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Abstract

We consider the problem of estimating a smooth function from noisy, sampled
data. We use orthonormal bases of compactly supported wavelets to constriuct non-
linear function estimates which can significantly outperform evey linear method (ker-
nel, smoothing spline, sieve, ...). Our estimates are simple nonlinear functions of
the empirical wavelet coefficients and are asymptotically minimax over certain Besov
smoothness classes. Our estimates possess the interpretation of local adaptiveness:
they reconstruct using a kernel which may vary in shape and bandwidth from point
to point, depending on the data. Modifications of our estimates based on simple
threshold nonlinearities are near minimax and have interesting interpretations as
smoothness-penalized least squares estimates or as adaptive depleted-basis spline fits.
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1 Introduction
Suppose we are given n noisy samples of a function f:

yi =f(ti) +zi; i = 1,...,n (1)

with ti = i/n, zi iid N(O, 2). Our goal is to estimate f with small mean-squared-error,
i.e. to find an estimate f depending on Yl,*, 7Yn with small risk R(f, f) ElIf - fI112=
E fJ((f)(t) - f(t))2. In addition, we know a priori that f belongs to a certain class F
of smooth functions, but nothing more. It is reasonable to seek to optimize the minimax
risk R(n, JF) = inf; supf R(f, f). When f is an L2-Sobolev class or a Holder class, such
problems have been well-studied, with the result that various linear algorithms-kerne
with fixed bandwidth, or smoothing spline are known to be near optimal: Stone (1982),
Nussbaum(1985).

To make a new point of departure, let us consider function classes F different from the
traditional smoothness classes.

As a first example, consider the Bump Algebra (Meyer, 1990, Chapter VI.6, pages 186-
189). Let gt, ,(x) = exp ( -_(x - t)2/2s2) denote a Gaussian "bump," normalized to height
1 rather than area 1. The Bump Algebra B is the class of all functions f : IRI-+ R which
admit the decomposition

00

f(x) = Eaig(s,,t) (x) (2)
i=o

for some sequence of triplets (e,,ti, si), i 0, 1, 2,..., which satisfy EQ Ja,il < oo. [Such a
representation need not be unique.] The B-norm of such a function is the smallest El-norm
of the coefficients (a3) in any such representation:

IlIflIB= infZ a-I such that (2) holds (3)

Under this norm B is a Banach space; in fact, a Banach algebra, since g(ti,s1) * g(t22)-
Ag(t3,83)I A < 1.

This algebra possesses two properties which might spark the interest of readers.

(A) It serves as an interesting caricature of certain function classes arising in scientific
signal processing. Functions f obeying (2) with only finitely many nonzero a- are
evidently polarized spectra i.e., their graph consists of a set of "spectral lines" located
at the (t,) with "line widths" (s,), "polarities" sgn(a3) and "amplitudes" Jail. Thus
estimating functions in B corresponds to recovery of polarized spectra with unknown
locations of the lines, unknown line widths and unknown amplitudes. To make a
problem with finite minimax risk, we must have something known, so we set F =

{f : lif lB < C } for a fixed constant C; this corresponds to a constraint on the
amplitude of the spectrum to be recovered.

(B) F contains functions with considerable spatial inhomogeneity. In fact, a single func-
tion in F may be extremely spiky in one part of its domain and extremely flat or
smooth in another part of its domain. This would not be possible, for example, in
a Holder class, where functions must obey the same local modulus of continuity at
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each point. Estimators based in some sense on an idea of spatial homogeneity of
the estimand f such as fixed bandwidth kernel estimates, trigonometric series, and
least-squares smoothing splines-will presumably be unable to behave optimally in
spatially inhomogeneous settings: either they will oversmooth the spiky part or they
will undersmooth the flat part-or both.

These two properties-scientific interest and need for local adaptivity-are by no means
unique to the Bump Algebra. For another example, consider the class F of functions of
Bounded Variation: JF = { f : TV(f) < C }. This class possesses the same two properties:
(A) Scientific Interest. For example, the key geophysical parameter in the acoustic theory

of reflection seismology is the acoustic impedance, a function which is necessarily non-
smooth, because it has jumps at certain changes in media, but which may be modelled
as an object of finite variation.

(B) Spatial Inhomogeneity. Functions of bounded variation may have jumps localized to
one part of the domain and be very flat elsewhere. Local adaptivity in reconstruction
is obviously very desirable.

The story does not end here, either. The Bump Algebra and Total Variation fit into
a continuum of examples which exhibit spatial inhomogeneity and may be of scientific
interest. We show in this paper, that these examples, which are Besov-type spaces with
index p < 2, exhibit phenomena which are unexpected on the basis of previous theoretical
experience with L2-Sobolev or Holder classes, in three ways.

Ph. A Nonlinear estimators can convincingly outperform linear estimators. Let RL(n, F)
devote the minimax risk for n observations from (1) when estimators are restricted to
be linear in the data (y3). Let R(n, F) denote the minimax risk when estimators are
unrestricted. We will show that for certain definite rate exponents rL, rN, 0 < rL <
rN < 1, RL(n,.F) nrL while R(n,F) n-rN. Hence RL(n,F)/R(n,F) -* 00.
In short, traditional linear methods are unable to compete effectively with nonlinear
estimates.

Ph. B Wavelets allow us to construct near-minimax estimators, which although (necessarily)
nonlinear, have a very simple structure. The theory of wavelets Meyer (1990) provides
an orthogonal decomposition for L2 which is an alternative- to the usual orthogonal
decompositions based on Fourier analysis or orthogonal polynomials. We will show
how an empirical version of the wavelet decomposition may be used for nonlinear
estimation. Specifically, we estimate the unknown function in a near-optimal way
by applying to each empirical wavelet coefficient a special nonlinear transform which
optimally rejects noise in a minimax sense.
Thus although one might have expected a minimax nonlinear estimate to be a quite
arbitrary nonlinear function of the data, in fact it has a computationally and concep-
tually convenient form when expressed in the wavelet expansion.

Ph. C These near-minimax estimates have an intrinsic local adaptivity. Our wavelet method
has a representation as an adaptive kernel estimator which may change locally -in
both shape and bandwidth- in response to the data.
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We emphasize that these phenomena are general and apply to a continuum of different
smoothness classes F.
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2 Wavelets
The theory of wavelets has been enthusiatically developed in recent years by a large number
of workers. Our point of entry into this literature was the books of Y. Meyer (1990a, b).
Synthesizing a large body of superficially different work in fields ranging from Fourier anal-
ysis to operator theory to image analysis, Meyer develops fully the idea of multiresolution
analysis and its use in the study of various function spaces and various operators. The
papers of Daubechies (1988) and Mallat (1989 a,b,c) are also extremely helpful.

Starting from a pair of functions, (p and b, which are C7 and of compact support, one
defines the translated and dilated functions

0bj,k(t) = 2-'214(2't - k) j E Z, k E Z

and, for a fixed e,
(Pt,k(t) - 2t-2(2tt-k) k E Z.

The functions p and $ provide an r-regular wavelet analysis if

(1) (p, 4 are Cr and of compact support

(2) f = 1, ftk = 0o 0 < k <r

(3) {4j,k}jEZ,kEZ make an orthonormal basis of L2(JR)

(4) {lP,k}kEZ U {4j,k}j>e,kEZ make an orthonormal basis of L2(1R)

Properties (3) and (4) yield immediately the usual decomposition and reconstruction
formulas valid for orthonormal bases. However, it is convenient to give them special names.
The wavelet coefficients of an f E L2 are

Ctj,k = Jf4j,k, k E Z,j E Z (4)

/k = JfYe,k, k E Z (5)

The homogeneous wavelet reconstruction of f is

f = Z %,k4'j,k (6)
j,k

and the inhomogeneous reconstruction formula for f is
00 00

f = Z k(t,k + Z Z Qj,k7kj,k (7)
k=-oo j>I.k=-0o

The functions 4 and p are called the mother and father of the wavelets, respectively.
The functions 4j,k are the wavelets. To a certain 'extent, bj,k iS "localized" at position
x = 2-k and frequency 2-, while SPk iS "localized" at 2-tk and occupies the frequency
band [-2t,21] . Thus (1k) represents the low frequency content of f near k and aj,k
represents the content in frequency space near 2' at spatial position 2-ik.
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In a more formal sense, if Vo represents the L2 span of (Wk) and Wj the L2 span of
{1j,k, k E Z}, then the homogeneous reconstruction formula represents a partition

L2() *--ED Wk-1 (D Wo (D Wl D *.*-

into different frequency ranges, and the inhomogeneous reconstruction represents a parti-
tion

L2(1R)=Vo WoW1OD *ED

into Vo, the low frequencies, and the various high frequency components.
In the definition of wavelet analysis, the property of compact support is not strictly

speaking necessary; Meyer does not insist on it (exponential decay at oo would be sufficient).
However, Daubechies (1988) has proven the existence of compactly supported wavelets of
regularity r for each r > 0. Compact support is so frequently useful both for practical
calculations and for mathematical proofs that we limit ourselves to that case in this paper.

