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Summary. We compare in a formal way the behaviour to second order of
bootstrap confidence bounds for a parameter 0 based on t statistics. We inves-
tigate the effect of:

1) Varying the estimate of scale in the denominator

2) Varying the estimate 0 of 0 used in the numerator

3) Varying the bootstrap method, parametric or nonparametric in terms of
a) Equivalence of the resulting procedures
b) Correctness of the probability of coverage
c) Minimization of the amount of undershoot
d) Robustness to failure of parametric assumptions
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1. Introduction. Recent years have seen the development of a large number of
approximate confidence bounds for a population parameter 0 (F) on the basis of
an i.i.d. sample Xl, . . . , Xn from a population F. These bounds, all based on
resampling ideas, include the original Efron (1982) percentile method and BC
(1985) and BCA (1987) modifications as well as the bootstrap t discussed
extensively bv Hall (1988), Beran's (1987) prepivoting approach as well as
many others - see Hall (1988) and diCiccio and Romano (1988) for recent
surveys.

Methods leading to bounds 01, 02 respectively have been considered
equivalent to first order if,

On, - _ = Op(n-1) (1.1)

and to second order if

-n 0- = Op (nf32). (1.2)

The principal criterion for a good method has been correctness of the cover-
age probability,

P [n < 0(F)] = 1- a +O(n-1/2) (ist order) (1.3)

P[ O < 0 (F)] 1 - a +O(nf1) (2nd order). (1.4)

It is plausible and under assumptions explored in the literature true that bounds
equivalent to a given order have coverage probabilities correct to the same
order.

Hall (1988), (see also my discussion), diCiccio and Romano (1988), Beran
(1987), diCiccio and Efron (1990) have shown that the various methods of con-
struction of bootstrap confidence bounds are equivalent to first or second order
to bootstrap t methods.

In this note we limit ourselves to different bootstrap t methods and investi-
gate the effect of:

1) Varying the estimate of scale in the denominator

2) Varying the estimate 0 of 0 used in the numerator

3) Varying the bootstrap method (nonparametric or parametric)
in terms of,

a) Equivalence of the resulting procedures
b) Correctness of probability of coverage and two aspects which have not
been studied as extensively,



c) Minimization of the amount of undershoot
d) Robustness to failure of parametnc assumption.

Our observations in c) are a simple application of the results of Pfanzagl (1981,
1985) - see also Bickel, Cibisov, van Zwet (1981) that first order efficiency
implies second order efficiency.

The robustness remarks are trivial but we believe worth noting - see also
Parr (1985).

2. Second order correctness and equivalence.
As we indicated our observations are X1,... , Xn i.i.d. F, with empirical

distribution which we denote by Fn. We are interested in a parameter 0:
F -* R where F is a nonparametric family of distributions containing all distri-
butions with finite support, for example F = (all distributions) or (all distribu-
tions with finite variance). We consider the natural estimate 0 0 (Fn). We
assume as a model Fo c F and we are interested in lower confidence bounds
for 0 restricted to Fo which are based on 0. The estimate 0 may or may not be
efficient for estimating 0 on Fo but we can essentially always think of efficient
estimates in this way. For instance, if Fo is parametric with densities p (,0)
then (under regularity conditions) 0 (F) formally solving

JV log p (x, 0) dF (x) = 0

where V is the gradient, corresponds to 0 = M.L.E. We also assume that 0 is
asymptotically linear with influence function iV(-,F) see Hampel (1986). That
is,

0 = 0(F) + n_1~1iV(Xi,F) + Op(n) (2.1)

where

j\i(x,F)dF(x) = 0

and

a2(F) = JV2(x,F)dF(x) < co,

for all F e F. Thus if L (IF) denotes the distribution of a function of
X1,.. . Xn under F then

L |-(0 - 0 (F)) IF]F N(0, 1).



