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Abstract

Statistical concepts of order permeate the theory and practice of statistics. The present
paper is concerned with a large class of directional orderings of univariate distribu-
tions. (What do we mean by saying that a random variable Y is larger than another
random variable X?) Attention is restricted to pre-orders that are invariant under mono-
tone transformations; this includes orderings such as monotone likelihood ratio, hazard
ordering, and stochastic ordering. Simple characterizations of these orderings are
obtained in terms of a maximal invariant. It is shown how such invariant pre-
orderings can be used to generate concepts of Y2 being further to the right of X2 than
Y1 is of X1.
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1. Introduction.

The concept of statistical order which compares two random variables or distribu-
tion functions has many uses in both applied and theoretical statistics. In reliability
theory, the concepts of increasing failure rate, increasing failure rate on the average,
and new better than used, compare distribution functions F and G in terms of the func-
tion = G-1F. (Van Zwet (1964), Barlow and Proschan (1975), Loh (1984).) The
monotonicity of the power of monotone rank tests is considered by Lehmann (1959)
and Doksum (1969). Comparisons of distributions based on tail heaviness or skewness
were treated respectively by Rojo (1988, 1992) and MacGillivray (1986). For some
extensions to the multivariate case see for example Lehmann (1952, 1955), Whitt
(1982), Keilson and Sumita (1983), Karlin and Rinott (1983), and to the comparison of
stochastic processes Pledger and Proschan (1973), and Whitt (1981).

In this paper, attention will be restricted to univariate directional orderings which
are concerned with the question of whether one distrbution is in some sense to the
right of the other. In this connection many different ordering concepts have been pro-
posed, of which we mention the following:

(i) Stochastic Ordering. The random variable Y is said to be stochastically larger
than X if their distribution functions G and F satisfy

(1.1) F(x) . G(x) for all x,

and this will be denoted by F < G.
St

(ii) Monotone Likelihood Ratio (MLR). When F and G have densities f and g with
respect to some common dominating measure p, and

(1.2) g/f is nondecreasing,

the pair (F, G) is said to have monotone likelihood ratio, which we denote by F < G.

(iii) Hazard ordering. A cdf F is said to be smaller than G in the hazard ordering,
(F.< G)iff

h

(1.3) g4(x). < f(x) for all x.1-0(x) 1-F(x)
Here f(x)/ [1 - F(x) ] is the "mortality" of a subject at time x given that it has sur-
vived to this time. If the densities f and g exist, condition (1.3) is easily seen to be
equivalent to

(1.4) [1 - F(x)]I[ 1 - G(x) ] is nonincreasing.

(iv) Restricted Definitions. It is not always appropriate to require that the comparis-
ons (i)-(iii) hold for all values of x. For example, in a comparison of lengths of lives
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of women and men one may want to restrict the comparison to childhood or perhaps to
ages past childbearing. We consider two cases of such restrictions:

(a) Definition (i)-(iii) for all x exceeding a specified xo, and

(b) Definitions (i)-(iii) for all sufficiendy large x.

(v) Comparisons based on a single functional. One population of heights, ages,
incomes, etc. is frequently considered to be larger than another such population if it is
larger "on the average", or if the median of the first population exceeds that of the
second. More generally a rather weak comparison of two distributions can be defined
in terms of some measure p. of location, i.e. by seeing whether p. (F) is larger or
smaller than p. (G).

Examples (i)-(v) seem to constitute a rather haphazard collecdon. The purpose of
the present paper is to present a more systematic way of defining and studying such
orderings, and to obtain simple characterizations of the orderings discussed above sub-
ject only to very general restrictions on the distribution functions F and G such as con-
tinuity or being stricdy increasing. Possible approaches are suggested by two well
known rather obvious characterizations of stochastic ordering, namely that (1.1) holds
if and only if

(1.5) F1 [G (x)] < x for all x

orif

(1.6) EF(X) < EG41(X) for all nondecreasing functions Ni, where here and below
F1 (u) = inf(t: F(t) > u).

Natural extensions of these characterizations are:

1) Let F s G when 0 = F-1 G is a member of some specified class of functions. For
discussion of such an approach see for example Oja (1981) and Loh (1984).