Wavelet analysis has many desirable proerties but we mention two in particular. First,
the representations (6)-(7) are true not just in L2(JR) but in many spaces of locally in-
tegrable functions. For example the homogeneous reconstruction formula is valid in Lp,
1 < p < oo; and the inhomogeneous one is valid in Lp for 1 < p < oo. General orthogonal
series decompositions often fail for Lp spaces outside a certain range (Askey and Wainger,
1965); in this sense wavelet reconstruction is much better behaved than general orthogonal
series.

Second, the wavelet coefficients can be used to measure quite precisely the smoothness
properties of a function. Consider first the local smoothness properties. Suppose we have an
r-regular wavelet analysis, r > 1. Set Q(j, k) =sUpp(4j,k). Jaffard (1989) points out that
if f is locally Holderian at xo, with exponent 8, then a3,k= 0(2-(1/2+6)) for every sequence
(j, k3) with j oo, xo E Q(j, kj). Meyer (1990) points out that if f is differentiable at
xo then a%',k 0O(23J2) for every sequence (j, kj) with j -o cc, xo E Q(j, kI). Moreover,
both results have near-converses.

The wavelet coefficients also measure global smoothness quite well. Let Azr)f denote
the r-th difference Er r(k)(-i)k f(t + kh). The r-th modulus of smoothness of f in Lp is

wr,p(f; h) =IIA(r)fI .

The Besov seminorm of index (ta, p, q) is defined for r > a by

If IB(p,q) = (j (wr (f;h) ) dh)

if q < 0, and by

If IB(o P,oo) = SUWr,p(f;h)h>0O a

if q= oo.
This measure of smoothness includes, for various settings (a, p, q), other commonly used

measures. For example let C5 be the set of functions with If(s) - f(t)I < cls - tI6 for some
c > 0. Then f has for a given m = 0,1,... a distributional derivative f(m) satisfying
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f(m) E C6, 0 < 6 < 1, if and only if If IB(m+O6,ao) < oo. Similarly, f has a distributional
derivative f(m) satisfying f(m) E L2 iff If IBr(,2,2) < oo. Finally, f belongs to B, the bump
algebra, iff If IB(i,i,1) <oo. See for example, Meyer (1990a) Chapter VI. It is a significant
fact that the Besov seminorm is essentially a functional of the wavelet coefficients (aj,k).

Theorem 1 Let an r-regular wavelet analysis be given. Define

Ce b(s,p,q) =( ( (k--o k)IP) )

[with the standard interpretation if q =oo]. Then with ce = a(f) we have

C|If IB(,p,q) < C Ib(s,p,q) < CIf IB(,p,q)

with s = a + 1/2 - l/p, where c, C depend on (,(p,p,q, r, a).

See Meyer (1990) Page 197, Proposition 4. In our opinion, it could probably be derived
from earlier work in atomic decompositions, in nonlinear approximation theory, and in
Besov Spaces, predating the development of wavelets; in particular, Peetre (1976), Pietsch
(1981), and especially Frazier and Jawerth(1985) and De Vore and Popov (1988). In some
sense these earlier authors were working with expansions in terms of "wigglets", that is to
say, wavelet-like expansions without the rigid definition and 'especially the orthogonality
properties of wavelet analysis.

In sum, wavelet analysis gives us a transformation from continuous function space into
a sequence space with two fundamental properties

(1) If f and f are two functions,

I1f fit = Z(&,k -QJ,k)2
j7,kjk

If-fi12 = ZOk-/3k)2 + AI( -i,kac2,k)
j>O k=-oo

so there is an exact isometry of the L2 errors. This, of course, follows from the
orthonormality of the wavelet basis.

(2) The function f satisfies If IB(,,p,q) < A if tCeIb(s,p,q) < A/c, for appropriate c. On the
other hand, the function f satisfies If IB(a,p,q) < A only if lalb(,,p,q) < CA. Thus there
is an equivalence (but not precise isometry) at the level of smoothness measures.

These two properties of the sequence transformation dominate all that follows. We will
concern ourselves with recovery of functions from noisy data, and we will find that the
sequence transformation enables a complete and natural treatment of the problems.
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3 Correspondence between Estimation in Function
Space and in Sequence Space

Suppose we observe sequence data

Yj,k= j,k + Zj,k j = 0,1,2, ..., k=O,.0.-.,2-1. (8)

where Zj,k are i.i.d. N(O, E2) and9 = (Oj,k) is unknown. We wish to estimate 9 with small
squared error loss 1I - 9j1j2 = Z(9,k-O ,k)2. Although 9 is in detail unknown, we do know
that jI9Ijs,p,q < 1, where

= ° (238 (z- I9k 1)lIP) l)

Thus we have a problem of estimating 9 when it is observed in a Gaussian white noise,
and is known a priori to lie in a certain convex set e9,p,q(C) {9 : I11s,p,q < C}. We
often are interested in the case C = 1, and put for short E),,p,q =g,p,q(1).

The difficulty of estimation in this setting is measured by the minimax risk

RN(E;e; ,p,q) = inf sup Ell - 911' (10)o e.,p,q

and by the minimax linear risk

RL(E,e8)O,p,q) = inf sup EII_-112 (11)
. 9$o,P,qlinear

where estimates are restricted to be linear.
Because of the wavelet isometry, there is a close connection between minimmax estimation

in this model and in the regression model (1) with which the paper began.

Theorem 2 Correspondence Theorem. Let an r-regular wavelet analysis be given,
r > 0. Suppose that the function class ZF may be written F =P + XH, where P is either
{0} or else the set of all polynomials of degree < r, and where X is the class of locally
integrable functions h(t) with wavelet coefficients bounded in the s, p, q seminorm:

== {h: h =JZ Caj,k',k, Ck Ib(s,p,q) < C}-

Suppose in addition that XH C BV(C') for some C' > 0 (e.g. suppose that s > 1/2, or that
p < 1, q < 1 if s = 1/2).

Then if n -+ oo along powers of 2,

RL(n, F) RN( a, 81p,q(C)) (13)

Moreover, estimators attaining R7;( , 0) or R* ( ', 0) in the sequence estimation problem
may be used to attain RN(n, F)(1 +o(1)) or RL(n, F)(1 +o(1)) in the sampled-data problem.
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The proof, which we defer to sections 7-9, establishes a close connection between the
"empinrcal wavelet coefficients" of a sequence (yi) obtained via (1) and the sequence data
(Yj,k) obtained from (8), provided we make the calibration e-.

First, however, we use the motivation provided by the Theorem and make, in sections 4-
6, a detailed study of the behavior of minimax risks and minimax estimates in the sequence
problem.
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4 Minimax Estimation in Sequence Space: Rates
The general problem of rminimax estimation in a sequence model when the object is known
to lie in a compact subset of 4 has been discussed in Donoho, Liu, and MacGibbon (1990)
(hereafter [DLM]). However, their notation and definitions are somewhat different. To use
their results in the context of data (8) and prior information (9), we must define sequences
(,qi) and (vi) by lexicographic reordering elements of (9j,k) and (yj,k). Let 712i+k =
V2j+k = Yj,k; we then have a problem of estimating (77i) from white noise data (vi).

The set 03,00,00 corresponds to a certain hyperrectangle {17 177ir < Tr}, 'r2+k 2-=s;
the set E),2,2 corresponds to an elipsoid E a2r72 < 1 with a2j+k = 2'J; and more generally

s,p,p corresponds to a set E a tr71lP < 1, or ep-body.
From an intuitive point of view, prior information that 77 lies in a certain ep body means

that for large index i, N must be a priori near 0, and hence that a good estimator will
not use the raw data v; as its estimate of qi, but rather something "shrunk" towards the
a priori likely value of 0. Linear shrinkers of the form civi with ci E [0, 1] are of course
well known. The nonlinear shrinker sgn(v,)(jvil- Ai)+ is less well-known, but has certain
advantages.

[DLM] identify the following basic fact about estimation over er-bodies: if p > 2, R*/R;1 <
1.25; but if p < 2, R*(e)/R*(e) -+ oo, e e 0. Indeed if p < 2, R*(e) (e2)&+t while
c(e2) 4+7PL < RN(e) < M2(e)(e2) .f+lx/ with IV(e) - O(log2(e)). In words, if p > 2,
linear estimates can be within 25% of minimax among all estimates; if p < 2, however,
linear estimates can be outperformed by nonlinear estimates even at the level of rate as
-0.
Underyling these results is an intuitive picture. The case p < 2 allows for a situation of

sparsity. a very few 7i are comparatively large, and the rest of the 77i essentialy zero. Linear
shrinkers cope poorly with such sparse situations. Nonlinear shrinkers like sgn(vi)(Ivil-
A )+cope better; speaking informally, they identify the cases yi which are likely to be large
and estimate those coordinates in a relatively conventional way; all other cases are shrunk
to zero.

Unfortunately for us, the ee,p,q with p # q are not 4p-bodies, and so are not covered by
the results of [DLM]. We are able to prove, in section 10 below, closely analogous results.

Theorem 3 For any s, p, q . 0,

RI(e) (6 2s2+1,

If p and q both are at least 2
< 1.25.

R*-tN

Theorem 4 If s,q > 0, O< p < 2.

R* (e) (x 2) +tMTTl

Taken together, these results show that for p < 2, nonlinear estimates can significantly
outperform linear ones in the model (8)-(9).

