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Abstract.
For experiments where the strength of association between a response variable Y and a
covariate X is different over different regions of values for the covariate X we propose
local nonparametric dependence functions which measure the strength of association
between Y and X as a function of X = x. Our dependence functions are extensions of
Galton's idea of strength of co-relation from the bivaniate normal case to the non-
parametric case. In particular, a dependence function is obtained by expressing the
usual Galton-Pearson correlation coefficient in terms of the regression line slope 3 and
the residual variance var (Y IX= x) and then replacing the regression slope [3 by a
nonparametric regression slope (x). We show that the dependence functions share
most of the properties of the correlation coefficient and that they reduce to the usual
correlation coefficient in the bivariate normal case. For this reason we call them corre-
lation curves. We show that, in a certain sense, they quantify Lehmann's notion of
regression dependence. Consistency and asymptotic normality results of empirical ver-
sions of correlation curves are established. The last two sections present a bootstrap
confidence procedure and include a data example and a simulation example.

1. Introduction. For bivariate experiments where the contour plots (plots of (x,y)
where the joint density f(x, y) is constant) are nearly shaped like lemons or ellipses,
the correlation coefficient p is a very concise and convenient measure of the strength
of the association between the two random variables X and Y. However, in many
interesting cases, the contour plots cannot be assumed to be elliptical. For instance, J.
Fisher (1959) reported on studies in psychology and other fields where the association
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between the response variable Y and covariate X is strong for large values of X= x,
but the association is weak or non-existent for small x. In particular, Fisher describes
studies where the association between a score X giving level of brain disease is
strongly associated with an independently assessed score Y indicating level of patho-
logical behaviour for patients with large values of X = x, but the association gets
weaker as X = x decreases. Fisher gives an associated contour plot and calls it a
twisted pear. See Figure 1 which gives a representation of J. Fisher's contour plot.

y

x

;;O,

Figure 1. A typical twisted pear contour plot. x is level of symptom and y is level of
disease.

Our next example is from financial analysis. Here studies (e.g. Karpoff (1987)) of
stock market behavior has revealed that the association between change X in prices
and volume Y moves from negative to positive as X = x goes from negative to posi-
tive. Using Karpoff's plot and data description, we conclude that the contour plot in
this case looks somewhat like a twisted sausage or a banana. See Figure 2.

0

Figure 2. A contour adaption of Karpoff's Figure 1. x is change in pnce and y is
level of volume.



- 3 -

In the statistical literature, there is also an abundance of examples where the
strength of association changes with the levels x of the covaiiate X. See for instance
Anscombe (1968), Bickel (1978), Carroll and Ruppert (1982, 1988), Breiman and
Friedman (1985), and Silverman (1988). The methods proposed for handling such
situations include transformation techniques where the X's and Y's are transformed
according to some criteria to the case where the strength of the association does not
change with the covariate values. However, in many applications the change in the
strength of association is of interest and this change is erased by the transformations.
Another approach is nonparametric regression which involves computing estimates of
the conditional mean or median of Y given X = x. These regression methods only
consider average (or median) conditional behaviour and do not take into account the
width (in the y-direction) of the contour plot. From Figure 1 it is clear that the width
of the contour in the y-direction is very important for the strength of association.
Thus when the strength of the association is of interest. the regression methods need
to be supplemented with a measure of spread for Y given X = x.

2. A correlation curve. Our approach is to construct a measure of local strength of
association by combining ideas from nonparametric regression and Galton (1888).
According to Galton (see Stigler, 1986, p.297; 1989), the strength of the co-relation
between X and Y can be taken as the slope of the regression line computed after X
and Y have both been converted to standardized scales X' = (X - Pl) / a, and
Y' = (Y - i2) / a2, where (g1, O) and (g2, a2) are location and scale parameters for X
and Y, respectively.

When (X,Y) is bivariate normal, N(jl1, 2, a2, 2a, p), this leads to the familiar for-
mula

p = 01f3/12 (normal case)
where ,B is the regression slope when Y is regressed on X. Next we introduce the
familiar (e.g., Bickel and Doksum (1977, p.36)) decomposition

CY2 = var(Y) = variance explained + residual variance

= (Cy, p)2 + a2 (X) (normal case)

where a2 (x) = var (Y Ix) = var (Y IX = x) is the variance of Y given X = x. (In the
normal case, a2 (x) = 22 (1 _ p2) does not depend on x, but in non-normal cases it
typically does). We can now write

(2.1) p [(Cy p)2 + ay2 (x) ]1/2 (normal case).
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In this representation we see how the correlation coefficient p is determined by the
regression slope ( and the residual variance &2(x). The representation also suggests
that in the non-normal world of twisted pears and sausages, a very natural local meas-
ure of the strength of the association between Y and X near X = x is the correlation
curve

(2.2) p (x) =X2 ;2(X)12 (general case)

where (3(x) = ' (x) is the slope of the non-parametric regression
p,(x) = E (Y Ix) = E (Y IX = x); and cy2 = var (X) and &2 (x) = var (Y I x) as before.
This correlation curve concept makes sense only when X is a continuous random vari-
able (in fact, p (x) = E (Y I x) must be differentiable). The distribution of Y can be
discrete or continuous. We have assumed that cj2 and a2 (x) exists.

p (x) measures the strength of the association between X and Y locally at X = x.
Thus, in the price-volume example (Figure 2), the correlation curve would be negative
for x negative and positive for x positive. More generally, for some number xo, we
could have p (x) negative for x < x0 and p (x) positive for x > x0. On the basis of
price-volume data we could find the region "x < xl'' where p (x) is significantly nega-
tive and the region "x > x2" where p (x) is significantly positive. In the J. Fisher
example where small x has little or no influence on the distribution of Y while large x
does (Figure 1), p (x) would start out near zero and then increase towards one.