2) Let F < G when

EF I vf(X) I 5 EG I vf (X)]
for all yr belonging to some specified class. (See for example Whitt (1980)).

Unfortunately it turns out that neither monotone likelihood ratio nor hazard order-
ing can be characterized in either of these ways. We shall here develop an alternative
approach which will provide a fairly simple characterization of a large class of direc-
tional orderings including (i)-(iii).

2. Invariant directional pre-orderings
In this section we restrct attention to the class of distributions F defined as fol-

lows:
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(2.1) F = {F: F is continuous and strictly increasing on (-oo,oo)).

We shall later weaken this restriction.

A pre-order of the distributions F e F is a set S of ordered pairs (F, G) in F x F
satisfying,

(2.2) (F,F) e S for all F e F, and

(2.3) (F,G) e S, (G,H) E S implies (F,H) e S.

When (F, G) e S, we say that F < G or X < Y where X,Y are random variables with
s s

distributions F and G respectively.

Definition. The pre-order S is invariant (under monotone transformations) if

(2.4) X < Y plies MV(X) 's V(Y) for all /C= 'I,

where ' is the class of all strictly increasing continuous functions Ni with

vf (--0) = - v0wNi(+o) = +00*

It is easy to see that (i)-(v) in section 1 all satisfy (2.2) and (2.3). Examples (i)-
(iii) and (ivb) also satisfy (2.4) but (iva) does not.

When X is distributed according to F, the distribution of qf (X) is FNrl, and in
terms of S condition (2.4) becomes

(2.5) (F,G) E S => (F-1r1,GVr1) e S for all v e .

To see the simplification resulting from (2.5) consider the orbits under the group of
transformations vf e ' in the space F x F of pairs (F, G):

(2.6) O(F,G) = ((Fly-,Gij1) : Efbe ).

It follows from the definition of the orbits and (2.5) that (F, G) e S if and only if the
whole orbit 0 (F, G) is contained in S. Therefore, to characterize an invariant pre-
ordering S, it is sufficient to list the totality of orbits in S, and for that purpose, it is
convenient to have available a suitable labeling of the orbits, that is, a maximal invari-
ant under '. It is easy to see that such a labeling is provided by

(2.7) k(u) = GF1(u), O< u 5 1.

On the one hand k is invariant under ' since GNr1(FNr1)71 = GF1; on the other
hand, if GjFf1 = G2Fj-1, we have FTlF2 = GTlG2 = if, and thus F1 = F2Vr1 and

G, = G2V-1 so that (Fl1,G1) and (F2, G2) he on the same orbit. Z

For any F,G e F, it is seen that k = GF1 has the following properties:

(2.8) k(0) = 0 and k(1) = 1, and on (0, 1) k is continuous and strictly increasing.
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While MLR and hazard ordering cannot be characterized in terms of F1G, they
have very simple characterizations in terms of k = GF1.

Theorem 1.

i) F < G <=> k(-) is convex;
inkl

ii) F < G > 1 - k-1(1 - u) is star-shaped;
h

iii) F < G > k(u) < u for all O< u <
St

Proof: i) follows easily by noting that the derivative of k is k' = gF1 / ff1 and recal-
ling that k is convex if and only if k' is nondecreasing. ii) Note that (1 - IC' (1 - u))
is star-shaped if and only if (1 - FG-1 (t)) / (1 - t) is nonincreasing in t, or
equivalently, if F/G is nonincreasing, where F denotes 1 - F. Then it is easy to ver-
ify that the latter condition is equivalent to (1.3). The proof of iii) is trivial.

Theorem 2. Inclusion relationships among i), ii) and iii) are given in the following
diagram

k (*) convex < > m.l.r. <=> 1 - k-1 (1 - u) convex

k(.) star-shaped 1 - k-1 (1 - u) star-shaped <=> F h G

G /F nondecreasing G / F nondecreasing

k (u) < u.

F <st G

Proof. The nontrivial aspects follow from the well-known fact that for functions
going through the origin, convexity implies star-shapedness.

