2 topology, and that the pro-
cess {Z(f) : f E F} has uniformly continuous sample paths on F on an
event Q of probability one. On the event Q, the limit in (4) exists, and Q(f)
is a bounded, uniformly continuous function of f E F, where continuity is
with respect to L2 convergence.

It follows that, with probability one, (5) makes sense and an f satisfying
(5) exists.

Proof. Now

I fn nYI
n n n

= -2o z93i(f) + Z(Si(f) - d(f))2 - E 9?(f)
i=1 i=l i=l

Letting ?nf =E¢Z1 83(f)>i denote the orthogonal projection of f onto
the span of ( On,..., q), we may rewrite the formal expression (4) as

Q(f) = lim {-2aZ(Pnf) + I1Pn(f - f)l - 1|Pnf|| }; (7)

we still need to justify that the limit exists and has the indicated properties.
As F is compact, sup

E lf-PnfiO as n oo, and so

Pn(f-f) -- f-f
Pnf -f
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strongly in L2, uniformly in F. Hence uniformly in F

IVPn(f-f)ll - lf -flI
IIPnf || Ilf 11

Also, on the event 0, Z(Pnf) -+ Z(f) and Z(Pnf) -- Z(f) uniformly in
f E F. It follows that on Q, the right hand side of (7) has a limit, which is

- 2aZ(f) + lif-112- f 1- 12 (8)

Also on Q, this is a uniformly continuous, bounded function on F. The proof
of Lemma 1 is complete.

Now note that as f is a least squares estimate, we must have

Q(f) < Q(f)
which implies, on Q,

lif - f12 < 2o(Z(f) - Z(f)) (9)
This fundamental identity is the source of all our estimates of Ellf-f2.

The idea to bound the error of least 'squares estimates by the increments of
stochastic processes was first developed, in a finite dimensional setting, by
van de Geer (1988).

We use (9) as follows. Let W denote the modulus of continuity of the
stochastic process Z over F:

W(S) = sup{Z(f) - Z(g) : Ilf - gil < 6, f, g E F} (10)
Then from (7) we see that if Q holds, then lif - f ii > only if

b2 <2aW(b) (11)

Let A = L(T; F, Z) be the random variable which is the largest 6 for which
(11) still holds. Then we have

lif-fil<z< onQ (12)
and so EA2(a) > RSs(a).
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In short, we get a upper bound on the error of least squares estimates
using the modulus of continuity of Z.

A heuristic analysis of the situation may help the reader at this point. Let
w(6) = A6r for some r E (0, 1) and consider the behavior of the deterministic
quantity

A(o) = sup{6: 2ow(6) - 62 > o}

A little algebra gives

=(2Ao)j2r

Hence, if the random quantity W(6) "behaves like" ASr, we may guess that
A(a) "behaves like" 0y- and hence that If -fl12 = f

3 Modulus of Continuity and Entropy Num-
bers

The "modern theory" of Gaussian processes, see Dudley (1973), shows how
to bound the modulus of continuity W(6) in terms of the covering numbers
of F:

N(e) = inf{card(X) inf sup IIh - f 112 < £}
hEH fE-F

We use as our reference the book of Adler (1990) Chapters 3, 4 and 5. Com-
bining the inequalities (4.8), (4.9) and (4.48) in that reference, we get

Proposition 1 If fo(log N(e))1/2de < X there exists a constant K so that

EW(Q) < K(61 log61 + j(log N(e))1/2de)
Compare Dudley (1973, Corollary 2.4, Page 75). From this, we have imme-
diately

Corollary 2 If Diam(.F) = sup{llfl - f211 fi E F} < 1 and if N(e) <
C1 exp{C2e"1/2a} there exists a constant A such that

EW(6) < A -1/2a
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Hence, the deterministic function w(6) = EW(S) has at worst the behavior
ASt with r = 1 - 1/2a; the heuristic mentioned earlier suggests that 2-r

1+ = 2.+1 is a bound on the rate of convergence Ilf- f112 to zero.
To make this rigorous, we need to show that the sample path properties of