Example. A generalized linear model (GLM). Consider the GLM of the form

Y = a1 + 2 g (X) + h (X) £

where X and £ are independent with variances aj2 and ai, and where E (£) =0. By
appropriate choices of g and h as well as distributions of X and e, the contour plots of
the density f (x, y) of (X, Y) will resemble the twisted pear in Figure 1. For instance,
if e has a standard normal distribution, then (Y I x) has N (a2 g (x), h2 (x)) distribution,
and if the link function g (x) has an increasing derivative g' (x) and if h (x) is constant
or decreasing, then the twisted pear model results for most choices of the distribution
of X. If h (x) is constant, the correlation coefficient is the appropriate measure of
strength of association between g (X) and Y. However, if we are interested in the
strength of the relationship between X (the level of the symptom) and Y (the level of
the disease), then the correlation curve p (x) is the appropriate measure of the strength
of the relationship even if h (x) is constant in x. In our GLM with g (x) differentiable,
we have

aX2al1 g' (x)
- [{(c2alg'(X))2+ a.2h2 (X)1112
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If g (x) = x2 / 2 and h (x) = 1, x > 0, (which corresponds to a twisted pair model), we
find p(x) = a2a1lx/f[ {a2aC x)2 + a 2 112. In this case, the strength of the association
starts out at zero when x = 0 and increases until x reaches its largest possible value.
To obtain a comparison with the correlation coefficient Pxy between X and Y, we
further assume that X has a uniform distribution on [0,1]. In this case
p(x)= x/[{a2x)2+ 12a]1/2 and pXy=(1/2)%a/[(12/45)ca+ 122 ]1I2. A

particularly siple and instructive case is a2 = 1 and C5 - 11 / 180. In this case

p =0.5 and p(x)=x/[x2+(11115)Ila2. Thus p(x) increases from zero to 0.76 as x

increases from zero to one. On the other hand, the correlation coefficient between

Z= g(X)=X2/2 and Y is pZy= i_2_ 2 which in the case a2 = 1,

OF,= 11/180 equals pzy= 1/43.75 = 0.52

3. General correlation curves and their properties. In Section 2 we defined a

correlation curve in terms of p (x) = E (Y Ix), cj2 =var (X), and a2 (x) = var(Y Ix).
However, just as there are many measures of location and scale, there are many corre-
lation curves. These are obtained by replacing p (x), a2 and a2 (x) by other measures

of location and scale. This may be desirable since p (x), c2 (x) do not always exist.
Moreover, they are very sensitive to the tail behaviour of the distributions of X and
(Y I x). Thus, in our definiton of the correlation curve p (x), we replace p (x) and a (x)
by measures m (x) and X (x) of location and scale in the distribution L (Y IX = x) of Y
given X = x. We assume only that m (x) and r (x) are location and scale parameters in
the sense that they satisfy the usual equivariance and invariance properties. Similarly,
we replace a1 by a scale parameter t1 for the distribution of X. Our basic assumption

is that m'(x) = dxs m (x), xr and t (x) exist. Thus X has a continuous distribution

while the distribution of Y may be discrete or continuous. Each time we specify
m (x), t1 and X (x) we get a correlation curve whose formula is

(3.1) p(x) = PXY(X) = '1 M'P(x)
It will sometimes be convenient to write (3.1) in the equivalent form

(3.2) p(x) = +(1 + ['r1m'(x)/t(x)E]2)h1'2
where the sign ± is the same as the sign of m'(x). Under appropnate condition, the
correlation curves satisfy the following eight basic propertes (axioms) of correlation.
(In these axioms, the expression "for all x" means "for all x in the support
S = {x: 0 < Fx (x) < 1 ) of the distribution Fx (x) of X.)



(i) Standardization to the unit interval.

From (3.1), we observe

-1 < p (x) ' 1 for all x.

(ii) Invariance and equivariance.

Each correlation curve p (x) has invariance and equivariance properties that are
direct analogs of those of the correlation coefficient p. that is

Proposition 1. If X* = a + bX and Y* = c + dY with bd * O, then, for all x* in the
support of the distribution of X* px* y* (x*) = sign (bd) pxy (x), where x = (x* - a)/b.

Proof: In the proof we use "*" to indicate parameters computed for X* and Y*.
Using the invariance and equivariance of the location and scale parameters we find

'= Ibl1l, t* (x*) = IdIl(x) and
d

* m (x
dx b

m (x) / b};
thus the result follows.

(iii) p (x) = p for all x in the bivariate normal case.

It turns out that in order to achieve p (x) _ p in the bivariate normal,
N(,9 2, c?,a2, p), case, we need to add the condition that 'l and t (x) are scale
parameters of the "same type". We give an example where p (x) . p, and then
explain the term "same type".

Example: Let X1 be the interquartile range IQR (X) = Fk1 (.75) - FX1 (.25) and let
t2 (x) = var (Y Ix). In the normal case all measures m (x) of location for (Y I x) equal
E (Y Ix) and thus

(3.3) p(x) =2 P1 ________ ___ _ __ _

Now p (x) * p since 1 /c1 = 1.348 * 1.

What goes wrong in this example is that l = IQR(X) and Ca1 = (var(X))112 are
different "types" of scale parameters. We say that two scale parameters are of the
same type if they are equal when applied to the same distribution.

Proposition 2. If tl and X (x) are the same type of scale parameters, and if (X, Y) is
bivariate normal with Galton-Pearson correlation coefficient p, then p (x) _ p for all x.

Proof. Since (Y I x) is normal with variance a2 (1 _ p2), we can write t (x) as

'r (x) = 'r2 1 _ p2 where t2 is the scale parameter r (x) applied to L (Y). Since X and
Y both have normal distributions, invariance and equivanance yields
(a2 / a1) = (X2 /1). The result now follows from (3.3).
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It follows that if 'r = var (X) =c72 and t2 (x) = var (YI x), then p (x) p. Simi-
larly, p (x) - p when i1 = IQR (X) and X (x) = IQR (Y I x).

p (x) as defined by (3.1) is called a correlation curve only when i1 and i (x) are the
same type of scale parameters.

