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1. Introduction:

Many functional estimation problems arising in density estimation and non-
parametric regression are easier to analyse in the following white noise model

(1) dXt = f(t)dt + adWt O< t < 1, fe F a L2[0,1]

where Wt is Brownian motion.

Many results which might be difficult to prove in the density estimation or non-
parametric regression context take on a more transparent form in this white noise
model. A sample size of n in the density estimation and nonparametric regression

problems corresponds to an =NG in (1) when a is suitably chosen. In particular the

tools of rescaling developed in Low [1989a] and Donoho and Low [1990] and the
hardest one dimensional subfamily arguments of Donoho and Liu [1987, 1988] have
yielded a fairly complete picture of how to estimate both bounded and unbounded
linear functionals on the basis of observations generated by (1). A separate literature
is developing to show how to replace density estimation and regression problems by
the corresponding white noise problems. See for example Low [1989b], Brown and
Low [1990] and Donoho and Low [1990].

In this paper we focus attention on estimating the entire function f on the basis of
the observation scheme given by (1), using integrated squared error as a measure of
loss. In particular we shall let R (F, a) denote the minimax risk under this loss func-
tion. That is

(2) R (F, a) = inf su Ef (f(x) - 5 (X))2 dx
& fE o

where the infimum is taken over all procedures &.

For ellipsoidal parameter spaces such as F - (f: Jf2(x)dx < 1, f(0) = f(1)}, a

fairly complete analysis has already been given for the asymptotic minimax risk
R (F, a) as ca 4 0 by Pinsker [1980] and Efroimovich and Pinsker [1982].

In this paper we derive upper and lower bounds for the minimax risk R (F, (a) for
nonellipsoidal parameter spaces satisfying certain renormalizable properties. This work
may therefore be viewed as an extension of the use of invariance ideas to global esti-
mation problems, although in the present context the renormalizing structure is more
involved. We use invariance in this paper to accomplish two goals. First we show
how optimal rates of convergence for estimating an entire function can sometimes be
derived just from the renormalizing structure of a parameter set F. Second we use
invariance to reduce the calculation of lower bounds for global estimation to a single
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hardest one dimensional subfamily argument similar to those analysed in detail by
Donoho and Liu. In this way we can find lower bounds for the minimax risk involv-
ing constants and not just rates. Upper bounds for the minimax risk can be given in
terms of the corresponding pointwise estimation problem. As an example we compare
upper and lower bounds for a class of functions with a uniformly bounded derivative.

The results of this paper should also be understood as part of an ongoing effort to
find general techniques for bounding the minimax risk in nonparametric problems. See
for example Donoho and Johnstone [1989]. One contribution of this paper is to show
how to connect local problems to global problems.

2. Rescaling Properties of F:

Throughout this paper we always assume that F C L2 [ 0, 1 ]. However we can also
extend any f e F to a function, which we shall also call f, with domain (-oo,oc) by
defining f (x) = 0 for x d [ 0, 1 ]. Hence we shall allow function evaluations at points
outside the closed interval [ 0, 1 ] and always take the value to be zero. In the assump-
tions and theorems which follow we write [T]- for the greatest integer less than or
equal to T and [T ]+ for the smallest integer greater than or equal to T.

In a previous paper, Low [1989a] we showed how optimal rates of convergence for
estimating a function at a point can be derived from invariance properties of the
parameter set F. In particular we required the space F to be invariant under particular
scale and dilation transformations. In other words we needed to assume, for appropri-
ate choices of a and b, that the map f(t) -+ af(bt) is a bijection on F. For the problem
of estimating the entire function the renormalizing structure we need is more involved.

Assumptions

1) Lower bounds

For lower bounds we assume that we have a collection of parameter spaces FT such
that for each T e [ 1,oo)

a) If f e FT and if x d (0, ) then f(x) = 0 where (0 -) denotes the open intervalTT
(x: 0<x<x

T
b) Iffe FT andif 101 1 then Of e FT

[T]--i
c) If fi E FT then g (t) + Oi fi (t - T) e F where g is some fixed function not

T
depending on the choice of fi, lOi . 11, 1 < i < n
d) : [ 1,oo) -+ (0, oo) is a function such that if TE [1,oo) then the mapping

f(t) -f(T) is 1-1 and onto from F1 to FT
OMT
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Remark:

Assumptions a), b) and c) taken together allow us to give a lower bound for
estimating f E F in terms of a lower bound for estimating a single f E FT. Assumption
d) captures the renormalizing structure, needed to replace the problem of estimating
f E FT by the problem of estimating f E F1 but with a different value of a. Details are
found in Lemma 1 and Theorem 1 given below.