We further suppose that we are given an asymptotically linear estimate S of
a (F) on Fo with influence function r,

t = a(F) + n-1lajnlr(Xj,F) + Op(ni1). (2.2)

for F e Fo. If,

Tn (Fni F) n (H - 3 (F)) / 6

and we know the exact distribution L (Tn (Fn, F) I F) we are led to the exact
1 -a LCB

(EX ~0 - n ( )

where

PF[Tn(Fn,F) < cn(F)] = 1 - a. (2.3)
The bootstrap bound(s) corresponding to OEX are as usual obtained by estimat-
ing F by Fn and replacing the, in general, unknown cn (F) by cn (Fn) where,

Pp[Tn(Fn Fn) < en(F1)] = 1-a (2.4)

and F * is the empirical df. of a sample X1,..., X i.i.d. Fn. That is

(.BOOT =0n- # c(Fn) (2.5)

If Fn = Fn we are dealing with the usual nonparametric bootstrap. If Fo = {FY)
where y= (0, TI) is a Euclidean parameter, and y = (0, f) is the M.L.E. of y,
then Fn -F- is the parametric bootstrap. How do different bootstrap bounds
compare in terms of second order correctness and equivalence? The following
"theorem", stated under unspecified regularity conditions gives the answer.
Parts A and B of the theorem have been noted by Hall, Beran, and others. We
give a heuristic proof and then indicate what kind of regularity conditions are
needed.

We let _%00r, OEXACT denote the nonparametric bootstrap bounds
corresponding to Fn = Fn and the corresponding exact bound. Superscripts 1,2
will indicate different choices of numerator &1) or 0(2) while subscripts will
similarly correspond to different choices of &(1) or (2). (PBOOT with or
without indices will indicate Fn = F( .^) when F = {Fy), y = (0, r).



Theorem: Under suitable regularity conditions, for F e Fo,
A. BoBr, OpB00r are second order correct.

B. BOO = pBOa + OP (n-3/2) = EXACr + O 3(n/32)
C. If N = d2 but 0(2) =(n) + - where LF (Adn) - LF (A) then

LF (n(2380T-q T)-o LF(A-d(F)) (2.6)
where d (F) is a constant. If A is constant, A = d (F). Thus, unless 0(1) and ^(2)
differ to second order only in bias i.e. 0(2) - 0(1) + A ( + O (n312) for a

n
constant, then Z2J8OT and 9BAOT are not equivalent to second order.

D. Suppose 0(1) = (2) = ff, an efficient estimate for 0 on Fo, but r, * r2
where rj correspond to dj via (2.2). Then,

LF (n (OBOOT1-)BOOT2)} LF (A) * 0

Comments: A,B: If F e Fo there is nothing to choose between the parametric
and nonparametric bootstrap t bounds to second order

(C) If 0 MLE, bn EF(0) - 0 then typically bn = b(F)+ (n2) so that if
n

A(2) = -b(Fn)6 0 -

n the debiased MLE, we expect (under regularity conditions!)
bootstrap t bounds based on 0 0(2) both to be second order correct and second
order equivalent even though the parent estimates differ to second order. This
continues to hold for estimates 0 + d (Fn) / n for d smooth. However, if 0(2) i
an efficient estimate produced by an alternative method such as modified
minimum x2 where we can expect LF(A) to be nondegenerate then the bounds
are no longer second order equivalent. Admittedly such estimates 0(2) can

d(Fn)always be improved to second order by procedures of the form 0 + For
n

a discussion see Berkson (1980), Pfanzagl (1981)
(D) If 0 is the MLE of 0 for a parametric model Fo suppose

eS2 2 (x, Fn) dFn (x),

the nonparametric estimate of a2 (F ,) while

62 = F2 (Fe
where y is the MLE of y. Then r, . r2 unless 62 is also efficient for Fo. Thus



the bounds are not equivalent to second order. As a consequence we note the
following phenomenon. Hall (1988) shows that the Efron parametric and non-
parametric BCA bounds are second order equivalent to bootstrap t bounds

based on , i = 1,2, respectively. We conclude that, in general, the

parametric and nonparametric BCA bounds are not second order equivalent
despite the equivalence in A. Using the parametric or nonparametric bootstrap
for the distribution of 0 which is a starting point in this method does make a
difference.