(iv) p (x) - 0 for all x when X and Y are independent.

Since in this case m'(x) 0, the only condition needed for this result to hold is
that i (x) > 0 for all x.

(v) p (x) ±1 for all x when Y is a function of X.

Suppose Y = g (X), then, since m (x) is a location parameter, m (x) = g (x), and
since i (x) is a scale parameter for Y I x, then i (x) = 0. It follows that
p (x) = il g' (x) / {[X1 g' (x) ]21 = + 1 provided that i1 and g' (x) exists and are non-zero.
Moreover, p (x) = 1 when g' (x) > 0 and p (x) = -1 when g' (x) < 0. The case
g' (x) = O is handled by defining 0/0 = 1.

(vi) p (x) = ± 1 for almost all x implies that Y is a function x.

Note that p (x) = ± 1 implies that i (x) = 0. Thus the result holds provided
Xt (x) = 0 for almost all x implies that Y = g (x) for almost all x for some function g.
When i (x) = var (Y I x), this condition holds. However when t (x) = IQR (Y I x), it
does not hold.

(vii) p (x) > 0 when X and Y are regression dependent.

The pair (X, Y) is positively regression dependent if Pr (Y < y IX = x) is non-
increasing in x (Lehmann (1966)). Let Y (x) denote a random vanrable with distribu-
tion Pr (Y < y IX = x). Then regression dependence means that for xl < x2, Y (xl) is
stochastically smaller than Y (x2). It follows that if the location parameter m (x) for
Y (x) has a derivative m' (x), then m' (x) . 0 and p (x) 2 0.

(viii) p (x) increases with increasing regression dependence.

Let (X, Y1) and (X, Y2) be two pairs of random variables, let Y, (x) and Y2 (x)
denote random variables with distributions L (Y1 I x) and L (Y2 1 x), and let
(ml (x), il (x)) and (M2 (x),2 (x)) denote location and scale parameters of the same
type for Y1 (x) and Y2 (x), respectively. The pair (X, Y1) is said to be more regres-
sion dependent than the pair (X, Y2) if Y1(x) l/'1 (x) is stochastically more increasing
than Y2 (x) /i2 (x) in the sense that for each 8 in some neighborhood (o,£) of zero,
{Y1 (x + 8) - Y1 (x - 8))/it1 (X) is stochastically larger than
(Y2(x+ )-Y2(x - 8)) /2(x). It follows that if ml (x) and m2(x) are location
parameters such that the location of a difference is the difference of the locations and
if ml'(x) and m2'(x) exist, then (ml'(x)/itl (x)) 2 (m2'(x)1it2(x)). Thus, ff we let

pi (x) and P2(x) denote the correlation curves corresponding to (X, Y1) and (X, Y2),
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then it follows from (3.2) that PI (x) 2 P2 (x) for all x.

(ix) Interchangeability of X and Y.

Note that pxy ( p)PYX () except in very special cases. If we want a local meas-

ure of correlation where X and Y are interchangeable, we can proceed as follows: Let
Fx and Fy denote the distributions of X and Y respectively. Set x = Fk1 (p) and
y = F-1 (p); thus x and y are both pth quantiles. Define

TnXy(X,y) = [Sign(p y(X)} ]pXy(X)pyX(y))112 ff sign(pxy(x)} = sign{pyx(y))
= 0 otherwise.

We assume that all the conditions of this section are satisfied for (Y,X) as well as
(X, Y). Now it is clear that ixy (x, y) = Tlyx (y, x). In this paper we prefer the asym-
metric situation where how strongly the response variable Y is associated with the
covariate variable X locally at X = x is of interest. We will not consider lxy (x, y)
again in this paper.

Remark 3.1. The joint distrbution of Y (x - 8) and Y (x + 8), which appear in (viii)
above, can be obtained as follows: Suppose Y (X) = g (X) + h (X) £, where X and £ are
independent, then the distribution of (Y (x - 8),Y (x + 8)) is the distribution of
(g (x - 8) + h (x -8)e, g (x + 8) + h (x +8) £). In general, assume we can write
Y = a (X, £) for some function a ( , ) and repeat the above idea.

Remark 3.2. A definition of "more regression dependent" based on comparing the
Kolmogorov distance between Y1 (xl) and Y1 (x2) to the Kolmogorov distance between
Y2 (xl) and Y2 (x2) was considered by Bell and Doksum (1967).

4. Smooth correlation curves. Since they depend on the derivative m' (x), the corre-
lation curves p (x) considered in Sections 2 and 3 can be erratic and difficult to esti-
mate. Thus, prior to introducing estimates of p (x), we pre-smooth p (x) by consider-
ing the strength of association between X and Y for X in an interval containing x
rather than for X exactly equal to x. We choose this interval so that there is an equal
amount of mass on either side of x. More precisely, we set x = xp = pth quantile of
Fx, where p = Fx (x) and Fx is the distribution function of X. Now our interval is
[xpt,xp+tI, where xp_t=Fj1(p-t) and xp+t=Fl(p+t) are the (p-t)th and
(p + t)th quantiles of Fx. Note that this interval has mass t on eiither side of x = xp.
Now rather than using the derivative P (x) = m' (x) of the location parameter m (X) for
L (Y IX = x), we consider the interval slope

f3~(x) m(x+) -m(xP_) X= .Pt(X) = _ p
XP+ttX-XPt
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In direct analogy with (2.2) and (3.1), we define the smooth correlation curve as
't1R(x)

(4.1) p ( =) lt(X) =

with the convention that Pt (x) = 0 if both the numerator and denominator equals zero.

Clearly, if m' (x) exists, pt (x) -* p (x) as t -* 0. Even though pt (x) is an approxi-
mation to p (x), we prefer to think of it as a correlation curve in its own right: Since

pt (x) combines the slope over the interval and the residual variance in accordance with
formula (2.2) and Galton's principle of correlation as regression slope on standardized
scales, we conclude that pt(x) measures the strength of the association between Y and
X for X in the interval [ xpt xt *t

Moreover, pt (x) also satisfies the eight basic axioms (i),...,(viii) of correlation
curves given in Section 3 and it can be tured into a measure with X and Y inter-
changeable as in (ix), Section 3.