3. Characterization of sets of k-functions defining pre-orders orders

It was pointed out in section 2 that the partial order (iva) is not invariant. On the
other hand, for example, (iva) applied to (i) has a k-analogue

(3.1) k(u) 2 u for all u 2 uo,

which clearly is invariant. It is easy to translate (3.1) into a condition on the pair
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(F, G); the condition is simply

(3.2) G-1(u) 2 F1(u) for all u > uo.

This example shows that it is sometimes convenient to start with a pre-order of the
k-functions and from it derive the equivalent ordering rather than the other way
around. To be able to do so we need to know when the set

S = ((F,G): k(F,G) E K)

is a pre-order. Clearly the set S will satisfy (2.2) if and only if the function k (u) = u
for all 0 < u < 1 is in K. To satisfy (2.3), K must satisfy

GF1 EK, HG-1 e K = HF1 e K.

But if GF1 = k, and HG-1 - k2 then HBEF = k2 (kl) so that (2.3) will hold provided K
is closed under composition.

Thus K corresponds to a pre-order provided it contains the identity function and is
closed under composition.

As an application consider the problem of finding a pre-order that is stronger than
monotone likelihood ratio. In k-space, a natural strengthening of convexity is to
require that

(3.3) k(i)(u)>O forall O<u<1 andall i=1,...,n.

The identity function obviously satisfies (3.3) and it is not difficult to show that the
class K defined by (3.3) is closed under composition. The conditions on (F,G)
corresponding to (3.3) do not appear to have any simple interpretation. As an illustra-
tion of (3.3) consider the following examples.

Example 3.1. Let k(u) = u0, n 2 3. Then k(i)(u) 2 0, 0 < u < 1 for
i = 1,2,3, ... , n. Moreover, it is easy to see that k (u) = u0 implies that G(t) = (F(t))n
and hence the nth order statistic X(n) in a random sample of size n from F satisfies
(3.3) so that X < X(n) in the sense of (3.3).

Example 3.2. In the normal location case, say with F(x) = (D (x), G(x) = ¢(x - 0),
0 > 0, we have MLR so that k satisfies (3.3) with n = 2; it does not however satisfy
(3.3) with n = 3. A location family satisfying (3.3) for all n is given in the following
example.

Example 3.3. Consider the extreme value location family of 4histribution with densi-
ties given by

fe (x) = e4ek(3.4)
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For 9 > 0, it is easy to see that

(3.5) k(u) = FeF-1(u) = 1-(1-u),

where X = e- < 1. It then follows that k (u) satisfies (3.3) for every positive integer n.

Example 3.4. Consider the family of exponential distributions with density 1 eX/a.
a

To see that this is ordered in the sense of (3.3) for all n, we need only note that if X is
distributed according to (3.4), then the distribution of eX is exponential with scale
parameter a = e@. Since any invariant order is unaffected by a monotone transforma-
tion, (3.3) follows from Example 3.3.

4. Extension to a larger class of distribution functions

At the beginning of Section 2 we restricted attention to the class F of distribution
functions which are continuous and strictly increasing on ( -c, cc). This is too restric-
tive and we shall now extend the theory of the preceding sections to the class F* of
distributions F whose support is an interval (which may change with F and which may
be finite, semi-infinite, or infinite), on which F is assumed to be continuous and strictly
increasing.

If the support of F e F* is the interval (a, b), the quantile function F1 is continu-
ous and strictly increasing on the open interval (0, 1) and satisfies

limF1(u) = a, limF(u) = b
u-+O Uo

and

F1(O)=-1,F(1)=b.

The nature of k = GF1 depends on the relative positions of the supports (a, b) of G
and (c, d) of F. Seven different situations are possible:
(i) a=c, b=d. In this case k increases strictly and continuously from k(O) = 0 to

k(1)=1 as it does when a = c =-, b = d = oo. No changes are needed.

The behavior in cases (ii)-(v) is shown in the following table
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Case k increases strictly and
continuously

(ii) a<c<d<b (O,G(c)) to (I,G(d))
(iii) c < a < b < d (F(a),O) to (F(b), 1)
(iv) a<c<b<d (O,G(c)) to (F(b), 1)
(v) c<a<d<b (F(a), O) to (1, G(d))

Finally, in case (vi) in which b < c, we have k(u) = 1 for 0 < u < 1 and k(O) = 0, and
case (vii) in which d. a, k(u) =O for 0 < u < 1 and k(l) = 1.

