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Abstract

The engineering sciences have loifg been interested in models describing the settling

(or sedimentation) of particle ensembles in viscuous fluids. From a theoretical point of

view sedimentation constitutes a two phase, many-body phenomenon with complex

interaction and as such has proved to be quite inaccessible to modelling attempts with

relevance in applications. A stochastic model was introduced by Pickard and Tory in

1977 and was subsequently revised and refined. In this paper we develop the stochas-

tic model further and also present a satisfactory modelfitting procedure and parameter

estimators based on transit times of sedimenting particles.

AMS (MOS) subject classification: Primary 62P99 62M09; secondary 60J70

Key words. Stochastic modelling, particle sedimentation, coupled Ornstein - Uhlen-

beck processes, first-passage problem, equicontinuity, modelfitting, parameter estima-

tion.
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0. Introduction.

In recent years, the Chemical Engineering community has become increasingly

interested in models describing particle sedimentation in viscuous fluids. This interest

reflects a need among engineers and hydrologists for a utilizable theory to handle this

two-phase, many-body problem and contrasts sharply with the absence of such a

theory.

By sedimentation here is meant the collection of phenomena arising in a two-phase

solids-fluid system that evolves under the influence of gravity (and possibly other

forces) from some initial state. In theoretical terms sedimentation constitutes a

phenomenon in the domain of continuum mechanics and it is possible, at least in prin-

ciple, to set up the equations of motion for all particles and fluid flows. However,

since the number of particles involved is quite large the problem becomes very high

dimensional and hence intractable.

Kynch (1952) has dealt with this intractability by introducing very restrictive simplify-

ing assumptions. These assumptions allow to obtain solutions of the equations of

motion not for individual particle trajectories but for averages of particle motion. In

this sense Kynch's theory describes average ensemble behavior but cannot interpret the

wealth of phenomena arising from the variability of particle behavior.

Section 1 will briefly review both the hydrodynamic approach and Kynch's theory.
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Section 2 then gives a compact description of an updated version of a stochastic model

for sedimentation. The basics of this model were first introduced by Pickard and Tory

in 1977. It has since then been refined and undergone revision (see Pickard and Tory

(1979, 1982, 1986)) and important work has been done recently (Hesse (1987)). The

present author became involved in the project when he joined the Department of

Statistics at Harvard University in 1984 to work with the late D. Pickard.

The present paper also addresses issues of modelfitting and parameter estimation and

we present simple estimators for all relevant model parameters. These are based on

recent solutions of first-passage time problems (Hesse (1990)) and allow to utilize

existing extensive industrial data bases containing mostly transit times of particles in

sedimentation.

In the stochastic model particle velocities are assumed to be governed by a

parametrized equicontinuous family of Omstein-Uhlenbeck processes (OU-processes).

Since the OU parameters are themselves functions of a more fundamental parameter,

namely local particle concentration, the model operates with a nested parametrization

scheme. Since local particle concentration is subject to change as the system evolves,

the structure of the model is similar, in general, to that of random processes in random

environments. In the special case considered here process parameters are functions of

functionals over the state space of the system.
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This complex structure is described in Section 2. The remainder of the paper then

focuses on various aspects of the model. Section 3 presents a procedure for

modelfitting and introduces satisfactory parameter estimators. Some of the suggested

estimators are based, via a conditional maximum likelihood approach, on recent

approximate solutions of first-passage time problems for integrated Omstein-Uhlenbeck

processes (Hesse (1990)).

Section 4 deals with computational aspects. The model easily lends itself to imple-

mentation and simulation. Incrementally, particles individually and simultaneously

evaluate the system configuration (with respect to themselves) and determnine updates

of the fundamental parameter local particle concentration at their position. Then they

perform velocity transitions governed by Ornstein-Uhlenbeck processes with these

updated parameters. Assuming constant acceleration during the time increment this

leads to a new state of the system after time At and, after local particle concentration

has been updated again, to new parameters for the velocity processes. This scheme

can easily be made into an algorithm for incremental system evolution and a detailed

description is given in section 4.

The model has been implemented (by E. Ramos) on an Apollo Domain DN 600 with

high resolution colour graphics driven by the software package PRIMH. However, it

can also be implemented on other devices with graphics tools such as Suns, etc. The
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implemented model constitutes an enormously powerful exploratory tool for hydrolo-

gists and rheologists.

Section 5 gives a brief discussion of directions for future research and of possible gen-

eralizations of the model.

We also mention that a motion picture has been produced using frame by frame pho-

tography on a computer simulated system with 1000 particles.

1. Previous Approaches to Sedimentation.

I

Since particle sedimentation is a physically well-defined phenomenon in the domain of

continuum mechanics, the methods of fluid dynamics constitute legitimate tools to

analyze the dynamics of systems in sedimentation. These methods proceed in princi-

ple, by setting up the equations of motion for all particles and all fluid flows generated

by particle movement. Clearly, the dimensionality of this approach is much too high

for the equations of motion to be solvable and for the problem to be tractable. How-

ever, since every model with claims to an accurate description of the phenomenon

needs to be fluid-dynamically sound we will in this section briefly review the hydro-

dynamics of sedimentation.