In combination with the Correspondence Theorem, we get Ph. A of the introduction.
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Corollary 1 (Bump Algebra) LetF = {f : llf IIB . C}. Then for data (1),

RL(n,F) n/2

RN(n, F) n-2/3

Indeed, the Bump Algebra coincides with the choice r > 1, P = {O}, (s, p, q) =
(1/2, 1, 1).
Corollary 2 (Total Variation) Let F = {f: TV(f) < C}. Then for data (1),

RL(n, F) n

RN(n, F) n 2/3

Indeed, we apply the correspondence theorem with r = 0 (the Haar Wavelet Basis),
P ={constants}; a simple computation shows that bounded variation is a superset of the
case (s,p,q) = (1/2, 1, 1) and is contained in (s, p,q) (1/2, 1,oo).

We also see immediately that phenomenon Ph. A of the introduction holds more
generally: For Besov Spaces with index p < 2, nonlinear estimates can be essentially better
than linear ones. Indeed the corresponding fact is true for the sequence model, by Theorems
3 and 4; and the Correspondence Theorem lets us transfer the conclusion to the function
estimation problem.
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5 Minimaxc Risk and Minimax Estimator
In this section we study carefully the structure of minimax estimates in the sequence
problem. By the Correspondence Theorem this information will carry over to the function
estimation model. This will ultimately establish Ph. B of the introduction: the idea that
the wavelet isometry maps us into a coordinate system where an asymptotically minimax
estimator has a very simple structure.

5.1 Minimax Bayes Estimation
Consider the following Minimax Bayes estimation problem. We observe data according
to the sequence model (8), only now (0j,k) is a random variable, which may be arbitrary
except for the single constraint that

I1TIIs,P,q < 1
where

=j, (Ej9,,kIP)1/p.
In short, we replace the "hard" constraint that III j.,p,q < 1 by the "in mean" constraint
lrIIsp,q . 1. We define the mininmax Bayes risk

RB(e;ea,p,q) =inf sup EllO-9112.
0 rE9&,p,q

As "hard" constraints are more stringent than "in mean" constraints, RUB > Rx.
In this section, we develop two main results. First, we show that minimax estimators

for RB are separable nonlinearities.

Theorem 5 Let s, p, q> 0, p. The minimax estimator for R*(E) has the form
@2k =6*(Yj,k) 110, .* k*, kO,. ..,12-- 1

where 6;(y) is d scalar nonlinear function of the scalar y. In fact there is a 3-parameter
family &(r,,,p) of nonlinear functions of y from which the minimax estimator is built:

US1-6 (,,p j 0 17 .. .

for a sequence (r;*)^O0 which depends on s, p, q, and e.

Second, we show that RB gives the exact asymptotics of R7N.
Theorem 6 Let s,p,q>0, q>p, q>1, p< 2.

RN(e) = RB(e)(1 + o(l)) (14)

RB(e) _Y(e)C2(1_r)f2r (15)
where

r s+l/p- 1/2
s + i/p

and
zs6)=a i(p; t p q)

is a continuous periodic function of log2 e.
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Combining Theorems 6 and 5, the estimator 0* is asymptotically minimax for RN as
e -- 0. In short: a separable nonlinear rule is asymptotically minimax.

The proof of these results is not primarily a technical matter; instead, it relies on a
variety of concepts which we introduce and develop in the subsections below.

5.2 Minimax Bayes Risk for a Mean With Bounded p-th Mo-
ment

Consider now a very special problem. We observe

v-=7+z (16)

where 77 is a random variable, and z is independent of i7 with distribution N(O, E2). We do
not know the distribution F of 71, but we do know that 77 satisfies (EFI IP)1/P < r. We wish
to estimate 77 with small squared-error loss. Define the minimax Bayes risk

pp(T,) ) = inf sup EFE17(6(y) -_ 7)2. (17)
5 (EFI?71P)'/P<r

This quantity has been analyzed in Donoho and Johnstone (1990), hereafter [DJ]. There
we find that pp satisfies the invariance

pp(T, 6) = E pp(7/e, 1) (18)
and the asymptotic relation

T2 p> 2

prP(2log(r P))2 p < 2

as Tr-* 0. The function pp is continuous, is monotone increasing in TXis concave in TP and
has pp(r, E) 2 as 7-/E -+ c.

There exists a rule 6(,,,,p) which is minimax for pp(,r, e); it is odd, monotone, and satisfies
the invariance 6(,,p) (y) = ES(r/1,l,p) (Y/E).

[DJ] also consider a vector version of this problem. Suppose we observe n observations
according to (16), i.e.,

V,i=7,+Zi _=1,...,n (19)

with zi iid N(0, e2), (i) random, with distribution r, (2i) independent of (zt), and (EE,j77iP)1/P <
nl"Pr [i.e., Avej<j<.E,Iy71jP < rP]. Let Op,(r) = {9 : E j=1AI9P < rP} denote the n-
dimensional lp ball of radius r; then for the minimax vector Bayes risk

R* (e;Op, (r)) = infsup{EE -II' _-7112 E Z j7jIP < nrP}.

Setting r1(r) = (E,j,7BjP)'/P we see that the moment constraint is equivalent to requiring
that r(7r) E e3p,n(r). We have the formula (proved in [DJ])

RB(e; E)p,O(nl/Pr)) - np(r, e). (20)
This is an expression of the fact that the least favorable prior for r7 makes the 27i i.i.d., in
which situation the problem becomes a product of independent problems, and the risk per
coordinate becomes that in the scalar problem, i.e., p(r, e).
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5.3 Minimax Bayes Risk Over Cartesian Products
Return now to the problem of estimating (93,k) from dataYj,k = 9j,k + Zj,k j=0,..., k =
0, ... , 2' -1 containing white noise (Zj,k). However, instead of the constraint (9j,k) E Gsa,p,q
we now consider the constraint that the moment sequence lies in a Cartesian product set.
Given a sequence r (ro, ri, r27...) of positive numbers, we define such a set by

* f ~~~~~2j-1
e8),~(r) =}{(93k)E j,P<2rP .0A., 10ZIkip < 2'r)}.k=O

Alternatively, letting ep,n(r) denote an n-dimensional lp ball as before, the set has the
representation

0,p00(r)-= E)p1(ro) X ep,2(21/Pr1) x *
x ep,2j(2'/Prj) x *--

as a product of 4p-balls of increasing dimensionality. Such product sets have two useful
properties:

(1) Additivity of component risks:

00

R* (e; E3p,o(r)) RER(6; E3p,2;(2j/Pr);

this is simply because the estimation problems at different levels j are logically inde-
pendent and become stochastically so as well, under the least favorable prior. Hence
we arrive at the formula

RB(e; 0P,.(r)) = E 2jpp(rj, E); (21)
3=0

in principle, an exact expression for the minimax Bayes risk.

(2) Separability of minimax rules. The rule which is minimax Bayes for E3P00(r) is

Gj,k 6i(Y1,k) jOx1 2, ... k 0,...,2-1 (22)
where Sj(y) = (p)(y), with S(r,e,p) the minimax rule for the Bounded-Moment
problem of Section 5.2.

As a result of these two properties, we may find ourselves wishing that we could study
estimation over sets EP,,(r) rather than E),,p,q. There is a sense in which we can. Suppose
that ®p,00(r) is a subset of a set 0. The problem of estimating (9j,k) from data (8) with
prior X and 1-(7x) known to lie in OP100(r) is called a Cartesian subproblem of the full problem
of estimation (when r is only known to lie in 0).

14



Theorem 7 Let s > 0 and q > p. The difficulty of the full problem is equal to the difficulty
of the hardest Cartesian subproblem. In symbols:

RB(e; '.,p,q) = max{JR*(e; E)p,oo(r)) eOp,oo(r) C e8)p,q},

the maximum being attained by some sequence (reo, r*, ...). The estimator

3J,k =(r,c,p)(Y)

which is minimax Bayes for this Cartesian subproblem is minimax Bayes for the full prob-
lem.

Note that this Theorem implies Theorem 5. It is proved in section 10.

5.4 Dyadic Renormalization
Theorem 7 reduces the problem of computing RB(E; 0),p,q) to an optimization problem.
By formula (21) we have RB(e, 0,,pq) = val(Pe,i) where (P.,c) denotes the optimization
problem

0 00

(Pf,c) supE 23pp(rj, e) subject to (28j(2JrP)1/p)q < Cq
j=0 j=O

(with obvious reformulation if q = oo).
At first glance, solution of this problem would appear to be beyond reach, owing to the

fact that we have no closed form expression for p'(Qr E) when p $ 2. However, a certain
"renormalizability" of the problem provides a tool to get qualitative insights.

Define the following optinmization problem (Q,,c) on the space of bilateral sequences
S-{(rJ)°=_001

00 00

(Qsc) sup E 2jpp(rj, o) subject to E (283(2); )llp)q < Cq
j=-oo 3=-oo

This problem is obviously closely related to (Pe,c). If the unilateral sequence (rj)=00 is
feasible for the discrete problem (P,,c) then the extension to a bilateral sequence (is)
defined by setting rj = 0, j < 0 and ij _ r3, j > 0, is feasible for the bilateral problem
(QE,c). We conclude that

val(P,,c) < val(Q,c) VE> 0, C > 0.

