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Introduction

Ahlquist et. al (1987) used DNA-DNA hybridization to measure the divergence
between the single-copy nuclear DNA sequences of Aechmophorus occidentalis and A.
clarkii, the Western Grebe and Clark’s Grebe, respectively. Their purpose was two-
fold i) to determine the taxonomic status of the Western and Clark’s Grebes, and ii) to
assess the resolving power of the DNA hybridization technique. They concluded that
the ‘“‘DNA hybridization technique is sensitive to differences in sequence complemen-
tarity between closely related species’’, and that the mean AT5oH between the Western
and Clark’s Grebes is 0.57°. Bledsoe and Sheldon (1989) have discussed the same
grebe data in the context of studying the metric properties of the traditional AT values
for DNA-DNA hybridization. They concluded that ‘‘the resolution in the Aechmor-
phorus study is the species level. Below that, most individuals act as a single unit.”’
In addition, they report a mean modal difference of 0.7° (mean of 16 values in column
6 of their Table 3) between the two grebes. If one excludes the negative AT, 4. from
the same column the mean modal difference between the two grebes is 0.85°.

More recently, Sarich (1990) has also discussed the same grebe data. He concludes
that the distance between the two grebes is in fact ‘‘zero’’ and that the ‘‘non-zero”
distance observed by Bledsoe and Sheldon (1989) is in all, probability an artifact due
to ‘‘a systematic error introduced by the instrumentation or experimental design.”’ In
particular, Sarich argues graphically (his Figures 1 and 2), that a ‘“position effect’” in
the hybridization apparatus is responsible for the artifactual discrepency between the
two grebes.

The above three studies, which will be referred to as the AGS (Ahlquist grebe study),
the BGS and SGS respectively, raise several important statistical issues. However,
before we summarize these points, we wish to state that although the question concern-
ing the taxonomic status of the two grebes is in itself quite interesting, we will not
provide any precise guidelines for deciding on the taxonomic placement of these two
grebes, based on DNA hybridization. As stated in the AGS, there are other important
matters e.g., widespread sympatry and positive assortative mating, which have to be
considered in conjunction with DNA hybridization results, especially at this level of
genetic similarity, before any conclusions can be reached. Our interest has been to
develop a method of analyzing DNA hybridization data which takes into account the
various sources of experimental variation and a number of related statistical issues.
We now summarize these issues.

Statistical Issues

Firstly there is the issue of variation. As will be explained below, DNA hybridization
experiments such as Sibley and Ahlquist (1981, 1984) and Caccone and Powell (1989)
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generate data which have quite a complex structure in that there are a number of
sources of variation and covariation. Most current methods of analysis do not ade-
quately reflect the complex structure of the data. Felsenstein (1987) discusses the pri-
mate data of Sibley and Ahlquist (1987) and uses maximum likelihood with a so-called
mixed model to take into account ‘‘major sources of correlation between observa-
tions’’. However, in view of the fact that his analysis did not begin with the raw data,
the radioactive counts, his results cannot be viewed as definitive. Identifying and
estimating different sources of variation is important since any estimated distances
between species should be appropriately weighted to reflect the variation within and
between experiments.

Second, standard methods compare melting curves via single parameter summaries of
the curves, e.g., BGS and SGS use T,,,4. and AGS uses T5oH. It has been pointed out
by number authors, e.g., Sarich et. al (1989), Bledsoe and Sheldon (1989), Sheldon
and Bledsoe (1989), and Schmid and Marks (1990), that most of these summaries are
flawed as measures of phylogenetic distance. In addition these descriptors do not
make full use of the available data. In an attempt to make more use of the data we
have developed a new measure, called the slope measure (SM), which attempts to
quantify relative shifts between melting profiles at the high end of the temperature
scale. It turns out that SM also avoids some of the flaws of existing measures.

Third, we consider what may be broadly called the quality of the data. Consider for
example the BGS. Column 6 of their table 3 shows a mean AT, 4. Of -0.29 based on
5 observations of heterospecific heteroduplex hybrids. In theory, this dissimilarity
measure should be nonnegative. What should one do about data values that are logi-
cally inconsistent with prior expectations? We should point out that here we are using
the word ‘‘data’’ loosely. When referring to AT values as data we are in fact speaking
of derived data. Consequently, negative AT values are in themselves not necessarily
‘‘bad’’ in some sense. Instead, they are a reflection of other things, experimental error
or a wild homoduplex frequency curve. Below we will discuss ways of approaching
“‘outlying’’ data.