The type remains invariant under the trsformations qf E ' defined in (2.4). So
does the nature of the carriers C and D of F and G, ie. whether each of C and D is
finite, semi-infinite with a finite right end point or left end point, or infinite in both
directions. As a result, although k remains mvariant under the transformations of P -
it no longer is maximal invanant. Consider for example the pairs (F, G) with F = G.
They all correspond to the single function k(u) = u for all 0 < u < 1, but they do not
constitute a single orbit since the cases C = D = finite, C = D = infinite, etc. all have
different orbits. Thus the maximal invariant must take account of the nature of C and
D; in addition, with respect to the types (vi) and (vii) defined in the preceding para-
graph, it must distinguish between the types

(via) b < c and (vib) b = c

and

(viia) d<a and (viib) d = a,

which can also not be transformed into each other.

If the assumptions made at the beginning of this section are further weakened, the
complexity of the maximal invariant will increase even further.

There is an alternative way of handling a weakening of the assumptions such as
that at the beginning of Section 2, and this is to enlarge the group ' of transforma-
tions defined in (2.4). However, this approach also runs into difficulties and we shall
therefore here consider no further extensions.

5. Ordering the orbits

An invariant pre-order S allows us to go a step further. We can not only say of
certain pairs (F,G) - the pairs in S - that F 5 G, but also-for certain quadruples
(Flt Gl; F2,G2) that, according to the ordering , G2 is further away from F2 than G,
is from F1.
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To fix ideas, consider distribution functions F1 and G1, with F1 < G1 and define

F2 = FIy 'l and G2 = GOjr1 for if e P. Since (F1, G1) and (F2, G2) are in the same
orbit, we say F1 and G1 are at the same distance from each other as F2 and G2. That
is, all pairs on the same orbit are equally distant. On the other hand, if
F1 s G1 s G2, we say that G2 is further to the right of F1 than G1 is. This last

situation implies that G1 = FNr-1 and Flr1 :9sG2 for some monotone Nf. Extending

this argument to the case of the quadruple (Fl,G1; F2,G2) with (Fi,0G) e S, i = 1,2,
we say that G2 is further to the right of F2 than GI is of F1 if F2=F1(Vr1) and
G1(Vr1) . G2 for some Nf e P. In term of k1 = G1FT1 and k2 = G2Fj-1, this is

equivalent to requiring that k2(kT1) e Ks, and this motivates the following definition.

Definition. Let (Fl, G0), (F2, G2) E S then, G2 in said to be further to the right of F2
than G1 is of F1 if

(5.1) (kl,k2) e S,
where kj= GiFi71, i = 1,2.

Since kl, k2 are distribution functions, (5.1) is equivalent to the condition that
k2(kT1) E Ks that is, k1 < k2. It also follows trivially that k1 s k2 if and only if

k2 = k3 (kl) for some k3 e Ks. Thus, for example, when S represents stochastic order-
ing, G2 is further to the right of F2 than G1 is of F1 if G2Fj-1(u) <G.F-1(u),
0 < u < 1. If S represents monotone likelihood ratio ordering, G2 will be further to the
right of F2 than G1 is of F1 if G2Fj1(u) = h(G1Fj1(u)) for some convex function h.
This is illustrated by the following two examples.

Example 5.1. Consider the location family F (x - 0), and define G1 = (F (x - 01) and
G2 = F(x-02) with 02 > 01 > 0. Then F < G1 and F < G2. Moreover, k1 < k2,

St St St

where k1 = G1F1 and k2 = G2F1 so that G2 is further to the right of F than G1 is.