On the other hand, if the bilateral sequence (r,) is feasible for (Q,,c) then the unilateral
sequence ij formed by dropping the j < 0 portion from (rj) is feasible for (P,,c). Moreover,
the part of the objective function which is lost in dropping the negative indices is at most
c2, since pp(r_, ) < 62 implies E <02 p(r3, e) < 62 Hence

val(QE,c) < val(Pc,c) + 62 V6> 0, C > 0.

We know of course that a discrepancy of order 62 between the value of the two problems is
asymptotically negligible. Hence val(P ,c) -- val(Qe,c), as e -- 0.

Here are the asymptotics of val(Q,c).
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Theorem 8
val(Qe,c) = Y(e, C)C2(1-r)e2r (23)

where
1 q/2

r=- 1+

and -y(e; C) is a continuous, periodic function of log2f.

The immediate implication of this is that RN(e) < const 62r. Indeed,

RN~(E) < RB =- val(P.,1)
< val(Q,,l)
< const e2r

The Theorem follows from a certain homogeneity with respect to scaling and translation
of the functionals involved. Let p(v) rhop(E,1), and recall the invariance (18). Set
1= q(s - llp). Define

00

Jp,(r) f2 1: 2-p" je
-oo

oo

Jqt,O(r) 2j"rq1
ioo

Moreover, let (Ua,kr)j arj,k. Then by a simple change of variables

J ,e(U ,kr) = E22kJp,l(r). (24)

Also
Jq,O3(Ua,kr) aq2I3kJq1,3(r). (25)

As (Qe,c) is the problem of optimizing Je,p subject to Jq < Cq, these scaling relations
imply at once that if (rj) is a solution to (Qi,r) then the renormalized function rj = Erjyk
is a solution to (Q,,c), with

F- 2 1/ (26)
In turn, this renormalization implies (23).

We now show why. Let lZc denote the set of sequences feasible for (Qe,c), i.e. the (r3)
with Jq,,(r) ! Cq. Then, it follows from (25) with a = E that

Ul,klZr = 7Zc

and one may also see that
UZ-1,-kkZC=?r.

Hence

sup{Jp,,(r) Jq,,3(r) < Cq} = sup{JP,,(U,kr) : Ul,kr e RcZ}
= SUp{622kJp,l (r) : r e lZr}

E22k SUp{Jp,l (r) : r E Rlr}

16



In other words
val(Q,c) =-22kval(Ql,r).

In particular, we note that if x = k + 6, k an integer, 6 E [0, 1),

val(Ql,2z,/q) = 2k val(Q1,26,0/q). (27)
Now define

k(e, C) = Llog2(C/e) . qJ EZ

&(e, C) = log2(C/e) *. - k(e, C) E [0, 1)

The definition (26) then yields
F 26(`-C) q E [1,2e lq).

Then

val(Q,,c) = e22kval(Ql,r)
= 2(C/e)q/I32-(eC) val(Ql,r').

Putting
y(e, C) = 2-6(`C) val(Q1,r)

and noting (27), we see that -/ is a function of S(e, C) and hence a periodic function of
log2 e for each fixed C. Continuity follows from:

Lemma 1 The supremum of E° 23p(rj) over the class Rr of nonnegative sequences sat-
isfying E,0 2.7'3 < r is attained within the subclass Dr of decreasing sequences. The
class of sequences p(Dr) = {(p(r3)): r E Dr} is a compact subset of 11. Consequently,
the maximum ZEX, p(rj) dt over r E Rr is finite, and the maximum is attained by some
r E Dr. sUPO<r<. Ip((l - 6)r) - p(r)j -+ 0 as 6 -- 0; consequently the maximum value of
Jl,, over Dr is continuous in r.

-The lemma is proved in the appendix.

5.5 Minimax Risk Over £p-balls
At this point we have completed the proof of the main results announced in Section 5.1,
except for the relation (14), i.e. RB(e)/RN(e) -+ 1 as e -+ 0. We now establish this
asymptotic equivalence.

Consider (yet) another estimation problem. We observe

Vi-=t7 + Zil i = ...nn

where the z- are i.i.d. N(0, e2) and the qj are no longer random variables, but instead
unknown constants, satisfyino (7q-) E ®0,p(r). We wish to estimate (r7b) in a minimax
fashion with respect to squared-error loss. Define

RN(e;®n,p(r)) = inf sup E,II'-_7112
r7nEl9n,p(r)

This problem has been studied in [DJ]. While evidently RN(E; E),p(r)) < RB(e; ®n,p(r)),
the two quantities are often not significantly different.

17



Theorem 9 [DJ] Let r= rO nl/P.

R*(1; en,p(rn)) 1 f D 00 (28)
R* (1; (3np(rn))

To apply this fact about ep-balls to the study of sets e9.,p,q, suppose we let (Ek) be
a sequence of positive numbers tending to zero according to k(Ek, C) = k, S(ek, C) = r,
independent of k. In detail,

Ek = C2~k(/q)
We will show that

RB(Ek)/RN(Ek) 1 (29)
as k -- oo.

Let r(°) be a solution to the optimization problem (Rr); then r(°) E Dr; it has the rep-
resentation r(0) (r for a certain bilateral sequence (rj)?=_.. Then define the unilateral
sequence

r(k) = Ekr ) ° 12,v*,..

Consequently
00

2jp(r(k)/Ek) = 2jp(r()k)
j=o' j>o

and
R*(Ek; Os,p,q) c2 5 2jp(r_Pk), k - o.

3>0

Define
RN(1; ep,2j (rt2j/P))

R(;3p,2j(rt2j/P))'
By Theorem 9 above A3,e 1 for efixed, j -f oo. Now as p,0(r(k)) C e8,3ptq

R* (6k; Os,p,q) > R* (Ek; Op,,,, (r(k)))
but by definition of Aj,t

RN(Ek; E®p, (r(k))) = E5 2'A kP(rj,k)-
j7->O

Changing variables e = - k, j = k + e, we therefore get that

k-oo R7 (Ek;Xs,p,q) k_oo =_ k 2'A+k,ep(re)

By Fatou's Lemma and Monotone Convergence both the top and bottom of this ratio
converge to = 2tp(re) = val(Rr) E (0, oo). Hence the indicated limit is 1.

Suppose now that (Ek) is an arbitrary sequence, with associated scaling factors (rk) C
[1,2d/q). This sequence has accumulation points. Suppose w.l.o.g. that the sequence ac-
tually has a limit, ro, and without essential loss of generality that the limit is strictly in

18



the interior of (1, 2'/"). Given 6 > 0 we can construct two sequences (e(l)) and (e()) which
are subsequences of dyadically scaled sequences with base scales rp) and ?(2) satisfying
r(l) < ro < r(2), Ir(l) -r(2)1 < E and such that for sufficiently large k, 4(l) < k < e(2)
By monotonicity of minimax risk in the noise level,

iRB(k) RB (4 (2)) val(Rr(2))
k R° (j6k) k-bo R*(e()) val(Rr(l))

By continuity of val(Rr) (see Lemma 1) this ratio can be made as close to 1 as desired by
picking S small enough. Hence (14) holds.

This completes the proof of Theorems 5 and 6.
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6 Near-Minimaxity of Threshold Estimates.
We have derived an asymptotically minimax estimator for E),,p,q built out of coordinatewise
nonlinearities from the family S(r,p)- Unfortunately, these nonlinearities are not available
to us in closed form. In this section we show that simple "threshold" nonlinearities pro-
vide near-inimax behavior when q > p. We consider two possibilities: first, the "soft"
nonlinearity

A6x(y) = sgn(y)(ly -A)+
which is continuous and Lipschitz; second, the "hard" nonlineanrty 6,(y) =yl{jy{>}j which
is discontinuous. [We adopt the convention that 6 refers to a scalar nonlinearity whose
type depends on the lexicography of the subscript: (e, r, p), A, and it referring to different
nonlinearities.]

Suppose we are in the Minimax-Bayes model of Section 5.1, so our data are Yj,k =
9j,k + Zj,k with 9j,k random variables satisfying the moment constraint r E e),,p,q Consider
the use of separable estimators built out of thresholds, i.e. set A = (Aj,k) and

JA = 8Aij,(Yj,k) 0j01,2,..; k-=0 7...,2i - 1.

The minimax risk among soft-threshold estimates is defined

R*(e, EJ)= inf sup EIl 0- 12-
(j,k) rEe

For hard thresholds 0jHk = 6Sj,k(yj,k), the minimax risk R*(e, 0) is defined similarly. The
minimax risk among all estimates is of course RB(E; E). In the subsections to follow, we
develop results which establish

Theorem 10 Let q > p > 0. There are constants A(p), M(p), both finite, with

R*(e,IE)s,p,q) < A(p)RB(eI Os,p,q)
R>(els,0p,q) < M(p)R*(E,Os,p,q)

There exist thresholds which attain these -performances; they have the form

Aj,k-* t(e, rA, p) j= 0, 17 ... k = 0, ... ., 2iJ _ 1.

and
IL ,IC EM(E rl, 0)j O 1, . ..; k = 0, .. .,12i-1

for certain functions e and m and certain sequences r& and rH' such that (Ep,00(r\) C e),,p,q,
®p',.(rs) c spq,

In short, with optimal choice of threshold, we can obtain near-minimax behavior relative
to r. We remark that A(1) < 1.6, so the near-minimaxity is numerically effective.