2) Upper bounds

For upper bounds we assume that we have a collection of parameter spaces FT,
T E [1, oo) such that the support of any function f E F' is contained in the interval
[0,1] and

a) FcF1
b) : [ 1, oo) -* (O, oo) is a function such that if T e [1, oo) then the mapping

f(t) -+ f(Tt) is 1-1 and onto from F1 to FT. It follows that if f e FT then f(x) = 0

for x 4 [0, -]
T

c) If fE F1 then for i =0,1, . . . , [T]- - 1 there is an fT e FT such that

fT(t) =f(T + t), 0 < t and if f e F1 then there is an fT E FT such that
T T

fT(t) =f( - + t), 0 t< -
T T

Remark: If the functions 0 in ld) and vf in 2b) are the same, the upper and lower
bounds derived in the next section are of the same order and yield optimal rates of
convergence. Compare theorem 1 and theorem 2 in section 3.

Example 1: Write P (x) for the jth derivative of f. Let

(3) F(klM)= f:Ifk-1(x) - lI(y)l < M Ix-y (0()=P(1) ,j= 0, k - )
Take

(4) F1 (k,M) = F(k,M) r fIf(0) = f(1) = 0, j = 0, ... ., k - 1)

and take

(5) F1(k,M) = {f:lfk-(x)-fk-1(y)I<MIlx-yl).
Let 0: [ 1,oo] - (0,oo) and Nf : [ 1, o] - (0,oo) be defined by ifi(t) = ¢(t) = tk and
take g _ 0. Define FT and FT by

(6) FT= f(Tt) :f E F}
0(T)

and
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(7) FT = {f(,T) f EF}.

Then assumptions ld) and 2c) are by construction satisfied. Once we note that

dk f(Tt) Tk k(Tt) 1 f_k(Tt)
dt'~TOM f'Tt =1T1Tt

it is easy to check the remaining assumptions given in 1 and 2. We leave the details
to the reader. We shall return to this example at the end of section 3.

Example 2: We now give an example where we do not take g 0 in lc). Let

(8) F(M)= If:0<f'(x) 'M).
Take

(9) F1(M) = (f: -- f'(x) s M9< f(O) = f(l) = 0)22

and take

(10) F1 (M) = F (M).

Then if we let 4 (t) = yr (t) = t, take g (t) = Mt and define FT and FT by (6) and (7) it
2

is easy to check that assumptions 1) and 2) are once again satisfied.

3. Upper and Lower Bounds:

Conditions la), lb) and lc) given in the previous section enable us to give lower
bounds for the minimax risk R (F,c) in terms of the minimax risk for a single
bounded normal mean problem. The analysis combines invariance ideas with hardest
one-dimensional subfamily arguments due to Donoho and Liu [1987, 1988]. Let us
denote by p (d, a) the minimax risk for estimating 6 on the basis of X N (0, a2)
where I O < d. Then

(11) p (d, a) = inf sup E (0 -_ (X))2.

Explicit values of p (d, a) were first given by Casella and Strawderman (1981) for
d . 1.01 where it was also shown that

(12) p(d a) = ca2 p(d

Extensive tables for d < 5 can now be found in Brown and Feldman [1990], and

Donoho, McGibbon and Liu [1988]. In the following lemmas and theorems when we
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refer to the white noise process we shall always be refering to the process given by
equation (1). We also write 11 f 112 for the L2 norm of a function f, 1 f 112 Jf2 (t) dt.

Lower Bounds

Lemma 1: Suppose we observe the white noise process and that the parameter spaces
FT satisfy assumptions la), lb) and lc) then

(13) R(F,T) 2 sup[Tf]R(FT, c)

where

(14) R(FTT,C) 2 suy24p [f-,12j

and hence

(15) R(F,a) r T

Proof of Lemma 1. Let Fg = {fg: fg = f + g,f e F). Then if Xt satisfies (1), it fol-
t

lows that Yt = Xt + fg(s) ds satisfies
0

(16) dYt = fg(t)dt + Odwt.
Hence

(17) R (Fg,Oc) = R (F,a)-

We may thus without loss of generality assume in condition lc) that g - 0. Now
fix T e [ 1, oo) and suppose we observe

[T]--1
(18) dXt = £ fi(t- )dt + adWt

[TT--1
where fi e FT for i = 0, . . . ,[T -1. Then, since £ fi(t - E) F it follows

T
that

(19) R(F,) 2 infsuE( i(t))2dt
i+i

(T2-i Tifu£E ( i ) _ f(t))2(20) -infsup E (f((t - f)-(t)dt.
fiIElFT i=0 /TT
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Now for a prior v on FT write R (FT, a, v) for the Bayes risk in estimating f under
l/T

loss J (f (t) _ f (t))2 dt based on
0

(21) dXt = f(t)dt + a dwt
where f E FT.