1. 1. The Hydrodynamics of Sedimentation.
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Consider a particle system consisting of a finitb number n of particles Pi,

i = 1,... , n, that are immersed in a viscuous fluid which is confined to some con-

tainer D. Let Si, SD denote the surface of the i-th particle and the walls of the con-

tainer D, respectively. Both Si and SD are subsets of R3, Si depends on time t

Fluid dynamics aims to determine the velocity field V (x, t) for x e D and all t . O. A

more detailed account of what follows can be found in Happel and Brenner (1965).

Let Qi be any fixed point in the interior of the i-th particle and denote by V ', V i the

instantaneous translational and rotational velocity of Qi, respectively. Then, if ei is the

position vector of any point relative to an origin at Qi, we obtain the following boun-

dary conditions

(1.1) V = V1V+ V i x ei on each S

V = 0 on SD

for the equation of motion

(1.2) k(a +V -VV) = _Vp+ 1V2V+AF,

where dependence on x and t has been suppressed to simplify notation. Here F is the

external body force per unit mass. The other quantities are local fluid density A, fluid

viscosity il, and hydrostatic pressure p. For systems which settle under the influence

of gravity only, F is equal to the local acceleration g.

Since we are using a linearized version of the equations of motion and due to the
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linearity of the boundary conditions it is possible to decompose V into a translational

component V satisfying only the VI part of Equation (1.1), and a rotational component

Zi5 satisfying the V1 x ei part. Let Vi be the velocity field created when the i-th particle

translates with instantaneous velocity Vt, while all other particles are at rest. Simi-

larly, let Mi5i be the velocity field created when the i-th particle rotates with angular

velocity V' about an axis through Qi while all other particles are at rest The total

velocity field is then the superposition of the fields Vi and (i3i. Hence

V = zVi. M=Sdi, V=V+63.
1 .t 1

Each Vi, Mi satisfies the boundary conditions

Vi = V' on Si

Vi = 0 on Sp j i.

and

ci = Vl x ei on Si

{i5i = ° on S, j. i.

Now, if jFk is the hydrodynamic force exerted by the fluid on the k-th particle as a

result of the translational motion Vj of the j-th particle, then

jFk = rlj dS
Sk

where IIj is the appropriate pressure tensor.

Similarly, the hydrodynamic torque about Qk exerted by the fluid on the k-th particle

due to translational motion of the j-th particle Vj is
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JTk = fek X(j MdS)
Sk

Total force and total torque are equal to the sum of these contributions, i.e.

Fk = LjFk. Tk = XJTk.

All this is analogous for force jFk and torque jTk due to rotational movement of only

the j-th particle and all other particles at rest:

jFk = llj dS

iTk = Jek x (j dS)

k= jFk

Tk= L jTk-

It is well-known that both rotational and translational components of force and torque

can be written in terms of translation and rotation tensors:

jFk = - Vkj Vtr
(1.3) *Tk = -f'kj V

F ~~vijFk = -T1 ekj r

jTk = -1 Qkj VT

'Vkj' "kj' @kj, f2kj are second order tensors. These depend only on the size and shape

of the particles, their initial configuration, the choice of coordinate system, and the Q1.

The tensors are, in particular, independent of the properties of the fluid.

Summing up these component forces and torques one finally arrives at the following

coupled system of equations for total force Fk and total torque Tk:
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n

Fk = -11 I Nkj V + 8kj Vr)j=1
n

Tk = V(kj*V]j +fykj rj=1IjV'

where the summation is on adjacent indices.

One may concisely express these relations as

(1.4) F = -r-K V

where F is the so-called wrench matrix, V the screw velocity matrix, and K the

grand-resistance matrix (see Happel and Brenner (1965) for definitions). For any mul-

tiparticle system, K is a positive definite and symmetric matrix and Equation (1.4)

may, in principle, be solved by inverting this non-singular matrix K. However, except

perhaps in dilute suspensions, determination of the grand-resistance matrix is difficult

at best and even numerical attempts are unfruitful for moderate system size.

The above approach if tractable would reward us with complete trajectories for all par-

ticles and fluid flows. For practical purposes this degree of detailedness of information

is usually not needed. Some workers (Kynch (1952), Fitch (1962)) have therefore

developed approaches that are satisfied with making inferences about average particle

behavior.

1.2. Kynch's Theory of Sedimentation.

Kynch (1952) operates with the two main assumptions that the settling velocity of a
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particle depends only on local particle density p and that this density is constant over

horizontal layers of the slurry. Together with the additional requirements that wall

effects are negligible, that particles have equal size and shape, and that their velocity

tends to zero as p increases towards its maximum these assumptions then make it pos-

sible to derive the time evolution of certain characteristics of the system from a con-

tinuity equation. We briefly demonstrate this.