Finally, by (14), these estimates are within a factor A(p) (resp. M(p)) of being asymp-
totically minimax for the frequentist criterion RN(e).

20



6.1 Minimax Bayes, Bounded p-th Moment (Encore).
Return briefly to the scalar situation of Section 5.2 ,with v = i + z, i7 random, z inde-
pendent of r7 and N(O, E2). We are interested in estimating '7 with squared-error loss. The
distribution of'7 is known to satisfy EI'7IP < rP, and the minimax Bayes risk is by definition
pp('r E).

To measure the performance of threshholds in this situation, we define

pA,p(r, e) = inf sup E(6A(y) - '7)2
AE[f0,o] (EIY71P)1/P<r

and
p,j,p(T, E) = inf sup E(6p(y) - ')2;pE[,OoC] (EIT,IP)'/P<r

under our typographical convention, these are worst case risks for soft (A) and hard (u)
thresholds, respectively.

To compare these performances with the Bayes Minimax estimates we define

A(p) =_sup PA,P(T, e) <00o.T, pp(r, e)
and

M(p) sup e< 00.
r,c pp(r, E-)

[DJ] show that for p E (0, oo], A(p) < oo and M(p) <o0, In short, the minimax 6& is
within a factor A(p) of minimax, and the minimax 6S is within a factor M(p) of minimax.

In fact, A(p) and M(p) are both smaller than 2.22 for all p > 2; and computational
experiments indicate A(1) < 1.6. Quantitatively, A(p) tends to be somewhat smaller than
M(p), which says that "soft" thresholding offers a quantitative superiority. (Compare the
conclusions of Bickel (1983) in a different Bayes-minimax problem).

6.2 Hardest Cartesian Subproblems for Thresholds.
Return now to the sequence experiment. The problem of estimnating 9 when the moment
vector T- is known to lie in a Cartesian product 3 (r) c 0, is called a Cartesian Subprob-
lem of 0. For such subproblems we have the formula

00

R,(67P,C)p(r)) E23P,p(r , E)

expressing the worst-case risk in the infinite-dimensional problem in terms of one-dimensional
worst-case risks, and similarly

00

R14(el OSp, O(r)) =E2jp,,,p(rj, c).
'>o

'"le have the following analog of Theorem 19.
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Theorem 11 Let q > p, sp > 0. The difficulty, for soft threshold estimates, of the full
problem, is equal to the difficulty, for soft threshold estimates, of the hardest Cartesian
subproblem:

R*(e;e) = sup{R*(e,E)pO,(r)) : 19p, c( }E
The supremum is attained by a sequence (r:), and a soft threshold estimator with thresholds

Aj,k e(r;,E,p)

is minimax among soft thresholds for a certain function ((r, e, p). Similarly

R*(e; E) = R*(e; e),9(r))
for a sequence (rj ), and a hard threshold estimator with thresholds

JLj,k = e*m(rJ J6p)

is minimax among hard thresholds, for some function m(r, E, p).

Hence, the "hardest Cartesian subproblems" heuristic works in this case as well.
The proof is given in the appendix. Theorem 10 follows directly:

R* (ej0, p,q) -R*(e;OA)Or)
= E2jp,\,p(r'>, c)
3>0

< A(p)E 2'pp(r>,

- A(p)R* (E; C®p (rA))
A(p)RB (E; Os,p,q)

and similarly for p-thresholds.
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7 >Function Estimation in White Noise
At this point, we have a rather complete understanding of minimax and near-minimax
estimation in the sequence model. We now turn to the Correspondence Theorem. Once
this is established, Ph. B of the introduction will follow, and the interpretation of that
result will lead to Ph. C, completing the three major aims of the paper.

If our attitude towards the results of this paper were simply that they represent asymp-
totic results of potential practical use, we would relegate the proof of the correspondence
theorem to an appendix and bring the body of the paper to a speedy conclusion. However,
we have implemented our proposed estimator in computer software; it is algorithmically
efficient and gives appealing results. We have found that the issues in the correspondence
theorem itself are those which arise in practical implementation of an empirical wavelet
transform. Therefore, we spend the next three sections developing the idea that results in
the sequence problem may be used for smoothing of noisy data.

There are three main questions which we will address in the process.

(Q1) Membership of a function f in Besov space is determined by the seminorm IaIb(s,p,q),
which is bilateral in j and k; membership of a sequence 8 in e,pA,q is defined by the
norm 1101s,p,q, which is unilateral in j and finite in k. Why the apparent discrepancy?

(Q2) Wavelets are designed for functions on the whole line; data (1) is restricted to the unit
interval [0, 1]. How do we use the wavelet transform for problems with a boundary?

(Q3) The wavelet transform of a function f requires the calculation of integrals f fj,;k.
However, the discrete data (1) admit, at best, noisy Riemann sum apprommations to
such integrals. How do we use the wavelet transform for sampled data?

In this section we consider a different kind of estimation problem which allows us to
understand (Q1) and (Q2) fully - the white noise model. Suppose we observe the stochastic
process Y(t), t c [0, 1] where the process Y is characterized by

Y(dt) f(t) dt + EW(dt) t E [0, 1] (30)

with W a standard Wiener process, and f the function of interest. We wish to estimate
f on the basis of these data and the a priori information that f E F a convex class of
functions. We use squared-error loss, and are interested in

R;r(e;F)=inf sup Elf - fI1I (31)f 2

as well as
R*(E F) = inf sup ElIf -fI11. (32)

f linear F

This type of problem is called "function estimation in white noise". It can be related to
data (1) as follows. Observing data(l) is evidently equivalent to observing

Yn(t) = 1 EYi
t<t

- Z~f(t1)±- Zs
ni< n t
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With e = , the process Yn is visibly a Riemann sum approximation to Y. (Q3) is in some
sense about the adequacy of this approximation. By focusing on data Y in this section
we implicitly take an affirmative answer to (Q3) for granted and separate the study of
questions (Q1) and (Q2) from (Q3). The sampling issues associated with the process (Q3)
will be addressed in section 9.

7.1 Functions of Bounded Variation
Suppose that F is the class of functions f supported in [0, 1] and of total variation TV(f) <
1.

The Haar basis is then the appropriate wavelet basis for this case. Let ( = 1[o,i], and
+P(t) = 1[1/2,11 - 1[o,1/2]. Define Vj,k(t) = 2j/24'(2it - k), j = ,1,2. .., k = 0,.... 2i - 1.
Let f E L2[0, 1] and put

fib = Jsof 93,k = j,kf
Then the inhomogeneous wavelet reconstruction formula gives, in this case f = ,B +
Z,.0 Zk=-7' -j, kVj,k (convergence in L2). This is the wavelet representation of f in the
Haar basis.

Consider now the data

bo J WoY(dt)

Y3,k = Jl/j,ky(dt) j = 0,1,2, ... , k = 0 ... ,2'- 1.

From properties of the Wiener process,

bo = io + zo

Y',k = 9j,k + Zj,k j 0,1,2,.-.. k =0 ...,2'- 1

with zo, Zj,k iid N(0, e2).
Suppose now that we treat the data Yj,k as sequence data, and form empirical estimates

(09k) of the corresponding (Gj,k). Then the series reconstruction f

f (t) = bo + Z 9j,kO/,k
has the loss

lIf - = (bo-do)2 + E(9j,k - 0,k)2
j7,k

In words, there is an exact isometry between estimating error in one domain and in the
other. As the isometry goes in both directions, we conclude in an obvious notation that

R*(E;qF) E62 + RN(e; E)
RL(e; F) = 2+R62±);

lhere the terms on the left hand side represent minimax risks for the problem in func-
tion space (30)-(32) and those on the right for the problem (8)-(10) in sequence space.
Evidently, the term 62 is of negligible importance, compared to the minimax risks.

We get an answer to (Q1) above: for estimating a function on the interval [0, 1] the
correct correspondence is between the function-space F and the unilateral in j, finite in k,
sequence space.
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7.2 Functions in the Bump Algebra.
Suppose now that f is known to belong to the Bump Algebra B described in the introduc-
tion. To make this quantitative, let us be given 'p and b, which provide an r-regular wavelet
system, r> 1, and let F be the class of all f : i --+ I? satisfying E 2i12 E kaj,kI . 1
with Q!j,k = f%_ f' b,k.

Based on the case with the functions of Total Variation, one might expect an isometry
between this function problem and one in sequence space. Actually, this holds only ap-
proximately. Because we must use a wavelet with regularity r > 1- to express the Bump
Algebra, we can no longer use the Haar basis. For other wavelet bases, boundary effects
come into play. However, as we will show, the effects are asymptotically negligible.

Theorem 12 Let s > 1/2, and let F be a class of functions on the real line defined by
f = Z a,,kOk,k, with aClb(s,p,q) < 1. Let E,p,q be the class of sequences defined by the
condition I1911,,p,q < 1. Then, using definitions (8)-(10) and (30)-(32) we have

RL(E;F) = RL(e; Es,p,q)(1+o(1)) e O (33)
RN(E; F) = R*(e; Os,p,q)(l + o(1)) e - 0 (34)

Here of course, terms on the left denote in the continuous space white noise problem, and
those on the right in the sequence space white-noise problem.