Remark 4.1. Kowalczyk (1977) and Kowalczyk and Pleszczyfnska (1977) con-
sidered the functions

+ E(YIX > xp) - E(Y) = E(YlX > xp)-E (Y)
xp E(Y-Y > yp)-E(Y) ' yx E(Y) - E(YIY < Yl-p)

and defined the monotonic function

gyx (p) = gy+.t(p) if yx(PO>

= RY,x(P) if 9y+,X(p) <O.

This function measures dependence to the right of xp. Our function pt (xp) measures
strength of association in a neighborhood of xp.

5. Estimation of smooth correlation curves. Consistency.

5(a). The general setup. We consider two types of sampling experiments with
corresponding models:

I. Random Covariates. In this case, let (X1,Y1),... , (Xn,Yn) denote the ran-
dom outcome of an experiment where, for the ith subject in a random sample of size
n, Yi denotes the response and Xi denotes the covariate value. The pairs
(X1,Y1), . . . , (Xn, Y.) are assumed to be independent and identically distributed. We
assume that the distribution Fx of Xi is continuous while the distribution Fy of Yi may
be discrete or continuous (or a mixture).

IL Fixed covariates. In this case, the covariate value xi is fixed and Yi denotes
the random response of a subject selected at random from a population of subjects
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with covariates value xi. The distribution function Fy, of Yi depends on xi. We
assume that Y1, ... , Yn are independent and that the x's are distinct. Since the x's
are nonrandom we can without loss of generality take xl < ... < xn.

By a result of Bhattacharya (1974), there is a strong connection between models I
and II: In model I, let X(1) < * < X(n) denote the X-order statistics and let

Y[11 . . .', Y[n] denote the Y-statistics induced by the X-order, that is Yi1 = Yki, where

ki denotes the subscript on the X with rank i among X1, ... , Xn (Xk = X(i)). These

Y[ ]'s are called concomitants. Conditionally on X(1) = xl,... ,x(n) = xn,
Y[1J,.. ., Y[n] are independent, and the conditional distribution of Y[j] depends only
on xi. Thus model II is a conditional version of model I. Conversely, if in model II
we replace xl < < xn by the order statistics X(1),... , X(n) of a random sample
from Fx, we let (r1, ... , rn) denote a random permutation of (1, . . . , n), and we set
Xi =X(rj), Yi' = Yr then (Xi,Y),.- - - , (Xn, Yn) are independent identically distri-
buted random pairs. Thus model H is a randomized (anti-conditional) version of
model I.

In Sections 2 and 3 we formulated correlation curves in terms of the random
covariate model. To formulate the correlation curve in terms of the fixed covariate
model, we rewrite this model as

(5.1) Yi = m(xi)+t(xi)ej, i=1,...,n; x xn

where m (xi) and X (xi) are location and scale parameters for the distribution of Yi, and

el,... e,n are independent with location and scale parameters zero and one respec-
tively. With this notation the smooth correlation curve is

=Tin Pt (x)
Pn~~ {51 pt(X)-}2 + E2(X) 11/2 X = Xp

as before except '1ln is now a known scale value computed from the given x's. More-
over, in Pt (X) = Pt (X>) = m (xp+t) - m (xp-)) / (xp+t - xp_t), we take p = Fn (x),

xpt=FI(p-t) and x,+t=F-1(p+t) where F (x)=if1[#xc<x] and
Fn-(u)=min(x:Fn(x).u). m(x) and (x) are unknown functions defined on
[xl, xn]. Here and throughout, the dependence of xi, xp,t, etc. on n is suppressed.

If n (x) is an estimate of pn (x) obtained by replacing m (x,-), m (xp+) and r2 (x)
by consistent estimates, then it follows from (5.3) below that P (x) is consistent in the
sense that I Pn (x) - Pn(x) I tends to zero in probability. See Hirdle (1990) for a recent
survey of estimates of m (x), and see MUller and Stadtmiuller (1987), Hall and Carroll
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(1989), and Hall, Kay and Titterington (1990) for the consistent estimation of t2(x) as

well as m(x) under certain regularity conditions. Here we use Kolmogorov's inequal-
ity to give an elementary argument for uniform consistency of nearest neighbor esti-

mates of p2 (X) that require a minimum of smoothness conditions.

5(b). Nearest Neighbor Estimation. For the rest of this section we will consider
the correlation curve p (x) based on means and variances. Thus we let rin be the stan-

dard deviation aGn Of xi< ... < xn, we take m(xi) = (xi) = E(Yi) and

t2 (xi) = a2 (xi) = var (Yi). The basic model is

Y = ±(X) + a(X)£

where (x) and a2 (x) are the unknown mean and variance functions and e is a ran-

dom variable with mean zero and variance one. We will also assume the existence of
the residual variance function

C22(x) = Var(Y-L(X))2 = '(x)[E(E4)-1I.

The data is generated according to the model

(5.2) Yi= (xi)+C(Xi)ei i= 1,... ,n; xj< --- <xn

where ej, . . . , en are independent with mean and variance zero and one, respectively.
In the asymptotics each xi = xin depends on n, the second subscript on xi having been

omitted. We assume that xl, . . . , xn is a regular sequence of covariate values in the

sense that {xi, i = 1, . . . , n) is dense on some interval [ a, b ] with a < b (possibly
infinite), F(x) = limFn (x) exists for each x e [a, b ], and F(x) is a continuous and

strictly increasing distribution function on [ a, b].

Let Ipt, Ip, and lp+t be the sets of indices on the k values of xi, ... , xn closest to

xp-t, xp and xp+t, respectively. (In case of ties, choose the smaller index). Define

~1(xP) -IC=k IY, P(x+t)=kl1 JY, 62(xp)= k-1 I [Yi- (Xp)]2.