W(6) are not significantly different than the properties of w(6). For Gaussian
processes, the remarkable inequality of Borrell assures us that this is in fact
true:

Borrell's Inequality (Adler, 1990, Theorem 2.1, page 40)
Let X(h) be a zero mean Gaussian process with a.s. continuous sample paths
on W. Put IIXiI = SUPhEH X(h), and a = sup{Var(X(h)), h E 'H}. Then

A2Pr{lllXll- EIIXIII > A} < 2exp{-2 2-}.
ax

Borrell's inequality gives, with - = {g = f- f2 : fi E F,11911 <.}, and
62 that for any A > EW(6)

Pr{W(S) > A} < 2exp{- 262 } (13)

We use (13) as follows. Set AB - B6 -1/2c, B > A so that AB> EW(6).
Then (AB -EW(S))2 > (AB - AA)2; hence

Pr{W(S) > AA} < 2exp{(B22 }

On the other hand, set Ao,6 = 62/2a. By (11)

Pr{W(S) > A,6} > Pr{fA(a) > 6}
If we choose 6 so that A,6 = AB, we have

Pr{(ao) > 6} < 2exp{- 262

With a little algebra, we get that with j > 1,

Pr{A(a) > 2jAA} < AC(a)]

with C(a) -4 0 as a -+ 0. A slight refinement of the argument gives bounds
on EA(cT)2.
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Proposition 2 Let Diam(.F) < 1 and N(s) < C1 exp{C2er'/"}. Then for
a constant C3,

(a)2 < C3(a2)T (14)

This validates the rate derived heuristically from properties of EW(S).
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4 Entropy Numbers and Gel'fand n-widths
G. Pisier, in his recent book The Volume of Convex Bodies and Banach
Space Geometry (1989), surveys various relations between Gaussian processes
indexed by ctmpact convex sets and the geometry of those sets. We use
results developed there to relate the rate bounds just given to the Gel'fand
n-widths. Define the entropy numbers

en= inf{e: N(e) < 2n} (15)

These numbers are very analogous to n-widths dn and dn in several ways, as
Pisier mentions in Chapter 6. For us, we need the result that en is in some
sense smaller than dn and dn.

Proposition 3 (Carl (1983)) Let F be a convex, compact, and centrosym-
metric (f E F implies -f E F) subset of L2. There exists a constant p', > 0
so that

sup n'en< p, sup n'dn
n n

We combine this with the observation that

Corollary 3 If the Gel'fand n-widths satisfy dn < Con-, then

N(s) < 2exp{Ciel1/G}

with C1 = log(2)(paCo)l/a.

Proof: Pick C > Co. As N(en+) < 2 , N(Cn-a) < 2n. Then with
=n-Cn-, and N(en) < exp{log(2)(en/C)'1/k'}. For given e > 0, let
m(e) = inf{£n : £ > E}; and so £m > £ and

N(er) < N(e,m) < exp[Iog(2)(e,m(£)/C) 1/a}
< exp{log(2)[(e/C)-1/' + 1]}

2exp{log(2)(£/C)-1/e} 0

Combining now Propositions 1, 2, and 3 gives Theorem 1 of the intro-
duction.
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5 Linear Estimation and Kolmogorov n-widths
Let 'Pn denote an orthogonal projection on an n-dimensional linear subspace
of L2. The Kolmogorov linear n-width is defined as

dn= inf sup II'Pnf -f 112 (16)

In general dn > d .
Consider an orthogonal series estimator in the white noise problem

n

fn -yYii (17)
i=l

where yi = fl qiY(dt) and ('s) is a complete orthonormal system for L2.
With Pnf = E.= I9i(f)Oi, we have Bias2(fn) = IIPnf-f 112 and fJl Var(fn(t))dt =
ZiL= Var(yi) = na2. Consequently, MSE(f f)=IVPnf - f112 + na2. For
the minimax orthogonal series risk we have

R* s(a) = inf inf sup llPnf-f12 + na2

= infd2+n'a2 (18)
n

2a~~~
It follows from an obvious calculation that if dn -% n~a a > 0, then

R;s(cT) x (a2) Tr (19)