Formal proof of theorem:

Our heuristic argument supposes that, for each studentized statistic we con-
sider T (Fn, F) both L (T (Fn, F) I F) and L (T (F , Fn) I Fn) admit (Edgeworth)
expansions to order n-32. That is,

PF [ T (Fn, F) < x ] = ( (x) - n-112 4 (x) A(x, F) + O (nf1) (2.7)
where A (, F) is a polynomial of degree 2 and 0 (n-1) is uniform in x. Simi-
larly, we require,

Pp [ T (F' , Fn) < X] = (D(x) - n12 (x) A (x,FF) + OP (n1). (2.8)

Agreement Of NBOOT and E (part B) follows from asymptotic inversion of
(2.7), (2.8) and

A(.,Fn) = A(.,F) + OP(nrr2). (2.9)

If we further suppose that we can substitute the random x = c,(Fm) into
(2.7) with 0 (n-1) changing to Op(n1) then evidently part A follows. We note
in passing that the same type of heuristics indicate that all BOOT are first order
equivalent to each other as well as first order correct.

The heuristics for C and D are based on the following lemma from Bai,
Bickel, Olshen (1989).

Lemma: Suppose, for j = 1, 2, statistics Tnp
1) Tni have Edgeworth expansions to order n-1.

P [ Tnj < x]= (x) + n-1/2 Aj (x) + O (n-1) (2.10)

with O(n-1) uniform in x.



2) If Tn2 Tnl + F

L(Tnl,An) - L(U,V) with E IVI < oo.

Then,

A1(x) = A2 (x) for all x iff E (V IU) = 0.

The proof is obtained by considering the Edgeworth expansions of Ee itT which
are valid under (2.10).

To prove C, D we note first that by A we can equivalently consider 91ACT
and 2?ACr.

By (2.7) we expect

c (1) (F) = C (2) (F) + P + O (n7l).

Since

d= (F) + OP (n )

we obtain that (2.6) holds with

d (F) = ca (F) + (F) .

If A is constant we need only show that

r(F) (F) (2.11)

since then,

2~ACT- Acr = -[(F)]

-op (n-f).

But if,

-X (°(1)' 0), Tn = (( 0) 1_ 2

ni 1Fn ~~~~~~~a(F)

An A
evidently n1/2 (Tnl- Tn2)= - (F) =op(1). The lemma applies with

V = 0 and (2.11) follows. For D we also need a result from the theory of
efficient estimation, (see Pfanzagl (1981), Bickel, Klaassen, Ritov, and Wellner



(1991)) which we again state without explicit regularity conditions. These may
however be found in the works cited above.

Proposition: Let Fo = {Fy: y e I), F c Rk be a regular parametric model and
p: Fo -e R given by p (Fy) - q (y) where q is smooth. Let teff be an efficient
(BAN) estimate of . and a be another regular, asymptotically linear estimate of
p.. That is, for all F E Fo, in a uniform sense,

a= ,1(F) + n-1inlw(Xi,F) + op(n-112) (2.12)
where fw (x, F) dF (x) = 0, Jw2 (x, F) dF (x) < oo and the same holds for weff.

Let - (X1, ), j = 1, . . . , k be the score function (derivatives of the loglikel-a Yj
ihood of X1). Then if F = F, for j = 1, ..., k,

cov.y(w(Xl,Fy) - weff(XpFy)(X1,y)) = 0. (2.13)

That is, w (X1, Ft) - weff (Xi, F,) is orthogonal to the tangent space of Fo at

Fo. This is essentially a consequence of the Hajek-Le Cam convolution
theorem. Alternatively it can be viewed as a consequence of the differential
geometry of statistical models, see for example Efron (1975). If the linear span

of { .a (X1, y)) is interpreted as the tangent space of Fo at F7 claim (2.14) is

true for semiparametric models as well see Bickel et al (1991). To prove D it
is enough to establish that

cnl (F) = cn2 (F) + O(n1) (2.14)
For then, by A, the same applies to cnl (Fn) and cn2 (Fn) and hence,

n (9BOOT2 - _BOOT1) = n-1/2 cnl (F) X1 1 (r1 (Xi, F) - r2 (Xi,, F))
+ op

and D follows. But (2.15) follows from the lemma and proposition. Since 0 is

efficient, Nfy(Xi,Fy) is in the linear span of a-1 (Xi,y) j = 1, . .. , k. If,

without loss of generality we take, 61 = deff then, by the proposition, for all
FE Fo,

cov7,(N(X1,Fy), r2(X1,F)-r1(X1,F)) = 0. (2.15)

Write,



Un= Fn (o 0) vn = n --

Then,

Vn = Un + Un (2.16)
d2

= Un +

where

An = Un (n1'/2 ZiLl (r1 (Xi, F) - r2 (Xi, F))C-1 (F))
+ op(l).