Theorem 12 is proved in two steps. First, a certain nonasymptotic lower bound, of the
form R*(e; F) > R*(e; ®s,P,q) holds (where R* = or R7.,) ,showing that the function
problem is always harder than the sequence problem. Consider the class F0 of functions

2' -1

f>=kE0E j,k+j,k.j>O k=O

with 9 E ®s,p,q. - Evidently, F0 C F. Hence R* (e;qF) > R*(e; Fo), where R* = or RN
Suppose we could observe Y(t) for all t E (-oo, oo) and not just [0,1]. This is obviously
more informative than just observing Y, in the sense of comparison: of experiments.

Now as dW is Gaussian white noise, it is not hard to see that the projection of Y
on span [0Fo is sufficient for estimation of f E Fo. Consequently, the coefficients Yj,k -
I'o 'II-j,kY(dt) are sufficient for estimating f (and, equivalently, (0j,k)). But the coefficients
are exactly of the form (11) in the sequence space problem. Hence, with R denoting either
RoOr R*

R(E, F) > R(e; Fo) -R(e, -Fo, {Y(t) : t E [0, 1]})
> R(e; ro, {Y(t) : t E (-oo, oo)}

R*(E;O s,p,q)

Hence for both linear and nonlinear procedures, the sequence problem provides an exact,
nonasymptotic lower bound on the difficulty of estimation. Let us now show that it provides
an asymptotic upper bound.
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Theorem 13 Fix S > 0. For every estimator j,k in the sequence problem, there is an
estimator f in the function problem with

A11lffl2 < SU 11S_l2 + o(e2-6).sup Eljif - fit sup ElI-lo 2+ (2)
f Or eEe.,p,q

Here the Q(e2-6) does not depend on the method 9.

Note that for sufficiently small 6, R*(e) > f2-6 whenever 0 < s < 0, and so Theorem
13 completes the proof of Theorem 12.

Theorem 13 may at first glance appear purely technical, but the proof exposes a fun-
damental issue for applications: boundary behavior of wavelets. The problem we are faced
with is as follows. We have data about f(t) only for t E [0,1], but the wavelet basis 4'j,k
makes no provision for the finiteness of the interval-it is adapted to analysis on the whole
real line.

We propose to "solve" this problem as follows. Let Y(t) be an extension of the process
Y(t) to all of JR via the rule that for t < 0, Y(t) = W1(-t) where W1 is a Wiener process
started at zero and independent of Y; for t > 1, Y(t) = Y(1) + W2(t -1) with W2 a Wiener
process started at zero independent of Y and W1.

Now we have observations equivalent to

Y(dt) = f(t) dt + EW(dt) T < R

with f the mutilation fl[oj] of f.
WVe propose to reconstruct f on [0, 1] using simple operations on the empirical wavelet

coefficients f 9Y,kk(dt) and f 4'3,kY(dt) of Y.
From the traditional point of view of linear time-invariant methods (or, equivalently

Fourier Analysis), replacing the smooth object f by the mutilated one f as an object to
be estimated is an exceptionally bad idea. Roughly, the behavior of bias of the estimate in
the neighborhood of 0 and 1 would be so bad as to completely dominate the mean-squared
error over [0, 1].

One of the truly impressive facts about wavelets is that no such effect occurs if they are
used in even a crude fasion. In some sense wavelets are robust against even rather brutal
operations like mutilation.

Let us give the details about our proposal.
First, an important remark about our basis. We have assumed that y' and 4 are of

compact support both contained in [-S, S], with S an integer.
Second, our method requires two positive integer constants, f(e, S,6 ) and m(e, S, 6). We

will describe how these are chosen later.
We will employ the inhomogeneous wavelet algorithm. Let (pe,k(t) - 2t1/2p(2tt -k)

k e Z, and let /,k = 2)124(23t - k), j > 0, k E Z as before. Then any f E L2()
has the representation f = E'OO I3kO,k + Ej>l E' - a,k0j,k. This is an inhomogeneous
reconstruction formula starting at the "base frequency" 2'. Our reconstruction will have
the general form

0 00

f SEflkft,k + E ES ,kOj,k
k=- j>1k=-oo
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However, because of the compact support of p and 4', we will have no need for infinite
sums. Define K = {k : -S < k < 21 + S} and, for each j > e, B(j) = {k :-S < k <
S} U {2' - S < k < 2' + S}, and I(j) = {k: S < k < 2 - S}. By the support properties
of W and 4', we know that unless k E K, WI,k vanishes on [0, 11 and unless k E B(j) U I(j),
fj,k vanishes on [0, 1]. We note that if k E 1(j), then SUPPOj'k C [0, 1]-these are the 0j,kS
"interior to [0, 1]"; and that if k E B(j), then 0j,k is not interior to [0, 1] but may stil play
a role in the reconstruction of f. We call such terms "Boundary terms."

In detail, our reconstruction is of the form

Z fl/3k(l,k + S S j,kV)j,k + 5 5 & -,k4'j,k-
kEK m>.jt kEB(,) j>t kEI(i)

Here the first sum represents smooth low frequency structure, the second represents bound-
ary behavior and the last sum represents high-frequency detail.

We obtain the coefficients in the first two sums using the process Y.

1k = J 01,kY(dt) k E K
-oo

Cij,k = J 0-,kY(dt) 1 < j < m, k E B(j).
-00

The coefficients for the final sum-and these are the important ones-are obtained from
the estimator 9.

Define a sequence

fof) -,kf7(dt) > e, k E (jY3k >
{ j >, k I(j)

where Zj,k are iid N(0, E2) independent of Y. Then (Y,,k) is exactly of the form (8) where
O.jk Ey,,k obeys

C% ,k j >e, kel()
Sjk= o0 j.0, k0I(j) (35)

Indeed when k E 1(j), the support properties of 4' guarantee that

9j,k =j /,kf(t) dt= j ',kf(t) dt = Rj,k-

Apply the estimator 8 supplied by the hypothesis of the theorem to the derived data Y,,k.
One obtains estimates for the coefficients for the third term of (7.2) via

kj,k =j,k, j > e,IkE (j)

Let us now analyze the behavior of this estimator. With f = fl[o0,] we have

-If- fIIL2[O,l < If - fIIL2(R).
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Putting 13k = ffok, °1j,k = ff4,j,k etc.,

IffIL2(R) = (Pk-3k)
kEK

+ Z S(Xj,k k)
I<j<m kEB(j)

+ ] 1: j,k

j>m kEB(j)

+5 5 (&,j,k-a,k)2 (36)
j>1 kEI(j)

We bound the first two terms as follows. /3k - N(Ik, e2), A3,k N(&,,k, e2). Hence

E 5 k - Qk)= Card(K) e = (2' + 2S) * 62
kEK

£ 5 5 (&3j,k- 3,k)2 = E2 5 CardB(j)
I<j<m kEB(j) I<j<m

(m-1)(4S + 2)e2.
Also functions in F are bounded: sup{IIfIILoO[o,1]: f E F} = M < oo. Hence

j,k J f1j,k = fQj,k < jIfijjoIVj,kjIj
< M1+10b12-'2.

Thus

S S aXJ,k < (4S+ 2)M2Ik E 2-i
j>m kEB() j>m

- C2-m say.

Picking m and I appropriately, we get

21 62 = o(,62-6)
(m - )e2 = Q(E2-6)

2-m = o(,62-6)

simultaneously. Hence

Ellf.-f1l2 < O(e26) + FE Z (&j,k a)-
j>1 kEI(i)

On the other hand, considering the definitions involved the final term in (36) obeys

5£ 5 (&bj,,- Ej,k)2 < 11-A 112
j>1 kEI(j)
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Let E) be the collection of all sequences generated by prescription (35). As 0j,k
-aj,kl{1>l,kEI(j)}, we see immediately that

|jOI s,p,q .< lalb(s,p,q) <
Thus e c 0e,p,q. We conclude, as required, that

EIJf f112[o] < sup El -_ 9112 + Q(E2 6).e2[,1EE)s,p,q

This gives an answer to (Q2): by treating the boundary terms in the wavelet expansion
slightly differently than the interior terms, we guarantee that they have an asymptotically
negligible effect on the mean-squared error.
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8 Interpretation of the Procedure.
The development of sections 3-6 above leads to the following proposal for function estima-
tion in the White Noise model (30), for a class F={f: Iaj,klb(s,p,q) < 1}

[1] Form the Empirical Wavelet Coefficients (3k), k E K, (ajk), k E B(j), and Yj,k.

[2] With nonlineajities (6j)=o chosen optimally from the class {6I(,,pI)} or from {6x} or
from {6,}, apply the formula

arj,k = 6,(Yj,k) j = e,...; k E I(j)

to get minimax (resp. near-inimax) estimates of aj,k, k E 1(j).

[3] Reconstruct, via

f = k(Jkflt,k +
z ;
tj,kV)j,k

kEK t<j<m kEB(j)

+ E Z &j,kOj,k-
j kEl(k)

As we have seen, this procedure yields an f which is asymptotically minimax as e I 0 if
the nonlinearities were optimally chosen from the family {8(re,p)}; f is within a factor A(p)
[respectively M(p)] of asymptotically minimax if the nonlinearities were optimally chosen
from {&6x} (respectively {&, }).