Comparing (19) with Theorem 1 gives Corollary 1 of the introduction.
Pinkus (1985, Chapter VII, page 232) presents results on the asymptotics

of n-widths of Sobolev balls Wm'P([O, 1]) = {f IIf(m)IILP[O,1] < 1'4

Proposition 4 Let m > 2. Then

dn(WmP L2 ) - n{nm+l/p-1/2 < p < 2

d (Wm, L2) n-m 1 < p < 00 (20)

Consequently, if p < 2, least-squares significantly outperforms orthogonal
series estimates. If p > 2, it follows from an additional argument that least-
squares and minimax orthogonal series estimates are rate-equivalent.
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As an example, let m = 1,p = 1. Then dn n-1/2, but dn _ n-1. It
follows that

R*S(a) (a2)2/3
while

R s (a) (a2)/
[The rate (a2)2/3 is in fact optimal among all measurable procedures; the
rate (i2)1/2 is optimal among all linear procedures. Compare Donoho and
Johnstone (1990)].

6 Application: Estimating a Decreasing Func-
tion

Consider now a sampled-data estimation problem: we observe

Yi f (ti) + szi (21)
iidwith i =1,...,n,zi N(O, 1), ti = i/n. We know a priori that f E 'D ={f:

fdecreasing on[0, 1], Ilfllo < 1}. We wish to apply the discrete least-squares
estimator

n

fn=argmin (y -f(ti))2 f ED (22)
i=l

where we make the convention that fn is piecewise constant on (ti-1, ti].
Define

R(n) = supElifn _ f 12 (23)
ID

this quantity has been studied by Nemirovskii, Tsybakov, and Polyak (1985)
and by van de Geer (1988, 1990); compare also forthcoming work of Birge
and Massart.

By the work of these authors, we know that for large n,

cn2/3 < R(n) < Cn 2/3log(n)' (24)

for some constants c, C and some power ,B. Closest to our point of view are
the papers of van de Geer and of Birge and Massart; these authors attempt
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to bound covering numbers for V in L2 distance but they are unable to avoid
certain logarithmic factors in these calculations.

We would like to point out here that essentially as a direct consequence
of Theorem 1 we can improve the upper bound to (24) and get

Theorem 2

R(n) xn-23 (25)
While the improvement of (25) over (24) is not dramatic, it is definitive.
Morover, it is obtained in obtained in a simple and natural way which has
many other applications.

The driving idea is that of White Noise Approximation, namely that the
data (21) are essentially equivalent to the white noise data (1) with noise
level a = s/ \W.

Set Ti = ((i - 1)/n,i/n], except T1 = [0,1/n]. Let Sn denote the lin-
ear operator defined by Snf = E f(tti) 1Ti; this delivers a step function
approximation to f, based on samples at the ti.

Note that

SnDcD (26)

and we record that D, as a subset of F, enjoys

sup If - Snfj12 < (27)
fE-F n

This inequality tells us that with fn = Snf, If - fnII2 = 0(1/n); this is
negligible compared with worst case Elifn _ f 112 and so estimating fn is
materially the same as estimating f.

Define now the stochastic process

1 n
Zn(9) = g 9(ti)zi (28)

where zi are the iid noise values in (21). As in (22) we constrain our estimates
fn to satisfy fn = Snfn Arguments along the lines of section 2 lead to the
inequality

lIfn -fnl2 < 2of(Zn(fn) - Zn(fn)) (29)
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We use this inequality as in section 2. Define

Wn(6) =Sup{Zn(fi) - Zn(f2) If - f211 < 6, fi E SnD}
and

An =sup{6: 2W ( _)62 > O}
So that

An > ln- fnll (30)
Now we reduce the problem to the study of Z and W. On an appropriate

probability space, the r.v. z; in (21) and r.v. W in (1) are related by

ziIT1-L/2 W(dt) (31)

With this convention, we have the crucial identity

Zn(g) = Z(Sng) (32)

It follows that if fi E SnD

Zn(fi) = Z(fi)
and so

Wn(S) = sup{Z(fi) - Z(f2): llfl - f2ll < 6, fi E SnD}
< Sup{Z(fi) - Z(f2) lIfl - f211 < 6, fi e D}