Evidently, LF (Un, An) tends to a L (Z,WZ) where
Z - N (0, o-2 (F) fW2 (x, F) dF (x)), W is independent of Z and
N (0, ar-2 (F) J (r1 - r2)2 (x, F) dF (x)). Evidently E (WZ I Z) = 0 and we can
apply the lemma. O

To make these results rigorous we need to justify (2.7), (2.8), (2.9) and sub-
stitution of the random cn (Fn) into (2.7). When the estimates are smooth func-
tions of vector means nl X=1 M (Xi), Mpxlg the argument is due to Cibisov
(1973) and Pfanzagl (1981), see also Hall (1986). In general the idea is:

a) To expand T(Fn,F) in a von Mises or Hoeffding expansion and show that
the remainder after three terms can be neglected in the Edgeworth expansion.
That is, write for suitable aj

T (Fn F) = i{|al (x) d (Fn- F) (x) (2.17)

+ a2 (x, y) d (Fn-F) (x) d (Fn-F) (y)

+ a3 (x, y, z) d (Fn-F) (x) d (Fn-F) (y) d (Fn-F) (z)

+ rn I
where P rn Ir n-3124 ] = 0 (n-1) for some 8 > 0. This is to be expected since
we expect rn = Op (n-2) Conditions such that the sum of the first three terms
has an Edgeworth expansion of the from (2.7) may be gleaned from Bickel,
Gotze, van Zwet (1989) for example. Of course (2.9) can, in principle, be
justified in the same way save that techniques such as those of Singh (1981)



and Bickel and Freedman (1980) have to be employed to get by the failure of
Cramer's condition due to the discreteness of Fn. Substitution of cn(Fn) in
(2.7) can be justified once we express T (Fn, F) - cn (Fn) in the form (2.17) by
using the inversion of (2.8) for cn (Fin)

3. Second order optimality and robustness.

It is natural to define second order efficiency in terms of undershoot for a
lower confidence bound 0* by: For all F e Fo,
i) 0* is second order correct

ii) If 0 is second order correct and 8n > 0, nl2'Bn = 0(1) then

PF[0 0(F)- Sn] < PF[0I 0(F)-An] + o(n-12). (3.1)

In fact to avoid superefficiency phenomena we essentially have to require
second order correctness to hold uniformly on shrinking neighbourhoods of
every fixed F and then require (3.1) to similarly hold uniformly. If o (n-112) is
replaced in (3.1) by o(1) then 0* is first order efficient. It is shown in Pfan-
zagl (1981) and Bickel, Cibisov, and van Zwet (1981) that first order efficiency

implies second order efficiency. But 5 = Z(F) + Op Ifn

is efficient as an estimate it follows that OBOOT is first order efficient.

We conclude that second order efficiency of bootstrap t confidence bounds
depends only on the first order efficiency of the estimate 8 defining them and
not on the choice of e beyond its consistency. If 8 is not first order efficient
then OBOOT is not first order and a fortiori not second order efficient.

Robustness: Suppose 0 (F) is the parameter we wish to estimate for all F E F.
If Fo = {F: y e I7), 1r c Rk we may wish to estimate a(Fy) by a(Fj,) in form-
ing EBOOT. If F i Fo and y = y(F) + op(1) we expect a(F-.) = a(F.F)) + op(l)
Unless FRF) = F, OBOOT will not even be first order correct. This does not hap-
pen if we use 62 = f12 (x, Fn) dFn (x) and the nonparametric bootstrap.

On the other hand if we use & = Jv2 (x, Fn) dFn (x) but use the parametric
bootstrap, when F d Fo, we are, in general, first order correct. The reason is
that,

1-a = Pt4-°&) iCn = PFI[ C ( °) ]Z1..a +ol



But OpBOO is not second order correct since that depends on
A (- , F7fm) = A (- , F), which, in general, is false. Thus, robustness considera-
tions strongly mandate a robust estimate of variance and more weakly mandate
use of the nonparametrc bootstrap.
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