Define the flux f as

rJ(x,t) = p(x,t) V(x,t)

where x e R is the height above the bottom of the fluid. I' can be interpreted as the

number of particles crossing a horizontal cross-section per unit area and unit time. If

1r varies with x, then so does p.

Consider two layers at x and x + dx. Then the change in concentration in this slice is

equal to the difference between the inflow of particles r (x + dx, t) through the upper

layer and the outflow r (x, t) through the lower layer, per unit area:

a(p (x, t) dx)dt = (F (x + dx, t) - I'(x, t))dt.

This implies

ap(x,t) _ ar(x,t)
at ax

which can be written as

(1.5) ap(X,t) + V(p(X,t)). ap(XIt)
=
O(1.5) ~~~~at ax
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with

V(p)= dI`
dp

Equation (1.5) is known as the continuity equation. It may be interpreted in the fol-

lowing way: If on a graph where position x is plotted against time t, curves are drawn

through points that have the same concentration (isoconcentration curves) then the

coordinates (x, t) and (x + dx, t + dt) of two points on such a curve are related by

p(x + dx, t + dt) = p(x,t)

and hence

(1.6) Xdx+ atdt = 0.ax at
Combining (1.5) and (1.6) shows that the slope of such a curve is given by

dx
dt v (p)dt

and since p is constant along the curve these curves must be straight lines. For every

given point in the positive (x, t) quadrant below the top of the dispersion there is

exactly one such line that goes through the point. Clearly, the starting point of these

lines, (x, t = 0), is determined by the initial concentration and in a region where this

concentration is continuous no two lines intersect. See Kynch (1952) for a diagram.

Another way to view these simple results is in terms of propagation of concentration:

A given value of the concentration is propagated through the dispersion with velocity

x, (p) = -d 1'/ d p. Isoconcentration curves in x versus t diagrams and also r versus p
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curves are characteristics of a particular dispersion. Kynch (1952) demonstrates how

to make inferences about the system based on them.

The theory predicts the formation of a particle fluid interface and is also able to make

statements about the variation of settling velocities over time. However, due to the

restrictive nature of the model assumptions the detailedness and validity of these infer-

ences is limited.

Most unsatisfying, of course, is the assumption that there is no velocity variation at

given concentration. This is clearly false, and the stochastc model advanced in the

following section eliminates this defect.

2. A Stochastic Model for Sedimentation.

The stochastic model of this section is the result of a compromise between an essen-

tially intractable approach (hydrodynamics) and an approach that utilizes unrealistic

and overly restrictive assumptions (Kynch's theory). It is a fruitful symbiosis between

hydrodynamic and stochastic concepts: Individual particle trajectones are modelled

according to fluid dynamic principles and system behavior is treated stochastically.

The basics of the model were introduced by Pickard and Tory in 1977. It has since

then been refined and undergone revision (see Pickard and Tory (1979, 1982, 1986))

and some work has been done since then (see e.g. Hesse (1987)).
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The model rests with its fundamentals on only three major pillars. These are

1. a family of stochastic processes governing particle velocity transitions

2. a functional parametrizing this family of stochastic processes

3. a concept (equicontinuity) providing the bridge between 1. and 2.

Although sedimentation is a phenomenon in three dimensions we will here for reasons

of simplicity (but without loss of conceptual generality) reduce the space dimensions to

two. Only vertical particle movement is considered, horizontal and rotational veloci-

ties are ignored.

To introduce some notation, let D c R2 be the container in which sedimentation takes

place and let Xi (t) e D be the position of the (center of gravity of the) i-th particle at

time t, Vi (t) its (vertical) velocity at that time. Then

{(Xi (t), Vi (t)), t 2 0,) i = 1 , . . .,n3

describes the evolution of the sedimenting system over time. An alternative characteri-

zation is offered by

(P(x,t), xeD, t.0)

where

P: D x 1R (0,1)

with

1 if at time t a particle is positioned at x e D
P(x, t) = {° otherwise
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We start with a discussion of the stochastic velocity processes.

2. 1. The Velocity Processes

Consider a particle with position X (t) at time t At any given time it is subject to the

following forces

a. gravitation Fg

b. friction Ff

c. Langevin force FL

Gravitation Fg = mg is proportional to the mass m of the particle. Friction

Ff = -t V (t) is taken to be proportional to particle velocity V (t) but its direction is

opposite to velocity (Stokes friction). The Langevin force is best thought of as being

stochastic. It is due to the thermal movements of the fluid molecules and it exerts an

increasing influence with decreasing particle mass. Sedimentation typically deals with

particle sizes of orders of magnitude where this stochastic force cannot be ignored. It

will be modelled as white noise, the formal derivative of Brownian motion B (t).

Given the above forces, Newton's law then gives rise to the following stochastic

differential equation:

mdV (t) = mgdt - tV (t)dt + dB (t)

the solution of which is given by an Ornstein-Uhlenbeck process with drift p, friction

parameter D and variance a2. The parameters p., , a2 depend on characteristics of the
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system such as m, r, etc.