Let n (x) denote the estmate of pn (x) obtained by replacing . (xpt), ± (xp+t) and

a2 (xp) by A2. (xp),jt2 (xp+) and 2 (xp).
In the following k = kn is a function of n tending to infinity as n -o oo.

Theorem 5.1. Suppose that xl,... , xn is a regular sequence of covariate values and
n

suppose that max xj+k- xi - 0 as n -+ oo. Assume that k-2 £c2(xi) -< 0 and
15i5n-k i=1

n

Cz2 2(xi)-0 as n -+ c*. Assume that inf (a2(x)) > 0 and that

lim sup aj2 < co. Then for each 8> 0,
nf-->
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P( sup
2 2(x)-p2(x)I > 8) - 0 as n - ox.

Xt S x S XI-t

Proof: Let

An(x) = - (xp,_t) ]2aj2, Bn(x) = (x-txp_t)2 a2 (x)

An (X) = [(x+) (Xp) ]2 2 Bn(x) = (xp-xt)2 (x).
Then, using a little algebra, we can write

(5.3) (x)p2(x)An (x) + Bn (x) An (x) [ An (x) + Bn (x) -

= ([1-Pn(x)] [An(x)-An(x)] + (x)[B(x)-B(x)]) [An(x) + Bn(x)f
It follows that (x) pp2(x) converges uniformly in probability to zero provided
t (xp-) - p. (x - ), Ji (xp1t) - f1 (xPFt) and 2 (x) - a2 (x) converge uniformly in proba-

bility to zero and provided inf (Bn(x) is bounded away from zero as n -* oo.
Xt S X S X-t

By assumption, ca2 (x) is bounded away from zero. Since F (x) = limrFn (x) is continu-
ous, then xp+t - xp-t = Fn1 (p + t) - Fn-I (p - t) is bounded away from zero as n -+ oo.

Thus inf {Bn(x) is bounded away from zero. Next we show that f1 (xp_t),
Xt 5 X Xl-t

a (xp+,) and 62 (xp) converge uniformly in probability. We start with
ff (x) = IC-1 : Yi, where Ik (x) set of indices on the k values of xl,... , xn closest to

ilEIk(X)

x. The deviation at (x) - j (x) has the random part f1 (x) - E (A (x)) and the determinis-
tic part E (A (x)) - p (x). The random part is taken care of by the following Lemma.

Lemma 5.1. In the fixed covariate model, assuming only that a2 (xi) exists for
i =1,. ..n,

(a) P( sup L(x)-E(A1(x))I > 8) < 4 a2(x,)
--.o*x<c* (kB)2 i=I

(b) sup I a (x) - E (a (x)) I tends to zero in probability as n - co
-<OOCX0

provided a2 (x) is bounded above and (n/k2) -e 0 as n -4 co.

Proof. (The proof given here leads to an upper bound sharper than the bound given in
Bjerve, Doksum and Yandell (1985)).

a (x) - E (A (x)) = kI1 i t Y; - E (Yi) I is a step function which is constant on

each of the intervals

(5.4) Ji = ((xi + xj+k)/2,(xi+k + xi+k+,)/2], i = O,... n-k, xO = ,_OtXn+1 = `0 .

In fact, if we set Wj = IC' [ Yj - E (Yj) ], then we can write
i+k

a(x) - E(A(x)) = W, x E Ji, i = O., n - k.
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i
Set Si =£wj, i = 1 , n; SO=O, then

i+k
sup a(x) - E (p (x))I = max I WJI

-Oc<x<oo Osisn-k j=i+1

= max ISi+k - SiI < max (I Si+k I+ I Si 1) < 2 max I Si.
O.-;i_.n-k Osisn-k 1 sisn

Since var (W1) = k &c (xi), result (a) follows from Kolmogorov's inequality. Result
(b) follows from (a).

Returning to the proof of Theorem 5.1 we have now shown that

1(xP) - E((i (xpt)) and ft (xp+t) - E ( (xp)) converge to zero in probability uni-
formly over the respective sets (x - : t. p < 1) and (xP,t: O< p < 1-t). Next we
turn to the deterministic part represented by E (p2 (x)) - 1t (x).

Lemma 5.2. If p. (x) satisfies the Lipschitz condition

(5.5) Ip(x)-x(y)I < clx-yI forall x,ye [xl,xn], some c>0,

then

(a) sup IE ( (x)) - i (x) .< c max lxi+k - xii.
xj:5x!5X, ls1isn-k

(b) sup E (A (x)) -p (x) I tends to zero as n - oo
xC1 5XSxn

if xi can be written as xi = F-1 ((i - 0.5) / n) + o (n-1) where F1 satisfies the Lipschitz
condition (5.5), and if (k/n) -+ 0 as n -4 oo.

Proof. Note that, using (5.4), IE(1(x))-g(x)I=1k-1 £ (xj)-x(x)-JEIk(X)

<IC1k 14(x) -( j) (x)l cC1c- lxj - xl. Let Ji be as defined in (5.4) except
j'EIk(X) JE1L(X)

xo = xi and Xn+1 = Xn For x e Ji = ((xi + xj+k)/2, (xi+l + Xi+k+l)/21
i+k

£ Ixj-xl= £ Ixj -xl. Next note that for xreJ1, i=1,.*..n-k-1,
jE-Ik(X) j=i*i-

max{lxj-xl; i+lj.i+k) is bounded above by the larger of

xj+k - 0.5 (xi + xj+k) = 0.5 (xi+k - xi) and 0.5 (xi+k+l + xi+,) - xi+1 = 0-5 (xi+k+l - xi+,)
For x e Jo = (x1,(x, + xk+1)/2], max{Ixj - xl; 1 . j 5 k) is bounded above by the
larger of xk-x1 and 0.5 (xl + xk+1) - x, = 0.5 (xk+l- xl); while for

