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Summary

Accounting practice calls for nonparametric upper confidence bounds on the

total error amount in accounting populations. Dollar unit sampling and the

assumption that actual value never exceeds book value lead to the problem of set-

ting nonparametric upper confidence bound on the mean of a population taking

values between 0 and 1 on the basis of a sample from that population. The usual

Gaussian asymptotic theory bounds are unsatisfactory since, though samples are

large, there are few informative (nonzero) observations. An ad hoc bound the so

called Stringer bound, has been found to be conservative and is widely used in

accounting practice but its theoretical properties are essentially unknown. We

give some weak fixed sample support to the bound's conservativeness and show

that asymptotically it is essentially always too big. In addition we discuss a

number of bounds which can be shown to be conservative and propose a simple

new procedure which, initial simulations suggest, shares the conservatism of the

Stringer bound for small numbers of nonzero observations and behaves like the

asymptotically correct Gaussian based bound for larger numbers of nonzero

observations.

Sommaire:

(French) La pratique de la comptabilit6 n6cessite des borgnes de confiance

pour la somme totale des erreurs dans des populations de comptes.

L'echantillonage "Dollar unit" mene au probleme de mettre une borgne de
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confiance nonparamktrique sur l'esp&rance d'une variable al6atoire prenant des

valeurs entre 0 et 1. Les borgnes bastes sur la theorie asymptotique Gaussienne

sont pas bonnes puisque bien que les 6chantillons sont grands la grande majorit6

des valeurs est noninformative (zero). Une borgne "ad hoc" appell6e celle de

Stringer est en grand emploi dans la profession des comptables puisque elle est

conservative en pratique. Mais ses proprift&s theoriques sont inconnues. Nous

ktablissons quelques propri6tks de la borgne surtout qu'elle est en effet toujours

trop grande. Nous discutons aussi quelques borgnes qu'on peut d6montrer sont

conservatives et aussi une nouvelle borgne qui ressemble Stringer quand le nom-

bre d'observations positives est petit et ressemble la borgne Gaussienne quand le

nombre est plus grand. Quelques simulations supportent notre candidat.

1 Introduction

The Stringer bound is a widely used nominal 100(1 -ca)% upper confidence

bound for the total error amount in accounting populations when dollar unit sampling

is employed. The bound has been found to be conservative in practice, often exces-

sively so but nothing seems known of its theory. In this paper we partly remedy this

lack and also discuss a number of alternative bounds. An excellent presentation of sta-

tistical issues in auditing and of the Stringer bound and other statistical techniques of

auditing may be found in the N.R.C. report "Statistical Models and Analysis in Audit-

ing" (1988) reprinted in Statistical Science (1989). We use this report as the basis of

our presentation.

In auditing we are given a population {Y1, ... YN ) of "book values of items".

From this population, by some random mechanism, n items labelled ji1 . . , jn are

selected for audit. Let Xi denote the audited value of item j. Our observations

(X1, Y1), . .. , (X,,, Y ) are the audit and book values of the selected items. The ulti-

mate goal is to set upper (or lower) confidence bounds on the population error

Av _ IN 1 (yj - xj). A company audit would typically result in an upper bound while

the I.R.S. may be more interested in a lower bound.
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One of the most popular schema for drawing samples is so called dollar unit sam-

pling more commonly known as sampling proportional to size without replacement.

That is, a first item is selected with probability yj / Y of getting item j where

y _ ,lyi. A second item is selected from the remainder with probability again pro-

portional to the book value of the item selected etc. Since N is large in the situations

considered it is plausible to approximate this scheme by sampling proportional to size

with replacement which leads to (Xi, Yi) being i.i.d. with

P [(Xi,Yi) = (xj,y )] = , 1 < j <N.
y

If we assume nothing further about the population the UMVU estimate of A is just,

n
A = Yn-1T (1.1)

where Ti the "taint" of the i -th selected item is given by, Ti (Yi - Xi) / Yi.

It is usually assumed and often valid in accounts receivable populations that

0 < Ti < 1; only overstatements are possible with maximum error the book amount.