W(6; D)

Consequently on an appropriate probability space,

An <A(D)

and

lin fll < A(7 ) + SUP |lf fnl
< z(-s )+ 1 (33)
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To complete the analysis, we note that VD C F, and that F is the closure,
in L2-norm, of the set W1'l, which has Gel'fand n-widths dn < C/n for some
constant C. In an obvious notation

W(6; D) < W(6; JF)

and also
L<(c7V) <zA(o;:F)

By Proposition 1
EA2(o; F) < C(o2)2/3

Combining this with (33) gives

R(n) < Const s4/3n-2/3 n > no

and proves Theorem 2.
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7 Efficiency of Least-squares
Theorem 2 together with other knowsn results (e.g. Nemirovskii, Tsybakov,
and Polyak, 1985) may be interpreted as saying that least-squares is efficient,
in the sampled-data problem, as regards minimax rates of convergence: no
other method can estimate functions over D with a faster rate of convergence
to zero of sup- Ellf - fi2.

This raises the natural question whether a parallel result holds in the
problem with white noise data (1). It does; here is a simple criterion of
general usefulness.

Let bn,2(F) denote the largest radius of an n-dimensional ball which can be
inscribed inside the class F. We know that bn,2 < dn; see Pinkus (1985), Page
14. When the two quantities are rate-equivalent, least-squares is efficient.

Lemma 2 If bn,2 d , n- then for the minimax risk among all estimates
R7(a,F) we have

R* (of; F) ^_1% RLS; J(a2) 2a+1 as ao O.

Proof. We use the notation of Donoho, Liu and MacGibbon (1990). Let
bn,oo denote the largest radius of an n-dimensional hypercube that fits inside
F, i.e. the largest d such that for some orthonormal set (Yj ,

n

d * iE -F
i=l

for all choices of signs (±i) Let no = sup{n : bn0 > a}. Then, by Donoho,
Liu and MacGibbon (1990),

R(o(a; F) > o2 2 22 (or)

Suppose that bn,2 _ n-. Then from

bn,oo < bn,2 < v/;; bn,oo
we have no(a) C1(O2) 2a+1 . Hence

R*v(o) .> or2C2(a2a2t+=
=C2(Or 22+,
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Thus no estimator can have a worst case risk with a better rate of convergence
to zero than that which we already know is achieved by the least-squares
estimate.

The lemma is immediately applicable whenever the Gel'fand n-widths are
established to be of order n- by a two part argument, where part of the
argument invloves using the lower bound bn,2 < dn, and the other part of
the argument involves developing an upper bound on dn of the same order
as bn,2. An example of such an argument is in Pinkus (1985) Chapter VII,
pp. 234 et seq. where it is used to calculate the Gel'fand n-widths of the
Sobolev ball Wm,P.

Lemma 3 For 1 < p < 2,

bn,2(WMtP) _dn(Wm.P, L2) n -- oo

Proof. Evidently, it is sufficient to show that bn,2 > cn-m. Let 0 be
a C°° function of compact support in [0, 1]. Let 7Fn denote the set {f =

n-1 akkn,k(t)}, where )n,k(t) = (nt - k), k = 0, . .. , n - 1. Evidently the
on,k are orthogonal; let In,k = In,k/0nkI I be the corresponding orthonormal
set. Define the n-dimensional sphere Sn(d) = {f: f E7niI If 112 < d}. Then

bn,2 = sup{d: Sn(d) C F}
= sup{d: E a2 < d2 implies I|IEZakkm )IIP< 1}

On the other hand,

E Cfk0n,kl|P|lp= 1om Ilp
-

I laillI,
and

|all|, < n1'p-1/2 IC112
Hence

bn,2 > sup{d: dn1/p-1/2lI In(M0)I l}
A simple change of variables gives

an w(m) ll =
- nm+C/2-1/pII s(mde

and we get bn,2 > cn-m as desired.
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8 Discussion