Then, since observing (18) is equivalent to observing [T]- independent experi-
ments of the form (21) we have

(*) R(F,a) 2 [TE]-R(FTj,av).

Now since the minimax nsk is the supremum of the Bayes risks we have
sup R (FT, a, v) = R (FT, a) and hence
v

(**) R (F,a) , [T R (FT, )
(22) R (F, ) > [T R (FT, a)

(13) is established by taking sun in (22). Now fix f e FT. By assumption lb), Of e FT

for all I OI< 1. Hence
trr

(23) R (FT,c ) > inf supE J (f(t) - f(t))2dt

Now for each f (t) we may define 0 (t) by

(24) 0(t) f(t) = f (t).

It then follows from (23) that
l/T

(25) R (FT, a) . inf supE ( J (0f(t) - 0(t) f(t))2 dt).
0

Let~ (tf2t dt IN.Te | f()-(f(t))2dt= f2(t)( _
- '(t) 2Let = J0tf()d* Then lIT - A 2 lIT A2d

Jf2(t) dt 0 t
l/T

- f f2(t) ((0 - 0)2 + (0 - 0(t))2) dt. Hence
0

irr lIT
(26) J (Of(t) - 0(t)f(t))2dt . f (Of(t) - 0f(t))2dt.

0 0

We can thus replace the infimum in (25) by an infimum over 0 which yields

(27) R (FT,a) f11f2 infsupE(0 - 0)2.

Now note that =Jf(t) X(dt) is sufficient for 0 and II fI1 N(0, a2 It then
#% .1IIII%
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follows by (11) and (12) that

(28) infsupE(0 - 0)2 -p 1 lfIIY]

CY2 [11 f112 ~
= a2 CYl l2

and combining (27) and (28) yields

(29) R(FT, ) .2 p [llf 1]

Now take suy to yield (14). (15) follows immediately from (13) and (14).

If in addition to the assumptions imposed in Lemma 1 we add ld) then bounds on

the minimax risk R(F,ca) can be given in an even more convenient form which is
especially useful for asymptotic results as ca I. 0. An example of such an application
is given at the end of this section.

Theorem 1: Suppose we observe the white noise process and that the parameter
spaces FT satisfy the assumption given by 1) then

(30) R(F,aX) . supsup [Tfa] [a 11 f112
T fEV1F L 0avT4(T) J

and

(31) R(F @() [TR 21 )R(Fa)

Proof of Theorem 1: Consider the model

(33) dXt = f(t)dt + a -dW` fe FT.

Write E1 for expectations taken with respect to this model. Since f(t) f(Tt) is 1-1Write ()~~~~~~~~~~~~~~~~0(T)i -

and onto from F1 to FT, (33) can be replaced by the model

(34) dXt = f(T) dt +
CY dWtp fe F1.t-0 (T) -'.4F14)(T)

Write E2 for expectations taken with respect to this model. It then follows that

R (FT,,NT(T inf suy E1 If(t) - f(t) dt
,T O0(T) f fe FT

= infup2l[(T) f(t) d2
=infsu pE2J f(Tt) f (Tt) dt
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=infsu 1 E2J'(f(t) - f(t))2dt.

Now in Low (1989) it was shown that the model given by (34) is equivalent as an
experiment to

(35) dXt = f(t)dt + adWt f E F1.

In particular it follows that

inf su E2 (f (f(t) - f(t))2 dt) = R (F1, a)

and therefore

(36) R (FT" ] R(T) F,a).

Finally lemma 1 showed that R (F, a) . [T ] R (FT, a) and so

R <F¢T4)(T)j > [T]f To2(T R(F1,c)

and the proof of ( is complete.

Now it follows from (31) that

>[Tf- 1
R(F,a) > [T] 02 R(F, o4T (T))

and equation (14) of lemma 1 yields

R (Fl.) aT- 0(T)) 2 sS Y2T02(T)p lfll 1 )

Hence we have

) R(F,a) 2 sui[T fa2p(2e ,1)

and (30) follows on taking su!p in 0.

Upper Bounds

Upper bounds for the minimax risk can be derived from invariance ideas similar to
those used in Lemma 1 and Theorem 1.