X e Jn-k = ((xfl-k + xn)/2,xn], max(lxj - xl; n - k + 1 < j < n) is bounded above by
the larger of xn - 0.5 (xk + xn) = 0.5 (xn - Xk) and xn - xk+1. Result (a) follows.
Result (b) follows since

+- =IFfIi +k 0.5] _ i 0-5

Jxj+k-xjl =I- + o(n7l)l
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<
i+k-0.5 _ i-0.5 + okWl)I = c I k + o(n7l)

n n n

Returning again to the proof of Theorem 5.1 we have now shown that
E (A (x-t)) - p. (x>) and E (A (x+t)) - p (xp) converge uniformly to zero over the
respective sets {xp_t: t < p < 1 ) and 0O < p < 1 - t)

Finally we turn to 62 (x) - c;2 (x).

n

Lemma 5.3. Suppose that as n -+ oo, max Ixi+k - xi 00, IC2 £ o2 (xi) _+ 0,
1i n-k is1

n
and k-2 £ a2 (xi) -+ 0. Assume that p. (x) and a2 (x) satisfy the Lipschitz condition

i=l

(5.5). Then, for each 5> 0, PI sup I &2 (x) - a2 (x) I >a o as n- oo.
X1 Sxsxn

Proof.

(5.6) &r2 (x)_ca2(x) = k-1 [Y,-j_A(x)]2-as2(x)
jic-l(X)

-IC1 Y-p()]
= k1 lE £; [ y, - (x) ]2 _ c2 (x) - [Ap(x) - ..(x) ]2

isIk(X)

The third term converges uniformly to zero in probability by Lemmas 5.1 and 5.2.
Similarly, if we let a2(x) denote the expected value of the first term, the difference
between the first term and Y2 (x) tends uniformly to zero in probability by Lemma 5.1.
It remains to show that ZY2 (x) - a2 (x) tends uniformly to zero. Note that

(5.7) a2(x)- 2(x) = 1 E[Y -p(x)]2 - a2(x), where
iFEIk(X

E[Y~~~-p.(x)]2 - i(x
E [Y- (X)]2 =E y, _ g(x,)]2 + [(X,) I(X)]2

= ,2(X,) + [g(X,) _ g(X)]2.
By Lemma 5.2, IC' ca2(xi) - ca2(x) tends uniformly to zero. Similarly, the proof

iEIk(X)

of Lemma 5.2 shows that {c max IXi+k - x,112 is a uniform upper bound on
1 sisn-k

k-is S [p. (xi) - p. (x) ]2. The result follows.
ieNk(x)

This completes the proof of Theorem 5.1.

6. Asymptotic Normality of Estimated Correlation Curves.

6(a). General Correlation Curves. Suppose that 'm (xp+t), 'm(xpt) and t2 (x) are

consistent estimates of m (xp+t), m (xp-) and x2 (x) respectively. Let

an(x) = [m(xp+t)-m(x)ITi, p_t)b(x) = Xt)22(X)
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(x) = Im(Xp,)-m(Xp-)I2ni, bn(X) = (Xp+>t-Xpd)t (X).

We consider the fixed covariates case with xl, . . ., xn a regular sequence of covari-
ates such that 2 -÷ 2 as n -* oo where r2 is a scale parameter for F (x) = limFn (x),
and where Fn (x) = n7l [#xi < x] as before. The key to obtaining asymptotic normal-
ity of estimated correlation curves is to use a little algebra to rewrite
i4t[i3n((x) - p ] as

(6.1) k[p2(X)-p2(X)] = ([l-p2(X)]'k[- (X)-an(X)]
+ p2(x)[b (x) - b(x)])/[a(x) + b"(x)].

Now we can use Slutsky's Theorem to conclude that if we replace the denominator on
the right hand side of (6.1) by its limit a (x) + b (x), then the limiting distribution of
the resulting quantity will be the limiting distribution of 4k[ An2 (x) - p2 (x)]. Simi-
larly, we can replace xq = Fn-1 (q) by F1 (q). By abuse of notation we from now on
use xq to denote F-1 (q) rather than Fn1 (q). Thus a(x) = [m(xp+) - m (x 1)12t2 and
b (x) = (Xp+t - Xp_)2,2 (x) are limiting versions of bn (x) and an (x).

Proposition 6.1. Suppose that k - co and (k/n) -+ 0 as n -* oo. Suppose that for
each x E [ x,xlit], k [ an (x) - an (x) ] and k [bn (x) - b (x) ] are asymptotically nor-
mal N (ga (x), a2 (x)) and N (gb (x), ab (x)), respectively. Then, for each x e [xt, xlt],

A[ 2 2 (x) ], converges to a normal N (gp (x), G2 (x)), distribution, where

gp (x) = b (x) Ila (x) + a (x) pb(X)(,j(X) = b2 (X) 2 (X) + a2 (X)si 2 (X)ti
Moreover, if {{k[an(x) - an(X)I; x E [x ,xi_.]) and {k[bn(x)-b)
x E [xxti, xl]t converge weakly in D [xi,x_it I to the respective processes WI (x) and
W2 (x), then n[p(x) - p2(x)] converges weakly in D[xt,xlJt] to the process
{ [ 1 _ p2 (x) ] W1 (x) + p2 (x)W2 (x)) / [a(x) + b(x) ], where W1 and W2 are indepen-
dent.

Proof. Since (k/n) -4 0 as n -* oo, then there exists no such that for all n > no, the
three sets Ip_t, I and It do not intersect. It follows that an (x) and bn (x) are indepen-
dent for n 2 no, and the results follows.