8.1 Sharpness of n-width bounds
Is the upper bound based on n-widths sharp - does it describe the true rate
of convergence of the least-squares estimate? This question is intimately con-
nected with the extent to which the Gel'fand numbers provide lower bounds
on the exponent in the modulus of continuity for Gaussian processes. A
recent result in the Geometry of Banach Spaces, due to Pajor and Tomczak-
Jagermann (1986), indicates that Gel'fand numbers may be used to lower-
bound the expectation of the supremum of a Gaussian process (compare also
Pisier, 1989). Sufficiently strong and general results of this kind, adapted for
study of the modulus of continuity rather than the supremum, could perhaps
be used to show that the bounds from Gel'fand numbers are in some sense
sharp. In any case, we know of no example where they fail to be sharp.

8.2 Calculation of Gel'fand n-widths
Gel'fand numbers are not always easy to calculate! The L2 n-widths of
Wm P for p < 2 remained for many years an open problem, which turned
out differently than many people anticipated. The eventual solution rests
on work of Kashin (1977), which introduced the notion of almost-orthogonal
decompositions for 11,n, a notion that spawned a great deal of work in the
Geometry of Banach Spaces. Even this breakthrough did not solve the prob-
lem directly, but only through duality relations between Gel'fand numbers
and Kolmogorov numbers. For example, the functionals Li optimal for the
Gel'fand n-widths of Wm,P, p < 2, are unknown; their properties have only
been inferred probabilistically. The actual calculation of Gel'fand n-widths
may therefore lead to deep and difficult, but perhaps interesting problems.

8.3 n-widths and Statistical Estimation
We now know of three kinds of n-widths with important role for statistical
estimation: Bernstein n-widths: In Donoho, Liu, and MacGibbon (1990), it
is shown that the Bernstein n-widths bn,o determine, to within logarithmic
factors, the optimal rate of convergence, among all measurable estimates,
for a certain class of spaces possessing unconditional bases. As Donoho and
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Johnstone (1990) show, the n-widths b determine the optimal rate of
convergence in Besov-spaces.

Kolmogorov n-widths: In Donoho, Liu, and MacGibbon (1990) it is also
shown that the Kolmogorov n-widths d, determine the optimal rate of con-
vergence among all linear estimates over certain "orthosymmetric" function
spaces.

Gel'fand n-widths: These bound the rate of convergence of least squares,
and they may even determine the optimal rate of convergence among all
estimates, for a certain class of Sobolev spaces.

At the very least, the Bernstein n-widths, which refer to all estimates, are
more fundamental for orthosymmetric spaces than the Kolmogorov n-widths,
which only refer to linear estimates.

In the recent A.N. Kolmogorov Memorial Issue of the Annals of Statis-
tics (September 1990), a significant theme of papers by Centsov (1990) and
Has'minskii and Ibragimov (1990) is the importance of Kolmogorov n-widths
for determining rates of convergence of statistical estimators of orthogonal
series type. Although the problems considered are problems of density esti-
mation rather than the white noise model considered here, the basic reasoning
is parallel to section 5 of this paper.

The developments of this paper should make clear that orthogonal series
estimates, while interesting and useful, are not universally optimal, and so
in this sense Kolmogorov n-widths are less fundamental than other notions
of "massiveness" of functional classes.

In fact, Kolmogorov himself was not satisfied with the n-widths that bear
his name and worked energetically on the notions of e-entropy and £-capacity
of functional classes in order to get at notions of optimality among all meth-
ods of approximation (Kolmogorov, 1956) (Kolmogorov and Tikhomirov,
1959).

These notions, in turn, have borne significant fruit in a statistical setting.
The e-entropy and e-capacity are intimately related with the covering number
notions of section 3 above; and so as we have seen, may be used to obtain
continuity properties of Gaussian processes; at another level, these properties
may be used to obtain properties of maximum-likelihood estimates. This idea
is used in Birge, Le Cam, van de Geer, and many other papers.

Here we complete the circle by showing that a certain notion of n-width,
the Gel'fand n-width, (in some sense dual to the Kolmogorov linear n-width)
may often be used to the same end as the covering numbers and lead to an
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understanding of optimal nonlinear procedures.
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