Example 5.2. Consider the family of beta distributions Fa, with densities

fa(x) = axa-1, a>0, O<x< 1.

then Fai <F. ,
and Fa2 s F02 when al < 11 and a2 < 02. Moreover, when

132 pi 1-1[5> 1, F F Fa F - is convex and hence Fp2 is further to the right of Faa than
a2 1 OcI 02

Fo1 is of Fa..
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6. Distances between ordered distributions

The qualitative distance relation, introduced by (5.1) on pairs of distrbution func-
tion (F,IG) e S by comparing their corresponding k-functions raises the question of
whether there exists a metric d (F, G) which is consistent with the approach using k
functions. To be consistent, such a metric must satisfy the following two conditions:

(i) Since the k-functions are invariant under monotone transformations, the distance
d(F,G) must also be invariant under monotone transformations. Formally, we
shall require that

d(F,G) = d(Fir1l,Gi-1) for all vf e ',

(n) and that ifk= GiFi1 e Ks, i = 1,2 with k < k2, then
S

ds (F1 G1) < ds (F2, G2)

Condition (ii) immediately implies the additional desirable requirement that if the
ordering S, is stronger than S2, then

ds, (Fl, G1) < ds, (F2, G2) > dS2 (Fl,G1) < dS2 (F2, G2)

A metric that satisfies (i) and (ii) above when S is stochastic ordering - and
hence also for any stronger ordering- is provided by the supnorm do. Since

do (F, G) = sup IG(x) - F(x)I = sup GF1(u) - uI
x Osusl

=sup Ik(u) -uI
Osukl

do is invariant under monotone transformations. Also, if kl, k2 e Ks with
k1(u) < k2 (u) for all u, then

do (F1, G1) ' do (F2, G2)

Example 6.1. Let G (x) = F (x - 0), 0 > 0 so that F < G. Then
St

do(F,G) = sup {u - F[P1(u) - 0]).

If F is unimodal with a density f which is symmetric about to, the supremum is

attained at t = to + 2i- and hence
2I~ ~ ~
do (F, G) = F (to+ - F (to- j.

Having defined a distance function consistent with stochastic ordering, we next
consider the orderings
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S1: hazard ordering
S2: the ordering in which F < G iffk() is star-shaped

S3: MLR ordering

and for each i = 1,2,3 define a distance function di consistent with Si as follows:

d, (F, G) = sup Iln (G(x) /F(x))
x

d2 (F, G) = sup Iln (G(x) /F(x))
x

d3 (Fi, G) = sup Iln (g(x) / f(x))I.
x

It is clear that di, d2, and d3 satisfy the invariance condition (i) given above. That
they also satisfy condition (ii) follow from the following theorem.

Theorem 3. If kj, k2, k2 (kj1) e Ks,, then

di. (Fl, Gj) :5 dii (F29 G2) , i = 1,2,3 .

Proof: Clearly, the membership of kl, k2 and k2 (kj 1) in Ks, i = 1,2 or 3, implies that

(6.1) k1(u) < u, k2(u) < u, and k1(u) 2 k2(u).

We now proceed by cases.

(i) For the S1 ordering, (6.1) implies that

(6.2) d, (Fj,Gj) = Insup = nsup , j = 1,2,
x Fj(x) of.U:1 u

k2
and that - is nondecreasing. This latter implication is equivalent to

1~~~~~~~~
G2F2- (u)

(6.3) - -(u is nonincreasing in u.
G1Fj (u)

Therefore, G2F21(u) G1Fj(u) and the result for S1 follows from (6.2).
u u

(ii) For the S2 ordering, condition (6.1) implies that

(6.4) d2(FjG) = In osupl u

1GjFf1I(u)
and the fact that k2(kT1) e Ks2 implies that - is nondecreasing and hence

(6.5) u > u , <u<
G2Fj1(u) G1Fj1(u)



- 13 -

the result then follow from (6.4) and (6.5).
(iii) In the case of S3, (6.1) together with the condition that is nondecreasing

for j = 1,2, imply that

(6.6) d3(Fj,Gj) = max(-lnkj'(O+), lnkj'(1)).

But k1(u) . k2 (u), together with kj (O) =O and kj (1) = 1, j =1,2, imply that
k1' (O+) > k2' (0+) and kl' (1-) < k2' (1-), and now the result follows from (6.6).

Example 6.2. Let G(x)=ex and F= - [ex+ex], x>O. Then F < G and we
2 mlu

have

d1(F,G) = sup I1n G(x) I= n2
x F(x)

and

d3(F,G) = sup I (x)I = ln(5/2).
x f(x)
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