A parametrized family of Ornstein-Uhlenbeck processes is therefore a reasonable

choice of processes to govern incremental particle velocity transitions.

We now discuss the nested parametrization of these processes.

2.2. Parametrization

It is a key hydrodynamic fact that identical particles in the same "environment" exhi-

bit the same settling behavior. "Environment" is here interpreted in a very broad

sense and includes, in particular, positions of other particles, fluid flows and possibly

internal pressures and gravitational and external forces.

If a particle has complete "knowledge" of its environment it invokes the laws of phy-

sics and "computes" its incremental trajectory in a deterministic fashion. But obvi-

ously, for the purpose of any modelling with relevance in applications, environment in

the above sense is a much too high dimensional parameter. An attempt is therefore

made to summarize environment by a one-dimensional parameter which tries to cap-

ture the main determinants of incremental particle behavior. The remaining factors are

combined to velocity variation (via stochastic processes) at the given value of the sum-

mary parameter.

Heuristically, a particle being equipped with only a partial knowledge of its full

environment (in the form of the current value of the summary parameter) selects its
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incremental velocity transition from a distribution parametrized by a function of this

summary parameter.

The stochastic model operates with local particle concentration as the major deter-

minant of incremental particle behavior. This choice is physically motivated and has

been confirmed experimentally.

Local particle concentration is most easily defined via (P (x, t), x e D, t . 0) which

characterizes system configuration and its evolution.

Definition: (Local particle concentration c (x, t))

Local particle concentration is a kernel-smoothed version of relative

configuration, i.e.

c(x,t):DxlR+ e (0,1)

c(x,t) = JIK(x-y)P(y,t)dy
D

for some kernel K: R2 -* R+ that integrates to one and is typically taken to be

unimodal and sometimes taken to vanish outside of a neighborhood of the ori-

gin.

Many different kernel functions will presumably lead to qualitatively similar system

behavior. The actually utilized kernel function was chosen on the basis of considera-

tions of computational efficiency. We address computational aspects in a more

detailed fashion in section 4.
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Local partile concentration is a functional whose major purpose is the parametrization

of the distributions that govern incremental velocity transitions over a time interval At.

These distributions are derived from a family of Ornstein-Uhlenbeck processes which

are parametrized as usual by drift I, friction coefficient [3, and variance a2. This

reveals that the stochastic model in fact employs a nested two-stage parametrization

scheme: The Ornstein-Uhlenbeck parameters are themselves functions of the more fun-

damental parameter c which evolves over time. It is clear that these parameter func-

tions cannot be obtained theoretically but can only be determined experimentally from

actual systems in sedimentation. We address issues of parameter estimation and

modelfitting in section 3.

The above principles also give a great deal of insight into the evolution of the entire

system during sedimentation: At time t, each particle individually and all particles

simultaneously determine their specific local particle concentration c (Xi (t), t). In the

family of Omstein-Uhlenbeck processes particles then adjust the parameters to the

updated values g (c (Xi (t), t)), [B(c (Xi (t), t)) and a2 (c (Xi (t), t)) and sample their velo-

city transitions from the corresponding conditional distributions (i.e. given Vi (t)). In

this fashion one obtains Vi (t + At), for i = 1, . . . , n. To compute particle positions

at time t + At an assumption is necessary for Vi (t + St) for ot e (0, At). It makes both

physical and analytic sense to assume constant acceleration during [ t, t + At ]. Particle
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positions Xi (t + At) can then be computed and, again; c (Xi (t + At), t + At)) is avail-

able so that parameters can be updated to ± (c (Xi (t + At), t + At)) etc.

2.3. Equicontinuity

From the above discussion it is clear that a concept is necessary which provides a link

between the family of discrete Ornstein-Uhlenbeck processes and their parametrization.

The stochastic model employs the concept of equicontinuity. If, at local particle con-

centration c, f,(v,t,u) denotes the probability density that a particle with velocity u

will have velocity v after time t, then the following assumption is made about the fam-

ily of densities (f, c e (0, 1)):

Assumption: For every c = (0,1) and every £ > 0 there exists a 8 = 8 (c, e) such that

for all u, v and t 2 To, for some To > 0

c' e (0,t), Ic - c'I < 8(c,e) Ifc(v,t,u) - f" (v,t,u)I < C.

Hence {f, c e (0,1)1 is an equicontinuous family on V x V, say, the cross product of

the set of attainable velocities.

One might wonder why uniformity is required for all t larger than some To only. The

reason is that as t -4 , fc approaches a delta function and the above condition with

t 2 To replaced by t 2 0 would be much too restrictive. However, as stated, the

equicontinuity requirement seems mild. It can be justified heuristically: Since local

particle concentration is the major singlemost factor governing particle behavior, small
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changes in concentration should only cause small perturbations of the velocity transi-

tion structure of particles.