6(b). Nearest neighbor correlation curves. As in Section 5(b), let n (x) be the
estimated correlation curve based on the nearest neighbor estimates ft (xp,), A (xp+)
and &S (xp), respectively. Then we are interested in the asymptotic normality of

/k[ An (x) - A (x)] = 4 t(X+) (X _)]2 (Xp+() ( ) 2 2

Assuming that Gin --* a1, where al is the variance in the distribution function F, we
can use Slutsky's Theorem to replace Y2? by a2. Similarly, using the expression
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a2 b2_ 2b (a-b) for a close to b we find that "[A"n (x) - A (x) ] has the same
asymptotic distribution as

(6.2) 2k [p (xpf+) - j(xp,)] [Rl(xp+) - g (xp+t)- (xp.-)-(xp--)]

Proposition 6.2. Assume that k -* oo and (k/n) -4 0 as n - . Suppose that
{Yi - p (xi): i 'Iqi satisfy the Lindeberg - Feller Central Limit Theorem conditions
for q = p - t and q = p + t. Assume that xl, . ,xn is a regular sequence of covari-
ates such that

(6.3) 4k-max {lxi-xql: i e Iq) -O as n-oo for q = p-t and q = p+t.

Suppose that Il (xi) - p (xq) I . c Ixi - Xql and that I a (xi) - 022(Xq) 1 5 c Xi - Xq l for
i e Iq, q = p - t and q = p + t, and some c > 0, then [AT (x) - A (x) ] is asymptoti-
cally normal, N (0, a2 (x)), where

a2 (x) = 4[p(x) (Xp_) ]2 [a2 (x t) + s2 (x _)

Proof. The proof follows from the expression (6.2), Lemma 5.2, the Lindeberg -
Feller Central Limit Theorem, and the fact that under the conditions given,
k-l&z c2(xi) - c(xq) for q=p - t and q = p + t.

Remark 6.1. The Lindeberg - Feller conditions are satisfied if in model (5.2) we
assume that 1,. . . , en are i.i.d. and

{maxac2(xi):iqi 0Iq}
4 O as n -+ oo

Z a2 (xi)

for q = p - t and q = p + t.

Remark 6.2. The condition (6.3) is satisfied if xi can be written as

xi F1 ( 05 ) + o (n7l) with F1 satisfying the Lipschitz condition (5.5) and pro-
n

vided (k312/n) -* 0 as n - 00.

To find the asymptotic distribution of the nearest neighbor correlation curve P (x),
it remains to find the asymptotic distribution of

-Lk [ Bn (X) -Bn (X) I = k (xp*t_Xp_2 [& (X) _ 02 (X)]

Proposition 6.3. Assume that the conditions of Proposition 6.2 are satisfied when
t = 0. In addition assume that Ia2 (X,) -a2 (x)l < c lx - xl for i e Ip, some c > 0
and that {[Yi - (x) ]2 - 2(xi): i e Ip} satisfy the Lindeberg-Feller Central Limit
Theorem conditions. Then B[nB (x) - B (x) ] is asymptotically normal, N (O, I (x)),
where
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GA (X) = (xp,+t- I,- (X)

Proof. Using the proof of Lemma 5.3, we can write

4k [2 (X) _ 22 (X) -=k-112 {[Y- (X() ]2 - 2 (Xi)} + RThk
ijEIk(X)

where RP,k is a remainder term which tends to zero as n -< oo, k oo, (k/n) -> 0.
Now the result follows by applying the Lindeberg-Feller Theorem to
{[Yi,u (xi) ]2 - c0 (xi.): i E Ik(x)} .

Remark 6.3. The Proposition 6.3 Lindeberg-Feller conditions are satisfied if in
model (5.2) we assume that e, .... , en are i.i.d. and

(maxcr22(xi): i E Ik(x)a
-+ 0 as n- O*.£ os2 (Xi)

EIk(X)

Combining Propositions 6.3 and 6.4 we arrive at

Theorem 6.1. Under the conditions of Propositions 6.3 and 6.4, the nearest neighbor
correlation curve A (x) is asymptotically normal in the sense that as n -+
W[k (x) - p (x) ] tends in law to N (0, a2 (x)), where

a2 (X) = [1-p2(x)]2cA2(x) + p4(X)oB2(x))/[a(x) + b(x)]2

7. Computing the Estimated Correlation Curve and a Bootstrap Confidence Pro-
cedure.

7(a). The Estimate. We let (x(1),y1),.. , (x(n),yn) denote the observed data.
We assume that these have been generated by the fixed covariate model (5.2) where
the x's are nonrandom and ordered. We will describe an algorithm for estimating
0 (xp), where xp = x(m) with m = [ np ] + 1 and where [x ] denotes the largest integer
less than or equal to x. We need to define three disjoint and adjoining neighbourhoods
of size k, neighbourhoods about the points xpt, xp and xp.t. We will define them in
terms of the indexes of x's closest to xq, q = p - t,p,p + t. Denote these neighbour-
hoods as NI, NII and NH respectively. NII is then seen to be

NII = ([np] + 1 - (k-1)/2, ..., [np] + 1 + (k-1)/2).

This neighborhood is of size k when k is odd and k + 1 otherwise. For simplicity,
let us assume that k is odd. Likewise,

NI = {[n(p - t)] + 1 - (k- 1)/2, ...,[n(p - t)] + 1 + (k - 1)/2)
and
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N1I = ([n(p + t)] + 1 - (kI- 1)/2,. .. , [n(p + t)] + 1 + (k - 1)/2),

Choose t so that n * t is integer valued, say n - t = 1. We require that the index-
sets NI, NII and NHI are adjoining, non-overlapping and that they only contain posi-
tive integers. These requirements lead to the following (recall that m = [ n p ] + 1):

[n(pp-t)] + 1 - (k-1)/2 > 1 <-=> m > I + (k+ 1)/2,

[n(p- t)] + I + (k-1)/2 = [np] - (k- 1)/2 => I =k.

Thus,

(3k+ 1)/2 < m < n - (3k+ 1)/2

and

(3k+ 1)/2n < p < n + 1 - (3k+ 1)/2n.