In effect, the three terms in step [3] represent three different aspects of the smoothing
problem. Symbolically, we have

f = fGROSS + fBOUNDARY + fDETAIL

where

fGROSS = Ekt,k
k

fBOUNDARY = Z Z j,k)j,k
l<j<m kEB(j)

fDETAIL = Z E f -k
i kEI(U)

Let us discuss these three terms in more detail.
fGRoss is a traditional estimate of the orthogonal series type. It involves a reconstruction

using the empirical series coefficients corresponding to the low-resolution or smooth terms
in a certain series expansion. fGRoss is linear in the data.

fBOUNDARY is a boundary correction of fGRoss, again using simple empirical series co-
efficients, but extending to much higher resolution near the boundary than fGRoss does,
to correct for the discontinuity of f at the boundary. fBOUNDARY is linear in the data.
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fDETAIL is a detail correction for fGROSS at interior points. It is formed by a nonlinear
processing of the high-resolution wavelet coefficients. If the nonlinearities are from the A or
,u threshold family, they can be interpreted as identifying, among those coefficients which
fGROSS ignores, those most likely to correspond to signal rather than noise. Indeed, the
nonlinearity bS;j(yj,k) sets to zero all those coefficients smaller than e - m(e, rj', p), i.e., all
those coefficients where the "empirical signal to noise ratio" is less than m.

8.1 A Locally Adaptive Kernel Estimate.
Note that the "gross structure" and "boundary correction" terms in the wavelet recon-
struction are obtained by kernel estimates:

fGROSS(S) E Ik(t,k(S) = St,k(S) J| t,k(t)Y (dt)
kEK

= I >z PIt,k(S)(pe,k(t)Y (dt)

JfG(S, t)Y (dt)

where KG(S,t) ZkEKcpt,k(S)cpt,k(t). Similarly,

fBOUNDARY(S) = aS r,,k/),k(s) = J KB(S,t)Y (dt)
t<<jm kEB(-)

with KB(S, t) Ze,<j<m ZkEB(,) 04',k(S)?k,,k(t).
Turning to "Detail Structure," define wj(y) so that the identity 6 (y) = yw3(y) holds.

Then aj,k Wj(Yj,k) fJ)j,kY(dt) and

fDETAIL(S) = S S %,kV/j,k(S)
kEI(j)

- S S w-(y3,k)4'3,k(S) Y3,k
j kEI(j)

- |i kE ~)Ewa(Yjy,k)<kk(s)4j k(t)Y (dt)
j kEI( j)

- f &KD(S, t)Y(dt), say.

We have symbolically

f = J(KG + KB + KD)(s, t)Y (dt)

where the three "pieces" are orthogonal

J JK-(s t)((s,t)ds dt = i
However KD depends on y, through the W3(y ,k) weights. Consequenty, KD is an adaptively
designed kernel: it is constructed by adaptively summing kernels j,k(S)/j,k(t) of different
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bandwidths, using weights based on the apparent need for inclusion of structure at level j
and spatial position k.

In detail, put Q(j,k) = supp{?bj,k} C [2-j(k - S),2-j(k + S)], and Wi,k(s,t) =
lJI),k(s)'ij,k(t). Then

KID(S, t) = E W,(yj,k)Wj,k(S t)
SEQ(j,k)

a sum of kernels Wj,k with weights. The kernel W,,k is supported in Q(j, k) x Q(j, k);
consequently its bandwidth is 2-j.

Suppose now that 6j is chosen from the family of A thresholds. The weights wj(yj,k)
are then 0 if IYj,kI < Aj; as IYi,kI -+ o, they tend to 1. Hence, a small empirical coefficient
Y,,k leads to omission of the term Wj,k from the detail kernel; a large empirical coefficient
leads to inclusion, with full weight 1.

Consequently, if IYi,kI > Aj, then for (s, t) E Q(j, k) x Q(j, k) the kernel KD(S, t) contains
terms of bandwidth < 2-j. In short, our proposal represents a method of adaptive local
selection of bandwidth (and, indeed, kernel shape).

Parallel comments apply when the nonlinearities 6j are chosen from the other families.
At this point, we have demonstrated Ph. C of the introduction - at least for estimation

in the white noise model.

8.2 Overfitted Least-Squares with Backwards Deletion
The coefficients Y,,k represent the orthogonal projection of Y on the basis functions 4j,k
Thus they represent the "least-squares estimated regression coefficients" in the "linear
model"

f = Z dk9P,k + E aj,kkj,k

However, to build an estimate f using all the l/j,k terms with least-squares coefficients
involved serious. "overfitting" with the result that the reconstruction is extremely noisy. In
fact the "formula"

Z !k'Pt,k + E Y,kbj,k

defines an object so erratic that it can only be interpreted as a distribution, namely dY,
not a function.

In traditional statistical modelling one often fits complete models and then removes
from consideration those terms with "statistically insignificant" coefficients.

Our method has exactly such an interpretation, if hard thresholds (6p,) are employed
for the nonlinearity. The standard error of Yj,k is e and H, = m(rj/E, 1, p) * mj e, say,
so

=IYj,k |Yj,k| > mj *

, lO IYj,kl < mj e

Hence the reconstruction
fDETAIL = Ak,k

includes only those terms Yj,k with "z-scores" Yj,kke exceeding m1 in absolute value. Thus
in is a "significance threshold."
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However, observe that our significance thresholds are determined by a minimax crite-
rion, and not, for example, by some conventional statistical criterion (e.g. P < .05). In fact,
m-- oo as j - oo, which means that extreme statistical significance must be attached to
a coefficient at high resolution index j before that term is incuded in the reconstruction.

8.3 A Roughness-Penalized Least Squares Estimate.

A popular technique in function smoothing is the use of "penalized least-squares" or "penal-
ized likelihood" methods. Suppose for example that we observe sampled data (yi) according
to (1); a penalized least squares method is

f = arg nunf (f (t,) - yi)2 + A j(flI)2

The resulting f is a cubic smoothing spline. The term f(f")2 is called a roughness penalty.
Our proposal, when used in conjunction with soft thresholds bA, has an interpretation

in terms of roughness penalties.
Note the simple identity

6x(y) = arg mind(y- d)2 +-Aldl (37)

It follows that fDETAIL:= aj,ktkj,k solves the problem

2j-1

(aj,k) =arg min(djk) E(dj,k - Y3,k) + E Aj E 1d,k I
j>O k=O

The first term is a measure of residual sum of squares, or likelihood. The second term is a
penalty. We know that A3 = e*(r>/E, 1, p) for a certain sequence r'. In the case p = q < 2,
from asymptotics for e(rA/E) we know that 4j = Aj/o is asymptotic to const2ji as s -+ ,

with s =-P . It follows that the penalty term is, to within constants, equivalent to

C.* c * E 2i' Z |aj,k = E - C- lIallIii.
j>O k

In short, for each p q E [1,2), the details are estimated with a roughness penalty
equivalent to the Besov (3,1, 1) seminorm, a = E+ ll/p-1/2.
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9 Sampling of Wavelet Series.

We now study issue (Q3): the approximation of wavelet coefficients by sums rather than
integrals.

9.1 Sampling Theorem for Wavelets
The clasical sampling theorem says that for an entire function of type gr which is in L2 on
the real axds,

-00 02z (t)dt.
i= _ oo 00°

This implies, among other things, that certain integrals over the real line may be calculated
by sums.

The closest analogous statement for wavelets would be that for a function in Vo, the
span of ((po,k), the sum of squares of samples taken at the integers is comparable in size to
the squared L2-norm. To guarantee near-equality of sample sums of squares with squared
integrals, we have to sample at rate much higher than one per unit time, and normalize
the samples by our sampling rate. Let (Si)iEZ be our bilateral sampling mesh, defined by
si = (i - 1)/n, at sampling rate n samples per unit time.

Consider a function f in VO:
00

f = Z fk(PO,k
k=-o

for Ak = f f.pO,k. Estimating integrals by sums at the sample points si = i/n gives

/k = n E f(si) po,k(si).
iEU

This implicitly defines a linear transformation UO,n e2 -2 via UO,n(p) =

Lemma 2 Uo,n is a discrete convolution operator. If the wavelets p are supported inside
[-S, S] then the transfer function of the operator is

un(A) = 1 + E cn(k)e
k#O

jkI<2S

where
cn(k) n1 S po,o(si)V.o,k(si).

iEU

If n -+ oo along powers of 2,

cn(k) -O k $O, 1kI< 2s.

It follows immediately from the lemma that the operator norms

IIUO,nII sup In(A)I

luo nEl1/ inf ]Un(A)
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satisfy

11UO,nII - 1 n -0oo
IIU-2 l 1.

In short, the approximation of integrals (,/k)kez by sums (/k)kEZ is asymptotically correct,
uniformly in (fk) E e2. Define the operator Tn: e2 -- e2 by

TO,n() = ():Z3k(m,k(Si))

This is the operator that yields normalized samples ( lnf (si))iEz of functions f E VO. Then
we have the crucial identity

UO,n=ToJn n

As Uo,n is almost an isometry, we conclude that T0,n satisfies

IITo,nI - 1
IIT`,?I 1 n -0oo.

Here we interpret TT, as an operator from Range (T0n) into e2. These -relations imply that

T0,n is a near-isometry from functions f E Vo to samples (;f(si)).z:

1Z f2(S.) | f2(s)dsn i 0°

for all f in VO, for large n. This is the "sampling theorem" for wavelet series. It has
several implications, such the near-orthogonality, with respect to sums along the grid (si),
of wavelets 4 j,k and )j',k' as long as j < 0.