The concept of equicontinuity, together with the parametrization by local particle con-

centration and the fact that velocity transitions are governed by a family of discrete

Ornstein-Uhlenbeck processes has far-reaching implications. These implications, as we

will see, make efficient simulation of the stochastic model possible. We list some

important implications in a loose fashion. The proofs are simple and are left to the

reader.

Implication 1:

Implication 2:

Implication 3:

Implication 4:

For all c e (0, 1) and all u E V, the probability densities f (v, t, u)

converge to a steady-state density as t - : i.e.

lim f (v, t, u) = gc (v), say.

The steady state densities gr are continuous functions of c.

The Ornstein-Uhlenbeck parameters g (c), ( (c), a2 (c) are continuous

functions of c.

If local particle concentration changes sufficiently little along the tra-

jectory of a particle during a time interval [tl, t2 I then this particle

can be treated as remaining under the influence of a single

Ornstein-Uhlenbeck process (as a uniform approximation) during
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[tit 2].

Implication 5:

Implication 6:

If in a region Do C D local particle concentration changes

sufficiently little then this region can be characterized by a single

Ornstein-Uhlenbeck process (as a uniform approximation).

Every sedimenting system can be characterized by finitely many

Ornstein-Uhlenbeck processes (as a uniform approximation).

It should be pointed out that the stochastic model of sedimentation is not a steady-state

model. Although, at any given time, the conditional velocity processes are converging

to steady-state this state might not be reached if significant concentration changes

occur along particle trajectories before the Ornstein-Uhlenbeck velocity processes can

converge.

In the next section we will address the problem of estimating the parameter functions

It (c), P (c) and a; (c) from actual systems in sedimentation.

3. Modelfitting and Parameter Estimation.

In the context of the stochastic approach, modelfitting amounts to detenmination of the

parameter functions . (c), 13(c) and c2 (c) from a physical system in sedimentation.

Some experimental work has been done to study the effects of different concentrations

on the velocity distribution of sedimentating particles, see e.g. Shannon et. al. (1964),
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Johne (1965), Koglin (1971). Shannon et. al. (1964) study, among other things, the

steady-state mean velocity of particles as a function of global (rather than local) parti-

cle concentration y (the total proportion of solids). Their results contradict earlier

beliefs that average steady-state velocity decreases monotone with increasing global

concentration y. To the contrary, there is an interval where the mean velocity vs. con-

centration curve has positive slope and a maximum at some yo * 0.

The reason for this behavior is the fonnation of particle clusters and the fact that these

clusters tend to settle faster than individual particles. In very dilute suspensions parti-

cles are so far apart that hardly any interactions occur and faster settling clusters are

virtually non-existent. When concentration is increased towards yo, the tendency for

cluster formation also increases and their presence increases average settling velocity.

When concentration is increased further (beyond yo) the number and size of clusters

increases also. Eventually cluster frequency becomes so high, that clusters slow each

other down, hence decreasing average velocity again. It can be expected that the

dependence of Omstein-Uhlenbeck drift velocity ji (c) on local particle concentration is

qualitatively quite similar.

As to (3 and a2, their dependence on concentration (both local and global) does not

seem to have been investigated at all. We propose, in this section, several estimators

that allow to make use of extensive industrial data bases containing, for vanes concen-
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trations, particle sizes and shapes, mostly transit time data. For particles staring at

t = 0 with velocity V (0) it is measured how long it takes them to first cross several

boundaries at distances x, 2x, 3x.... The estimation procedure will be demonstrated on

some experimental data. These data were obtained at the Universitat Karlsruhe (FRG)

by T. Lasar. We would like to thank B. Koglin for making them available to us. A

small subset of the dataset (for global concentration y = 0.0023) is given in the appen-

dix.

Parameter estimation based on transit times leads to the first-passage problem for an

integrated Ornstein-Uhlenbeck process with parameters ,u (c (- ,- )), (c ( ,*)),

cy2 (C (- )). For the purpose of estimating these parameter functions one will have to

ensure, through the choice of x, that along the particles trajectories (until boundary

crossing) local concentration is essentially constant and equal to c, say. Then

t

Xi (t) = Xi (0) + Vi (s) ds

where Vi (s) is an Ornstein-Uhlenbeck process with parameters ± (c), P (c), a2 (c).

Define

t(x) = min{t 2 0: Xi(t) = x Xi(O) = 0, Vi(O) = v + ,u).

Hesse (1990) derives several accurate global approximations for the density g(t) of

X (x), in particular, as the boundary becomes increasingly remote

(3.1) g- (t) = xf (2a2 t3)-12 exp (-p2(x - j±t)2 /(2a2t))
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with

(3.2) mean = X-C

(3.3) variance = & X.L-3 3-2.