Systematic errors are our last point. As demonstrated by the SGS there is evidence
suggesting the existence of a systematic position effect in the Yale hybridization
apparatus. If in fact the position effect is real, as we believe it is, we then have to
consider carefully the consequences of the effect. For this we must include the effect
when estimating parameters of interest, and compare in some way the resulting esti-
mates with ‘‘unadjusted’’ estimates. Implicit in this procedure is testing for the
existence of position effects. This too will be discussed below.



Methods and Data
The idea behind DNA hybridization is fairly simple.

[Insert TS description Re: s230]

The exact steps in a hybridization experiment can be performed in a variety of ways
and are summarized in Sheldon and Bledsoe (1989). The raw data for the grebe com-
parisons were given to us by Vince Sarich in 1989. It came from DNA hybridization
experiments carried out by Bledsoe and Sheldon (1989) whose methods seem to have
been essentially those of Sibley and Ahlquist (1981). For an understanding of the
data, the important point is that the hybrids are fractionated by hydroxylapatite (HAP)
chromatography to isolate double-stranded DNA, which is then heated incrementally,
and the amount of labelled DNA released at each step is measured by a radioactive
counter. Consequently, the raw data takes the form of radioactive counts (see Table
1). In almost all cases, these counts are used to construct frequency or cumulative dis-
tribution curves which indicate the amount of disassociation of the hybrids along the
temperature gradient (Figures 1 and 2).

Structure of the Data

The structure of the data can be inferred from the experimental design (Table 2). Here
we see that individual hybrids are grouped according to experiment and that across
experiments different types of hybrids e.g., conspecific heteroduplexes, are grouped
according to tube position within the hybridization apparatus. Consequently individual
hybrids do not necessarily give statistically independent observations, e.g. all 25
hybrids in the first row of Table 2 have at least two common ‘‘components’’, the fact
that they are all in experiment #393, and the fact that all used tracer #3 of A. occiden-
talis. Most current statistical methods of analysis of hybridization data implicitly
assume independence. As examples we cite the use of a t-test on the difference
between reciprocal mean delta modes clarkii-occidentalis and occidentalis-clarkii, or
the attaching a SE to a mean delta mode. These simple procedures ignore any struc-
ture in the data which is implicit in the experimental design. Does this matter? The
following example is illuminating. Consider the 10 observed modes from the
heterospecific heteroduplexes formed in experiment #393. One expression for their
variance of their arithmetic mean is 62/ 10, where 62 is the error variance. However,
suppose that the true model for these data is

observed mode = true mode + experiment effect + error (1)

where the common experiment effect contributes an amount 62 to the variance of each
observation. Then the variance of their arithmetic mean is
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c2/10 + of. )

Comparing the initial expression for the variance with (2), we see that it is possible to
grossly underestimate the variance of such arithmetic means. In our view, if units, in
this case hybrids, are grouped or associated in various ways, then an analysis of the
data should take into this fact account this fact, at least in its initial phases.

Frequency Curves

Our purpose here is to demonstrate, without using any particular distance measures, the
existence of ‘‘outlying’’ hybrids and/or experiments. Figures 3-6 illustrate the points
of interest. Perhaps the most striking is Figure 3. The curves here are average homo-
duplex profiles from each of the 8 experiments; Figures 3A and 3B show that the
occidentalis and clarkii sets of curves are quite different in character. The clarkii
curves are more sharply peaked, and with the exception of curve C, are less variable
than the occidentalis curves. More important is the fact that all the curves are homo-
duplex curves. These curves are expected to be fairly stable, Sibley et. al (1990), but
the data indicate otherwise. From Figure 3C we see that the range of modes for these
curves is about 85°-88.5°.