Theorem 2: If the parameter spaces FT satisfy assumptions 2a), 2b) and 2c) then

(37) R [FX >/;i ) < [T]+ R(Flg cy)W
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Proof: Let &r be the collection of estimators f(t) such that for T s t s T
1

i =0, .,[T]- 1, f(t) is a function only of Xt T t s and for
1 1~~~~~~~~~~~~

1 --T s t s 1, f (t) is a function only of Xt, 1 -T t < 1. Then
T T

R(F,a) < R (F1,) - infsu E|(f(t) - f(t))2dt.

Now by restricting attention to estimators in the class &r it immediately follows
that

(38) R (F1, C) <

i+l

rr-il T 1
infsu (

.
E (f(t) - f(t))2dt+E J (f(t) -f(t))2dt)

fe &r flE i_-o i/T 1-1ir
i+l

rn-i T 1A< I: infsu E| (f(t) - f(t))2dt + infsuE J(f(t) - f(t))2dt.
Now by2)foreci=O 0 f1, &T f 1-1,

Now by 2c) for each i = 0,1, . . . , [T]- - 1
i+1
T

inf sup E (f (t) - f (t))2 dt <
fj fEF i,T

1
inf su E (f (t) - f (t))2 dt <
tI &r f? 1_-1T

i/T
inf su E (f (t) - f (t))2 dt

irT
infsuE J (f (t) - f (t))2dt.

0

Hence since [T ]- + 1 < [T ]+ it follows that

R (F, a) .
irr

[T]+ fsuE 0(f(t) - f(t))2dt
f. aT flE O

R(F C- ) ' [TI+R(FT, a
).

Now an argument essentially the same as that used to show (36) in the proof of
theorem 1 yields

(40)
RV(T)

1 R(F1, a).

T2(T)

and

= [T]+R(FT,a).

Then

(39)
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The proof of theorem 2 immediately follows on combining (39) and (40).

Upper bounds can also be given in terms of corresponding results for the pointwise
estimation problem. In the following theorem we write R (F, x, a) for the minimax
risk for estimating f (x). That is

(41) R (F, x, a) = inf su E (f (x) -(X))2
where the infimum is taken over all procedures 8 based on the white noise model (1).

Theorem 3: Suppose we observe the white noise process (1) then
1

(42) R (F, c) < R (F,X,a) dx.
0

If in addition for each c, 0 < c < 1 the map

(43) f (t) -+ f ((t + c) mod 1)

is a bijection on F then

(44) R(F,a) < R(F,x,.c) = R(F,O,).
Proof: Given £ > 0, let 8£ (x) be an estimator such that for each x

suPE(f(x) - F(x))2 < R (F. X, c) + e.
Hence

1 1

sup
E (f (x) - 8 (x))2dx f[sup E(f(x)-B(

= JR(F. X, ) dx + C.
0

Since £ is arbitrary we have proved (42). Now if F satisfies the translation invariance
condition given by (43) it immediately follows that

(45) R(F,x,a) = R(F,0,aC) VxE [0,1]
(42) and (45) taken together yield (44).

Example 1 (continued).

As remarked earlier theorem 1 is especially useful for application to asymptotic
problems as ca 4 0. We now give a concrete example to show how this can be done.

Write F (M), F1 (M) and F1 (M) for the class of functions denoted earlier by
F(1,M), F1 (1,M) and F1 (1,M) in (3). In other words
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F(M) = {f:[0,1] -e R:If(x)-f(y)I<MIx-yl, f(O)=f(1)),
and

F1 (M) = F(M)nr{f: [O, 1]-- R: f(O) = f(l) =O}.

and

F1(M) = {f: [0,1] -R:If(x)-f(y)I < Mjx-yl).

Furthermore if we define FT (M) ={TO : f E F1 (M)} then the assumptions of

theorem 1 are satisfied and yield

(46) R(F(M),a) > sup sup
.FfeF1)

[T] (2p 1[ 11

1

Note that the function p (x, 1) is an increasing and continuous function of x and
hence the right hand side of (46) is equal to

sup [T&]-2p 11.

Now the function g defined by

[Mx O0 x < 1/2
g(x) =

(I - x) 1/2 < x < 1

belongs to F1 (M). Moreover it is clear that for any f E F1 (M), I f(x) I < g(x) for all x.

Hence

feFi&1) hfl12 -

1 (2
J2g(X)dX -=12-0

We may thus replace (46) by

(47) R(F(M),a) 2 surp[T fa2p[p 3/,1].