Analogous relations hold with Vm replacing VO. Suppose that n 2m+a, for an integer
a > 0. Then we have

IITm,nII = IITo,2-II
IIn02T;1 II = iIT-1 1l

which extends the sampling theorem to other resolution scales.

9.2 Sampling and Smoothness.
Let g(t) be a function with domain JR. Let Vm L2 -k L2 be the operator of projection
onto the span of (?kj,k) with j < m. Alternatively,

00

(Vmg)(t) - f)k).m,k(t) (38)

k=-oo

where Om,k(t) 2m/2,(2mt -k) and

3k = |m,k(s)g(s) ds k e Z. (39)
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We now consider the approximation

(Vm,ng)(t) = j bk(pM,k(t) (40)
k=-oo

where
00

b(m) =n-1 Z cpm,k(Si)g(Si) k E Z. (41)
-00

In this approximation, the coefficient functionals are approximated .by discrete sums.
The following lemmas show that if we restrict, attention to pairs (m, n) with n = 2m+1

for an integer a > 0, the problem of measuring degree of approximation of functions
g E BV n L2 by Vm,ng has a simple answer.

Lemma 3 Let (Pm,n,C) denote the optimization problem

(Pm,n,C) sup 1JVm,ng - Vmgl 12 subject to TV(g) < C.

Then val(Po,2a,1) < 00 for each positive integer a. For n = 2m+a

val(Pm,n,c) = 2m/* C val(Po,2a,1). (42)

Let (Qm,n,c) denote the optimization problem

fTV(g).:5C(Qm,n,C) sup lVmg -| 91-12 subject to { Th0 g(sj) = 0

Then val(QO,2a,1) < oo and

val(Qm,n,c) = 2 m/2 C val(Qo,2a,1) (43)

The proof is an application of dyadic renormalization. If go is feasible for (PO,24,1)
(respectively (Q 0,2a,l)) then gm,c(t) = Cgo(2mt) is feasible for (Pm,n,C) (respectively (Q m,,c))
and vice versa. As we evidently have jlVo,2ago -90112 = 2m/2 * JVm,ngm,c - Vmgm,Cj1 and
jlVogo-goll = 2m/2ljmgm,C -gm,c 112, the results (42) and (43) are immediate. For them to
hiave meaning, we must prove, however, that val(Po,2,1) < oo and val(Qo,2a,1) < cc. This
is done in the appendix.

It follows from the lemma that if EZY0 g(s,) = 0, and g E BV n L2, then

IIVm,ng -9112 < const 2 m/2(44)
where the constant depends on TV(g) and on a = (log2 n) -m. With a fixed, the right-
lhand side of (44) is of order 1/Vp/; this degree of approximation of g by Vm,ng is sufficient
for our purposes.

We now investigate the smoothness of this approximation. Define

f_I,kVm,ng I k E Z
j,k 0{ > m, k 0 Z

These are the wavelet coefficients of Vmng IOib(s,p,q) is the roughness of Vm,ng; l1lb(s,pq) is
the roughness of g. We are particularly interested in picking m and n to be sure that Vm,ng
is not significantly more rough than g.
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Lemma 4 Let (Rm,n) denote the optimization problem

(Rm,n) SUP jQjb(s,p,q) subject to Ialb(B,p,q) < 1.

Then with n = 2m+a, val(Rn,n)= val(Ro2a) <oo. Moreover,

lim val(Ro,2a)=1. (45)

Hence for all sufficiently large a, val(Rm,2m+a) < 1 + E. Let a, denote the smallest such
a. Then with m-n= n -a,

bb(s,p,q) < (1 + 6)IO!Ib(s,p,q) (46)
for all (ca3,k). In short, Vm,ng is nearly as smooth as g itself.

9.3 The Construction.

Given an estimator 9 in the sequence experiment we now show how to construct an estimate
f from noisy samples y, = f(ti) + zi which has an asymptotically equivalent worst-case risk.

The construction has parameters 6, e, m, and an. We have n 2mn+an. The sequence
(an) tends to oo in such a way that

val(Po,2an,J) < n6 (47)
val(Qo,2an,J) < nf6 (48)

and
val(Ro,2an) 1. (49)

IITm,nJ + 1 (50)
The construction has 4 steps.

[1] Removal of Polynomial Trend. If P # {O}, let 7r be a least-squares estimate of f from
p

= arg min {E(7r(t-) -Y)2 7r E P}

Define the "trend-adjusted" data

Yi=Yi -r(i ,... n.

If 'P-{O} , set yiY?i=y-, .. n .

[2] Calculation of Empirical Wavelet Coefficients. Set

nbk(m) - £YiPa m,k(ti) _S<k<2m+S
ni=1

f(t) = Sk m),k(t)

ai,k = J I,,kf k E B(j) U 1(j)
b0k

bk - J t,kf kE K
-00
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[3] Transfer to Homoscedastic Sequence Experiment. Define pseudo-data

= J aj,k + Zj,k k E 1(j)Yi,k - k Ij)
Yk Z3,k k

.id 2
where Z3,k rN(O,7k) and the sequence Tj,k is defined as follows.
Let c k = var(aj,k) x n and let or = max,<j<m maXkEI(j)) OT2k. Then set k

-_ ; > 0 if k E 1(j) T2k =2 , k $ I(j). The pseudo data have

Eyjk = j,k k E I(j)

var(yj,k) = 2 /n.

Treat these data as if they were from the sequence experiment (8) with E2 - 2/n
and ® = es,p,q(C(1 + qn)). Here

Rn = val(Ro,2an) -1 0

as n oo.

Let 09n be an estimator for the sequence problem.

[4] Reconstruction.

f(t) = (t) + E bkWk + E aj,kj,k + E 9j,kV4j,k.
kEK l<j<m t<j<m

kEB(j) kEI(j)

This formula works almost as in the case of the White Noise model, with an extra
term:

f = Polynomial Trend + Gross Structure + Boundary Terms + Detail.

WVe stress once again that the asymptotics of this procedure do not depend in any
considerable way on the first three terms: the quality of the method is determined
by the quality of the estimator 9.

Theorem 14 With 6, e, m, and an as above, e
=

we have

supEIf-Af12 . sup EjjG _ 0112 + O(E2-6).
fe OE O(1+ fin)

The term on the left refers to the model with n observations; the term on the right refers
to the sequence space model. The proof is in the appendix.
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9.4 Lower Bound.
To complete the proof of the correspondence theorem, we need lower bounds demonstrating
that estimating in function space is not easier than estimating in sequence space.

Theorem 15 Let F0 denote the class of functions f = E Z>j=2o1 O,,k?Vj,k with 9 E 9a,p,q,
Then with e =

RN(n, .F0) > R* (e, s,p,q)(1 + o(1))
RL(n, _'F) R>R(E,E)3.,p,q)(1 + o(1))

as n - oo .

Proof We discuss only the first inequality, as the second follows by entirely parallel argu-
ments. The proof has 3 steps. First, to exhibit a sequence of finite-dimensional cartesion
subproblems ®p,O,(r(a)) almost as difficult as the full problem E)9p, The second is to show
that there is a near-isometry between 9 in the subproblems, and the samples (f(si))iEu.
The third is to apply the isometry to obtain the lower bound.

As before, we define mn and an by 2mn+an = n, and we have an oo, but this time in
such a way that 2an - O(n6) for each 6 > 0.

L-emma 5 Let (r3) be the sequence defined by

RB (EN6s,p,q) RB(= , ( p,OO (r))X

(P,00(r) C s,,p,q, Define (3n = O®,O(r(7)) where r() rjl{'mn I}. Then if 2an = o(n6) for
sufficiently small 6

Rj (e,®s,p,q) - R*(,en)

The finite-dimensional cartesian product defined by this Lemma gives us functions via

mn 2j-1

fn = E I2,+jk
j=O k=O

Let Fn denote the class of all such functions. Then Fn C Vmn, and so,

00

fn = ES (m)mk
k=-oo

for f3(m)-f fVj,k. Estimating integrals by sums gives

1k n E f(si)ypm,k(Si)
iEZ

This implicitly defines a linear transformation Um,n: £2 -* £2 via Um,n(/) = , of the type
analyzed in section 9.1. Hence it is a near-isometry.
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Lemma 6 Let T be a nonsingular linear transformation from IFd into IRd. Let R(9, a, v,v )
denote the minimax risk, under squared Euclidean norm loss, for estimating 9 from data
vi = 9, + zi, zi iid N(O, a2), 9 known to lie in E. Let R(9, a, v&, 0) denote the minimax risk
for estimating 9 from data v-i = T(9) + z, with zi iid N(O, a2), and 9 = T(9) known to lie
in =T(O). Then

R(O,o,Y,() > IITI 1|2 R (@ iTl'Y

The lemma applies as follows. Let R(n, F) denote the difficulty of estimating f from
observations y= f(s,) + zi, i E Z. Then

R(n, F) > R(n, F)
> R(n,Fn)
> IITM,n112 RN ( On)

R*(e,(n)(l + o(1))
T e 9(e fl,p,q)o

Theorem 39 follows.
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