This 3.5° span is more than four times the mean modal difference between the grebes
reported by the BGS. Even when curve C is ignored, the range of ca. 86°-88.5° of the
remaining modes is still quite striking. And what about curve C? Are we to assume it
is a ‘‘bad”” homoduplex curve? There is certainly reason to suspect such a curve,
given our prior expectations, but before ‘‘throwing it out’’ it should be compared to
the other hybrids in the same experiment. Inconsistencies with our prior expectations
does not make the curve bad, and its removal will give a downward bias to our esti-
mates of the variability inherent in the various measures. Its reliability can better be
determined by considering it in relation to the other heteroduplex curves found in the
same experiment, for any biases in experiment #555 in all likelihood affected every
hybrid (in #555) in the same way. With this in mind one can see why simply replac-
ing a bad homoduplex melt with a good one could lead to artifactual biases. A
different way around this problem would be to throw out experiment #555, but this
would be undesirable since 25 hybrids would then be discarded. We believe that there
is useful information in experiment #555, and that its removal would lead to a greatly
underestimated error. The point to be made here is that these so-called outlying
hybrids and/or experiments are in all likelihood an indication of the (substantial)
amount of between and within experiment variability, and that this should be
accounted for in the analysis.

The foregoing discussion of homoduplex curves was based on a visual examination of
the frequency plots. In order to get a feel for the data, we suggest looking at all the
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frequency plots which will enter the analysis. In this way one can get an idea of the
quality and reliability of individual hybrids, and of entire experiments made up of
many hybridizations.

For example, after looking at the grebe frequency plots we decided that i) experiment
#393 appears to be an ‘‘ideal’’ experiment (Figure 4), ii) experiment #663, position #9
required manual intervention, and iii) experiment #555, plot C is Figure 3, could yield
unexpected A-values, depending on the distance measure used, because of the place-
ment of the homoduplex curve (Figure 6). Given this information one might decide to
follow some kind of robust procedure to analyze the data. In short, looking at the data
could suggest the direction which the analysis could (should?) take.

Distance Measures

There has been much discussion on the use and interpretation of distance measures for
DNA hybridization. Bledsoe and Sheldon (1989) and Sheldon and Bledsoe (1989) are
recent and comprehensive studies on dissimilarity measures, and we have used ideas
from these papers and also those by Sarich et. al (1989) and Schmid and Marks
(1990). [In this article we present and discuss three parallel analyses corresponding to
three distance measures.]

Median melting temperature T,,

T, is the temperature at which 50% of the hybrid strands is dissociated. The calcula-
tion of T, for each hybridization is as follows. Let S be the sum of radioactive counts
from 62.5° to 95°. Fori=62.5,65,...,95 let

C; = # counts eluted at temperature i 3)
N, = 100(G;/S). C))

Using the N;’s construct a cumulative distribution curve of percent dissociation versus
temperature. T, is then the median of this cumulative curve. We used linear interpo-
lation based on the two points immediately above and below the 50% point to estimate
T,,. Sample calculations are given by Sheldon and Bledsoe (1989).

Modal melting temperature T,,,4,

Tmoge 18 the mode of a normalized frequency distribution based on the counts.
Estimating the mode, especially for grouped data as is necessary with hybridization, is
not easy. The main difficulty is that the mode may be anywhere in the most frequent
group, a 2.5° range. For example, consider Figure 5. The curve with the highest ordi-
nate has what may be called a well-defined mode and common sense tells us to esti-
mate it as 85.5°C. However, the counts corresponding 87.5°C have been eluted
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throughout a temperature range of 2.5°C (85°-87.5°), and so the mode could be off by
as much as 2.5°C. Note however that if the method of estimation is invariant under
translations, in the sense that if the estimate based on X, . .., X, is m then based on
X +a,...,X,+oitis m+ o, then this problem disappears.

Another problem is that different estimation procedures for the mode can give quite
different estimates. Table 2 of Sheldon and Bledsoe (1989) presents modal estimates
based on three different methods: 10th degree polynomials, modified Fermi-Dirac, and
5-point parabolic. Differences exceeding 2°C in modal estimates and 1°C in A-mode
estimates can be found in the table.

By definition, modes are local properties of curves. Our estimation procedure attempts
to reflect this fact: we find the highest point of the frequency curve, (x,y) say, and fit a
parabola to (x,y) and its two neighboring points. If the two neighboring points have
the same ordinate value, then (x,y) will be the estimate of the mode; otherwise, the
estimate will be pulled in the direction of the neighbor with the highest ordinate. This
procedure is not only intuitively appealing, it is also objective and simple to program.

The method gives good reproducibility, in that replicates of the same duplex, within an
experiment, agree quite well (Table 3). The method also gives realistic estimates.
That is, the estimates tend to agree with visual estimates based on frequency curve
plots.