Another approximation (accurate if (3x - vt) / 2t is large and 1 is small) is given by

(3.4) g2(t) = 2t 8- (3(x - gt)-vt)) (x)

where 4 (x) is the density of the normal distribution with mean = (v/,3) (1 -eC) + gLt

and variance = (a2/2[33) (2pt + 4e-t - e-2PL - 3)

Finally, and globally more accurate than g2 (t) in (3.4),

(3.5) g3 (t) = g2 (t) ((D (X (t)) + (X (t))-l v (X (t)))
where v and D are the standard normal density and distribution functions, respectively,

and

X(t) = (3x - (v + ,)t - (,Bt/4)(3(x - pt) - vt))/(tc312 -Ca3t512/8).
Based on these approximations conditional maximum likelihood estimators may be

derived, see Hesse (1990) for details. Briefly, the random variable

Y = exp(t(x) + ( (x))-')
is approximately of algebraic tail-type in the sense that

P(Y > y) - const.y'
with a = 2P26-2xiC1and y . B for some B.

Hence, if k is appropriately chosen

W (i) =
I
i ln (Y(o) / Y(i+l))(3.6)
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are independent, identically distributed exponential random variables with parameter a.

Here

Y(1) 2: Y(2) > *- Y(n)
are the order statistics in descending order. The number k + 1 of extreme order statis-

tics to be used in (3.6) can be determined by simple data analytic methods. Since x is

known and l can usually be estimated using different methods the above strategy

gives access to ca2p-2 but not to ca2 and f2 separately.

Similarly, one may also make inferences based on the left hand tail of the distribution

of x (x). Define

Z = exp ((x - ptr (X))2 (X (x))-3)

which is also of algebraic tail type, namely

3n

(3.7) P(Z > z) z const.z 2a2
for z large. Hence the above methods may be used to estimate 2.

Since this approach makes use of only a fraction of the data set it is clear that it

requires relatively large data sets to produce estimates with acceptable standard devia-

tion.

We give another strategy to estimate 3 based on the following argument:

Since

X(t) = JV(s)ds
0
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then for any fixed T

T nT

Cov (X (T),X (nT) - X ((n - 1) T) = J E (V (tl) V (t2)) dt2 dt1
0 (n-l)T

a2 T nT
-y J J (e20t, - 1) eC(t1+ t2) dt2 dt

0 (n-l)T

(1 - epT)3 e-Jn2)PT

Hence

(3.8) Cov (X (T) /T, (X (nT) - X ((n - 1)T)) /T) = e<n2)T
Cov (X (T) / T, (X (2T) - X (T)) / T)

Note that (X (nT) - X ((n - 1)T)-1 is the average velocity during the interval

[(n - 1)T, nT. The relation in (3.8) will be approximately true (with T on the right

hand side of (3.8)) replaced by E (,r (x))) for average velocities over space intervals, i.e.

for X (t (nx) - X ((n - l)x))-l computed from first passage times.

We therefore estimate ,3 as the slope of the linear regression through the origin of

(3.9) log tCov ((t (x) - X (0))1, (2x) - X(x))-l 1
on (n - 2) x41

Cov (( (x) - X (0)),t (nx) - X ((n - 1) x))-1
We demonstrate the estimation of parameters with the data set given in the appendix.

The assumption will be made that over the distances considered (up to the boundary at

800mm) the suspension remains uniformly mixed in the large. This implies that for

any of the 30 particles on which measurements were obtained local particle concentra-

tion remains essentially constant along their trajectories. Hence the particles remain

under the influence of a single Ornstein-Uhlenbeck process and the parameters are
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constants: ± (c), [ (c), ca2 (c) with c = 0.0023.

It is also assumed that the velocity distribution with which particles cross the first

boundary is the steady-state boundary crossing velocity distribution and that the runs

of the n = 30 particles are independent.

As can be seen, transit times for different settling intervals are highly correlated indi-

cating that on each subinterval of length 100mm approximation of the displacement

process X (t) by a Brownian motion is not valid. Hence g1 (t) is presumably not a

satisfactory approximation to the first passage time density on each subinterval. This

is consistent with rough estimates (based on physical considerations) of the magnitude

of P. They indicate that, on the average, P (t (nx) - t ((n - 1) x)) will not be large, but

(t (8x) - t (0)) will be. Thus g1 (t) approximates the first-passage density well over

the entire settling distance of 800mm.

This last assumption gives access to . and C2 /132 via the method of moments or max-

imum likelihood applied to observed transit times over the entire distance of 800mm.

But it does not give access to a2 and 12 separately. To disentangle these the methods

based on (3.9) or, for larger data sets, (3.7) may be used. For the data set in the

appendix we obtained the following estimators (tr (x) denotes the observed transit time

of the i-th particle to the boundary at x):
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- a is the estimator of L computed as the sample mean of 8x / (X(8x) - t (0)) where

x = lOOnm

(a2 W-2) ^ is the maximum likelihood estimator based on the approximation g1 (t) i.e.

n

(<i5-2T= 1 : (8x - (j (8x) - X (0)))2 /(r (8x) - X (0))

(a2 r-2) is the method of moments estimator based on var (X (T) / T) - a2c3-21'1

for large T. For large x, the variance of 8x/ (c (8x) - X (0)) satisfies approximately

the same relation (with T replaced by 8x A-1).