The computer program Mathematica, which is widely available, can conveniently
be used to compute the dependence function and produce a plot of the function. We
assume that we have two functions to our disposal, Median[ y] and IQR[ y], that
returns the median and the interquartle range respectively (or, if the mean and stan-
dard deviation are preferred, Mean[ y ] and SD[ y]). In the notation of Mathematica,
the sets above are called lists. Let J denote the list 1, ...., k). Then
NH = m + J - 1 - Floor[(k - 1)/2] will denote the list of integers in NIH.
Correspondingly,

NI = m -1 - Floor[(k - 1)/2] + J - 1

and

NIII = m + 1 + Floor[(k-1)/2] + J-1.

In the notation of Mathematica, if y is the list containing the Y-observations, then
y [[N ]] is the list of Y-observations with indexes in the list N.

An expression that in Mathematica defines a function that will return the value of
> (xp), is now given by

Ro [m] deltay IQR [ x ]Sqrt [ (deltay IQR [ x]f2
+ ((x [[m + 1]] - x [[m - 1 ]]) IQR [ y [[ NII ]]])2 ]

where deltay has to be given the value
deltay = Median [ y [[ NII I]] - Median [y [[NI]]]. A plot of the dependence function
is obtained through the following Mathematica statements:

R = Range[k+(k+1)/2,n-k-(k+1)/2]

ListPlot [ Transpose [ {x [[R ]],Map [ Ro,R ])]]
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7(b). A Bootstrap Simultaneous Confidence Procedure. From the collection
I(xj, yj),j ENI) of pairs corresponding to the first index set, we select k pairs with
replacement. Then, independently, we do the same for the second and third index sets.
This procedure is repeated B times resulting in B independent triples of independent
bivariate samples. At the ith stage we have three independent bivariate samples whose
index sets are denoted by NIi*, NIIi* and NIi*; i = 1,... , B. We let pi (xp) denote
the estimate correlation curve based on {(xj,yj): j e NIi*), ((xj,yj): j e NIIi*) and

((xj, y): j e N1111*). More precisely, pi* (xp) is obtained by computing the formula in
Section 5b with al x-t,xp,xp+t unchanged but (xp+t) - A (xp_t) replaced by

pa(Xpt) p (Xpt) j-E

yj - I1 N*yj
and & (xp) replaced by

2x* k7-1 yj (p2 where k7l yj.(~~)= [yNII *(Xy] JENILx~)k~
Now we approximate the distribution of k I A (xp) - p (xp) I with the empirical dis-

tribution of { lk p (xp) l, i = 1, . . . , B). Let k denote the (1-a)th quan-
tile of this distribution, then our level (1 - a) confidence interval for p (xp) is

p(xp) = 0 (xp) ± k: /k

Suppose we are interested in the strength of the relationship between X and Y at
several quantiles of the covariate, say at q1,... , q. where qi denote the pith quantile
of X. To get simultaneous confidence intervals for p (ql), ..., p (qa), we consider the
empirical distribution of {i max I 7 (qj) - p(qj) I i = 1, ... , B). Let c*denote the

lsjsa
(1 - a)th quantile of this distribution, then our level (1 - a) simultaneous confidence
intervals for p (ql) ... , p (qa) are

p(qj) = p(qj) ± cI'lk, j=1,...,a

8. Examples.
8(a). A Data Example. Figure 3 below gives the scatter plot for pairs (x,y) of

readings of plasma lipid concentrations taken on 371 diseased patients in a heart study;
see Scott, Gotto, Cole and Gorry (1978). This data set has also been analysed by
Silverman (1986, pp.81-83). Figure 4 gives the corresponding empirical correlation
curve with t = 0.15.
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Figure 3. Scatter plot of plasma lipid concentrations.

x = plasma cholesterol concentration (mg/lOOml),
y = plasma triglyceride concentration (mg/lOOml)

0

0

II I I I

1S0 190 200 210 220 230

x

Figure 4. The correlation curve for the data in Figure 3. Here t = 0.15, k = 55 and
0.225 < p 0.775. The vertical bars indicate 90% simultaneous bootstrap confidence
intervals. They are based in 1000 bootstrap simulations.

The empirical correlation curve indicates a strong to moderate association between
cholesterol and triglyceride concentration for small to moderate values of cholesterol
concentration. The correlation curve is nearly zero for x larger than the 64th quantile.

The simultaneous confidence intervals show that at x = 180, the hypothesis of no

association between tryglycerite and cholesterol can be rejected at the 10% level of
significance. The hypothesis of no association is not rejected at the values
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x = (194,209,228 and 243.

We consulted a medical expert (Jon Bjerve) on cholesterol and fatty substances
who said that measurements on cholesterol and triglyceride are known to be positively
correlated but that it is thought that this positive correlation does not include individu-
als with high values of cholesterol. Our results give a statistical confirmation of this
statement: At cholesterol level x = 180, the estimated correlation is 0.67 which is
significantly different from zero at level ac = .10 (as well as level a = .05). At
cholesterol level x = 243, the estimated correlation is 0.067 which is not close to
significant at any reasonable level of significance. High values of triglyceride is not
considered to be a risk factor for heart disease to the same extent as high values of
cholesterol are.

8(b). A Simulation Example. Figure 5 below gives the contour plots for the
model (X, Y) = (20 - exp (S), T), where (S, T) has the bivariate normal distribution
N (2,4, 1, 2, -0.5). Clearly a twisted pear effect is evident. Figure 6 below shows the
true correlation curve p (x) and the empirical conrelation curve P (x) based on n = 1000
observations drawn from the given (X, Y) distribution as well as vertical bars indicat-
ing 90% simultaneous bootstrap confidence intervals based on 1000 bootstrap simula-
tions. We used t = 0.15 and k = 150.

6 I 10 12 14 i6 1 X

K

Figure 5. Contour plots {(x, y): f(x, y) = ci with c = 0.05,
0.10 and 0.15 for the transformed bivariate normal model.
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Cl
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Figure 6. The true correlation curve p (x) and estimated correlation curve
> (x) for the transformed bivariate normal model. The vertical bars are 90%
simultaneous bootstrap confidence intervals for the correlation curve p (x).
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