We have compared our intraspecific heteroduplex AT, 4. values for the grebe data
with those of Bledsoe and Sheldon (1989). In that paper they use the modified
Fermi-Dirac curve fitting procedure, presumably because the resulting curve matches
the shape of the observed frequency curve. As can be seen in Table 4 our results can
differ markedly. Sarich (1989) also takes a local approach to estimating the mode.
His procedure is to estimate the mode as the intersection of the best fitting straight
lines involving the three values to the left of the mode, and the two to the right. For
comparison we have applied his method to a number frequency curves and our results
tend to agree with his. In particular, his method estimates the AT, 4. (as described in
Table 4) for experiment #671, positions 21-25 to be 0.66°C. See Figure 7.

There are two points to be made here. The first is that locally based estimates will
tend to agree with one another. Secondly, locally based estimates can substantially
differ from global ones for the obvious reason that global procedures, such as high
order polynomials and the modified Fermi-Dirac, by their nature attempt to capture the
entire shape of the curve. As a result, global procedures can overfit the data or be
highly influenced by quirks in the data. In short, we do not see any reason to use
points for removal from the mode in estimating it.



The slope measure SM

This measure essentially compares the rate of decay, at the high temperature and of the
melt, between homoduplex and heteroduplex profiles. Let

g(t) = homoduplex profile
f(t) = heteroduplex profile. &)

Plots of hybridization frequency curves indicate that the high temperature part of the
profiles decays approximately exponentially. Assume that beyond a certain tempera-
ture, say tg, g and f take the form

g(t) - c—ct
f(t) = e°t. ©
Then under certain constraints we can show that
t ’
In [—%‘t-))-] = (¢’ —c)(t—b) )

for some b. In other words, the log of the ratio of the two curves is a line with slope
¢’ — c. The closer the curves to each other the smaller the slope is; in fact, the slope
approaches zero. Our idea is to estimate this slope and use it as a measure of distance
between the two curves. The estimate is called the slope measure (SM) estimate of
the distance between the duplex curves.

We have found that for the grebe data the exponential decay model fits the profiles
quite well in the temperature range 87.5°-95°C, so in practice our method is as fol-
lows:

Let S = sum of counts from 60°-95°C

N, = -;—(count at temperature t).

Now compute

N, for homoduplex
N, for heteroduplex

s(t) = log

] , t=87.5(2.5)95

and find the ‘best’ fit line to the points (t,s(t)) for t = 87.5(2.5)95.
The slope of the best fit line is SM for the given comparison.

Figure 8 provides an example of the method. We should point that we are computing
the log of the ratio of two normalized counts. If for a given set of comparisons, say,
within an experiment, there is only one homoduplex, then it suffices to compute the
log of the ratio of rare counts. However, if there are several homoduplexes available
within the experiment, then either one homoduplex must be selected to be the ‘stan-
dard’ homoduplex, and everything else compared to it, including the other
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homoduplexes, or an average homoduplex is constructed and all heteroduplexes com-
pared to it. In the second case it is convenient to work with ratios of normalized
counts.

So far we have presented what is essentially a mathematical procedure to compare the
curves. We now discuss the biological aspects of the method. As has been pointed
out by Sheldon and Bledsoe (1989) it is desirable to use characteristics of melting
profiles which reflect overall hybrid stability rather than percent mismatches. The rea-
son is that the melting curves reflect the ‘‘dissociation of many duplexes spanning a
[wide] range of complementarity (and their dissociation temperatures)’’. The mode is
such a characteristicc. We argue that the SM is also an indicator of duplex stability.
Consider two curves, one a homoduplex and the other an interspecific heteroduplex.
In theory the heteroduplex curve is expected to be shifted toward the incubation tem-
perature relative to the homoduplex. In turn the mode of the heteroduplex is shifted
towards the lower end of the temperature scale. As previously mentioned, frequency
plots show that the high temperature side of the profiles can be modelled by exponen-
tial functions. To be more precise, for any individual frequency plot, the exponential
model describes that part of the curve which lies to the right of the mode. One more
note, all types of duplex curves are expected to have an ordinate of zero at 95°C —
the last point of the temperature gradient. Hence, if the mode of the heteroduplex is
my and that of the homoduplex is my + A (A > 0), then the exponential rate of decay
for the heteroduplex must be greater than the rate for the homoduplex. It is exactly
this comparison which equation (7) subsumes. It is now clear that ¢’ — ¢ increases as
A increases. In short, the SM ‘tracks’ A and it follows that SM is a measure of duplex
stability.