- ,B is the estimator of ,B obtained, from (3.9).

For the data set given in the appendix:

g=2.113 with SE = 0.05, (a2,2f=29.8, (a2fV2) =30.4, ,=0.007 (with SE

= 0.0005)

4. Computational Issues.

Although conceptually the model is simple, its structure is complex and it is apriori

not obvious whether it lends itself to efficient implementation and simulation. The

bottle-neck is the simultaneous updating of parameters, velocities, and positions. The

updating of local particle concentration c (x, t) is especially troublesome. It is possible

however to introduce several simplifying features into the model structure without

essentially changing the qualitative behavior of evolving particle systems. These
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simplifications, discussed in the sequel, greatly enhance computational efficiency.

1. A standardized, dimensionless version of the model can be obtained which also

reduces the number of parameter functions to only one. This is achieved by

measuring paiticle velocity in multiples of drift velocity A and time in multiples

of ,3t, i.e.

t [Pt, v' = vW'1 and hence x' x.

In this new coordinate system p' = 1' = 1 and a' = c-1 p-1/2 is the only remain-

ing relevant parameter.

2. The original definition of local particle concentration c (x, t) can be replaced by a

lower-dimensional and computationally more efficient version. To obtain this

define for y e JR

Q(y,t)= Jf P(x,t)dx
Dr{[y, y+Ay] xR

which is the proportion of the horizontal layer at y that is occupied by particles.

The definition of local particle concentration is then revised to

c* :RxR+ e [0,1]

c* (y, t) = f K*(y - y') dQ (y', t)

where

D* ={y e R: (z,y) e D for some zel R

and K*: R -* R is a one-dimensional kernel. In this interpretation, c* is a sim-



- 30 -

ple convolution of Q with K*. Consequently, c* may be efficiently updated

simultaneously for all layers by the Fast Fourier Transform algorithm. If, in addi-

tion, Gaussian kernels are used, then this further increases computational

efficiency. By changing the bandwidth of these kernel smoothers, systems that

exhibit very different qualitative behavior during their evolution may result. Note

that the assumption of constant concentration across horizontal layers was also

made by Kynch (1952).

3. When simulating the evolution of the particle system both space and time need to

be discretized. We chose the increment Ay in such a way that the height of the

sedimentation vessel was divided into about 100 horizontal layers. The tme scale

was discretized to kAt, k = 0,1,2,... with a choice of At so that on the order of

1000 steps were necessary for most particles to reach the bottom of the vessel.

One may also discretize the concentration interval c (or c*) to cm = mAc,

m = 0, 1,... , [(Ac)T ] where [ x ] is the integer part of x. The i-th particle will

then remain under the influence of the Ornstein-Uhlenbeck process with parame-

ters i (cm), ,3 (cMO), 2 (c,=0) during the time interval [ k1 At, k2At ] if

Ic (Xi (kAt), kAt) - cm I ' c (Xi (kAt), kAt) - cm I
for all k = kl, k1 + 1,... , k2 and all m. Similarly for the lower-dimensional

veo *version c
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4. The discretization of time makes an assumption necessary that specifies the

behavior of particles during the intervals (k At, (k + 1) A t) for each k = 0, 1, 2....

As indicated in section 2, the model assumes constant acceleration during these

intervals. This amounts to approximation of the integral in

t+At

Xi(t+At) = Xi(t)+ Vi (t) dt,
t

by the trapezoidal rule of quadrature and leads to position being a quadratic

spline. Hence, this assumption also implies the use of a quadratic interpolation

scheme when determining boundary crossing times, as needed for purposes of

parameter estimation.

5. During simulation the number of visually displayed particles was limited to about

1000. This is a necessary compromise between realism and computational tracta-

bility.

6. Although sedimentation is a phenomenon in three dimensions, vertical motion is

the most important. However, to make the evolution of the particle system more

realistic one may model horizontal motion by superimposing zero-mean Ornstein-

Uhlenbeck processes. In addition, one may allow particle trajectories to overlap

in order to indicate a third dimension.
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5. Discussion.

The local structure of the stochastic model for sedimentation is very flexible and leaves

considerable freedom for fine-tuning into particular applications. This flexibility

includes the choice of stochastic processes (Ornstein-Uhlenbeck, Brownian motion,

Bessel processes, others), the degree of refinement of the discretization of space and

time, the choice of the kernel-smoother and hence the exact definition of local particle

concentration, and the shape of the parameter functions ±(c), a2 (c) and , (c) (or

CT2 (C) in the dimensionless version).

This flexibility makes it possible to design models which exhibit widely different qual-

itative behavior such as the fornation of dense particle layers, systematic or chaotic

velocity variation, the formation of sharp or depleted interfaces, and many others. But

the use and applicability of these models is not limited to particle sedimentation in

fluids. Models of this type may also prove useful in describing the dynamics in chem-

ical reactions, traffic flow patterns, etc.