If we put d M-+<T3/2 then
2-,F3aT'2

(48) R (F(M), cy) > suP | 31/3 a213 d2'3

Analysis of (48) is made easy by an analysis of the functional sup da p (4 , 1) given
d 2'

T = 31/2dc | and

I

-2 p ( d2)s1).
2
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in Donoho and Liu (1987). In our case a = -- and Donoho and Liu (1987) show
3

that

(49) sup d7-3 p ( d-, 1) = 0.283.
d 2

Let d* be the value of d attaining the supremum in (49). Then 0 < d* < oo and
hence for any X > 0.

mW3c/3 2/is an integer for infinitely many values of a satisfying 0 < a < t. For

these values of a

(50) R (F(M), c) 1/3 c4/3 0.283

and hence

(5 1) lim 074/3 R (F(M), as) 2 0. 196 M213.

It is also easy to see how theorem 2 can be used to find upper bounds for the rate
1-of convergence. Set a = then theorem 2 shows that

V12~ ~ ~ ~ 1/

[T+ (-Y +
(52) R(F(M),a) < [] R(F1 (M), 1) < a R(F1 (M), 1).T.T2 (1)2

Hence

(53) lim Gs43R(F(M),ca) < R(Fl (M)q 1)aJo

(51) and (53) taken together of course yield 0-4/3 as an optimal rate since
R (Fl (M),j 1) < cc In this example theorem 3 can be used to give a more explicit
bound since

R(F(M),a) < R(F(M),0,a)

and we may bound R (F (M), 0, a) from above by using the optimal linear estimator for
this pointwise problem, essentially given in Sacks and Ylvisaker [1981] and Donoho
and Liu [1987], yielding for sufficiently small a.

R(F(M),0, ) <
M23 (y4/3

31/3

Hence

(54) 0.196 M23 < lij o4/3 R (F (M), a) <
M2/

(4Io 31/3
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It is possible to improve on the upper bound in (54) by using an upper bound given
for the minimax risk for an ellipsoidal parameter space considered by Pinsker [1980].

Let P(M) = (f: [0,1] - R, Jf2 (x) dx c M2,f (0) = f (1)). Then F(M) C P(M) and
0

Pinsker showed that

lir a4'3 R (P(M), a) = 3 2/3

= 0.424M2m3.

Hence

0.196M2m3 < lim "4/3R(F(M),ca) < 0.424M2m.

The ratio 0.424 = 2.16.
0.196



- 15 -

References

Brown, L.D. and Feldman, I. (1990). Manuscript.

Brown, L.D. and Low, M.G. (1990). Asymptotic equivalence of nonparametric regres-
sion and White Noise. Tech. Report.

Casella, G. and Strawderman, W.E. (1981). Estimating a bounded normal mean. Ann.
Stat. 9, 870-878.

Donoho, D.L. and Johnstone, I. (1989). Minimax risk over lp-balls. Technical Report,
University of California, Berkeley.

Donoho, D.L. and Liu, R.C. (1988). Geometrizing rates of convergence In. Technical
Report, University of California, Berkeley.

Donoho, D.L. and Liu, R.C. (1987). On the minimax estimation of linear functionals.
Technical Report, University of California, Berkeley.

Donoho, D.L. and Low, M.G. (1990a). Renormalization exponents and optimal point-
wise rates of convergence. Technical Report, University of California, Berkeley.

Donoho, D.L. and Low, M.G. (1990b). White noise approximation and minimax risk.
Technical Report, University of California, Berkeley.

Donoho, D.L., McGibbon, B. and Liu, R.C. (1988). Unpublished manuscript.

Efroimovich, S.Y. and Pinsker, M.S. (1982). Estimation of square-integrable probabil-
ity density of a random variable. Problems of Information Transmission. (1983)
175-189.

Ibragimov, I.A. and Has'minskii, R.Z. (1984). Nonparametric estimation of the value
of a linear functional in a Gaussian white noise. Theory of Probability and its
Applications 1-17.



- 16 -

Ibragimov, I.A. and Has'minskii, R.Z. (1981). Statistical Estimation. Springer Verlag.

Low, M.G. (1989a). Invariance and rescaling of infinite dimensional Gaussian shift
experiments. Technical Report, University of California, Berkeley.

Low, M.G. (1989b). Local convergence of nonparametric density estimation problems
to gaussian shift experimental, on a Hilbert Space. Technical Report, University of
California, Berkeley.

Pinsker, M.S. (1980). Optimal filtration of square-integrable signals in Gaussian noise.
Problems of Information Transmission. 16 (2), 52-68.

Sacks, J. and Ylvisaker, D. (1981). Asymptotically optimum kernels for density esti-
mation at a point. Ann. Stat. 9 (2), 334-346.

Stone, C. (1982). Optimal global rates of convergence for nonparametric regression.
Ann. Stat. 10, 4, 1040-1053.