The purpose of the stochastic model and especially its computer implementation is to

equip engineers with an exploratory tool for their study of sedimentation phenomena.

As described in this paper it covers the basic case of identical particles settling in a

viscuous fluid under the influence of gravity only (i.e. no other external forces or inter-

nal pressures).
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In the future it is hoped to incorporate such features as different particle species, non-

spherical shapes and external forces, e.g. centrifugal forces, and laminar or even tur-

bulent motion of the fluid medium. The study of slurries containing different particle

species is of particular interest in applications. Problems of particle classification and

particle separation into size fractions are industrially relevant.

The author became involved in this project when he joined the Department of Statistics

at Harvard University in 1984 to work with D. Pickard. Some computational work

was done at Queen's University in Kingston, Ontario, Canada and at the University of

California at Berkeley. This work is dedicated to the memory of David Pickard.
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Appendix.

The dataset for which we demonstrate the estimation of Ornstein - Uhlenbeck parame-
ters in section 3 was obtained by T. Lasar at the Institut fir Mechanische Verfahren-
stechnik, Universitat Karlsruhe. We would like to thank T. Lasar and B. Koglin for
making these data available.

t(x) - T(0)
46.3
57.4
66.5
49.8
65.1
55.6
51.1
48.1
44.5

45.8
62.6
60.5
55.1
33.8
56.8
65.8
64.6
40.3
35.3
54.3
37.5
50.3
51.0
60.4
75.4
43.6
47.4

58.0
49.2
58.9

T(2x) - T(x)
50.9
50.7
47.5
41.8
71.9
42.8
63.3
49.9
49.0
43.2
50.3
55.1
52.7
38.6
55.1
57.4
60.0
42.5
37.9
51.8
35.8
45.8
44.1
41.8
65.3
37.3
51.4
54.5
64.1
55.5

Tr(3x) - T(2x)
46.1
53.6
46.8
42.8
60.7
39.3
49.9
49.5
58.4
41.8
51.9
56.9
50.9
45.3
48.1
52.9
52.7
47.4
39.4
43.0
39.5
33.3
38.1
39.9
57.8
39.1
53.9
47.3
64.9
48.4

¶(4x) - r(3x)
36.8
46.5
51.0
49.7
50.5
36.2
36.1
45.8
43.7
39.7
52.3
57.9
44.4

34.6
41.9
42.6
50.8
49.2
37.3
50.2
57.4
33.6
40.6
34.6
55.2
40.3
60.6
38.4
59.9
41.8

T(Sx) -'r(4x)
41.6
36.4
56.6
40.7
47.9
41.6
40.6
56.7
46.5
30.7
56.7
55.0
42.2
34.6
52.1
50.4
52.9
46.4
41.1
64.8
69.5
41.1
41.9
37.9
50.5
41.3
53.9
45.9
60.7
44.3

Tr(6x) - T(5x)
41.0
32.2
56.9
42.2
62.1
52.0
36.7
75.2
52.4
32.4
50.6
57.4
37.2
37.7
44.4
54.3
44.9
38.4
39.4
65.2
65.9
54.0
35.8
43.8
45.7
35.4
52.0
45.5
55.8
37.2

t(7x) - T(6x)
38.3
24.8
48.1
45.6
66.0
48.1
47.8
65.1
52.2
34.0
65.2
64.7
48.6
43.9
38.3
58.2
38.1
35.1
41.2
59.2
58.2
53.5
41.7

40.6
43.3
37.9
45.2
50.3
45.7
34.0

Table 1: Observed transit-time data

in silicone oil).

for 8 consecutive intervals of 100mm length (Limestone particles

T(8x)-t,
41.6
26.2
48.6
44.3
68.2
53.4
55.9
63.8
52.6
36.2
63.8
54.1
41.9
40.8
38.8
58.0
39.8
39.9
37.5
55.9
49.1

40.3
47.7
42.5
36.0
52.8
42.6
51.7

47.3
39.21
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The experiments were conducted in a cylindrical sedimentation vessel of 114mm diam-

eter with a monodisperse suspension of cylindrical limestone particles in silicon oil

AK1000. Reynolds numbers were less than 0.006. Marked boundaries were placed

100mm apart (x = 100mm) starting about 200mm below the surface of the fluid. The

first boundary also defines the zero of the vertical scale. Transit times for settling

between boundaries were visually registered for 8 consecutive intervals. These are

denoted by X (nx) - X ((n - 1)x) for n = 1,... , 8. X (x) denotes the time until first

crossing of the boundary at x. The suspension was initially uniformly mixed (with

overall concentration c = 0.0023). Particles (n = 30 all together) for which passage

times are obtained were first wetted with the liquid and then intoduced at the axis of

the sedimentation vessel below the fluid surface about 50mm above the first boundary

at 0. The table contains values of X (nx) -X ((n - 1)x) for n = 1 , . . . , 8.
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