In this form the problem of setting confidence bounds on A reduces to that of setting

confidence bounds on g = E (T1) based on an i.i.d. sample T1, . . . , T, when we

know 0 < Ti < 1. Standard normal and t approximations of course apply but have

been found to be poor in practice. The reason seems to be that, as might be expected,

most of the Ti are 0. The distribution of T is highly skewed and the number of obser-

vations available for estimating E (T IT > 0), the crucial factor in E (T) is small,

sometimes 0. To deal with this problem the following upper confidence bound

credited to Stringer is used. If M -number of non zero Ti let 0 < zM < Z< 1 be

the ordered non zero Ti. Let p (j; 1 - a) - 1 - a exact upper confidence bound for p

when X - bin (n,p) and X = j. Thus, p (j; 1 - x) is the unique solution of

£ n p[k (I _ = 1 -a. (1.2)
k=j +l

The Stringer bound (for the mean taint g) is,

m
11TpO;-a +S[(/l-)-(/l;-aj=1(.3
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Evidently,

P [g[ST 2. IM =0] . P [gIST 2P [T >O]IM =0] = 1-a. (1.4)

In section 2 we motivate the Stringer bound and show more generally that,

P[gST >p.] > (1- a)n+lforn 2 2 (1.5)

> (1-a)forn =0,1 or ir=0.

On the other hand we show in section 2 that, as n -e oo,

>nP[!ST >p] 2 1-a (1.6)

with strict inequality unless the distribution of T concentrates on at most two points

other than 0. But it is also easy to see that the bound is conservative for distributions

concentrating on at most one point other than 0. All this evidence suggests the bound

is always conservative but we have not been able to show this.

In section 3 we bnrefly discuss some genuinely and approximately conservative

alternatives to [1ST as well as other choices for an upper confidence bound.

2 The Stringer bound

Assume 0 < T < 1.

To motivate the Stringer bound let x _ P [T > 0], p E (T), G be the condi-

tional distribution of T, given T > 0. Then,

1

p. = itfdG (t) (2.1)

and for M, z 1, . . . , ZM fixed,

M
=i J tdG(t)

j= (zj1, z ]

M
. xi z, (G (zj) - G (zj+,))}

where z0 - 1, ZM+1 = 0. Then, by Abel partial summation,

M-1
p . { X (z1 -zj+l) (1-G (zj+l)) +zM (2.2)

j=0I
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Now, by Abel again,

M-1
ST= (zj -zj+1)p (j -a) +zMp (M, 1 - a). (2.3)j=-0

Let U1, ..., U,, be i.i.d. uniform (0, 1) and U(1) < * U*< (n) be the correspond-

ing orders statistics. Then if G is continuous, it is easily seen that,

L(1 - G (z1),. . . , 1 - G (zM),M) = L(U(1), , U(Mp)lAM') (2.4)

where M' {i : Ui < i}. Furthermore, by definition of p (j, 1 - a),

p (n, 1 - a) = 1 and

P [ U(+j) <p (j, 1 -a) ] = 1 -a, (2.5)

for 0 < j < n - 1.

Now suppose it = 1 so that M = n. Then, we see that giST simply replaces each

1 - G (zj+1) by its 1 - a upper prediction bound p (j, 1 - a).

We now prove,

THEOREM 1. i) If G is continuous

p[U.< IST] 2 (1-a)n+l. (2.6)

If i = 1 or n = 1 we can replace (1 - a)n+1 by (1 - a)n.

ii) If G is a point mass or i = 1 and G concentrates on at most 2 points, fIST is con-

servative.

Proof. By (2.2) and (2.3),

M-1
P [ R S ST ]=P [ X j£ (Zj - zj+,) (1 - G (zj+0) - p (i 1 - 0)) (2.7)1=0

< . zM{(p(M,1-a)-1)+ ( i) PST)]

Now, from (1.3)

(1-itr) PST [+i1 p (M,1 -a).
it ZM

So P [ g < lST ] is bounded below by
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M-1
P [ I (Zj - zj j) (l - G (zj+0 - p i 11 l - a)) 5 0, p (M, -)1

j=0

and a fortiori by,

P [ max (1 - G (zj) - p (j, 1 - a)) < 0, M k (ir)] (2.8)
l5j<M

for the appropriate integer k (x). Applying (2.4) we see that (2.8) can be bounded

below by,

P [ max (Uj) - p (j, 1 - a)) < 0, M'2k(X)]. (2.9)
1<j<n

But from Marshall and Proschan (1966), since the variables

(1 (Ul < p (j,1 -a)), 1 < j < n, 1(Ul <it))

are positively dependent we can conclude that

P[max(U(j)-p(j,1-a)) < 0, M'.>k(n)] (2.10)
15j:sn

n
2 ( Ilp [u(i) <p (jl1- a)]}P [M'2 k(rc)I = (1 - a)n+l .

J=1

If x = 1, k (X) = n, P [M' > n] = 1 and the second statement of (i) follows. The

case n = 1, x < 1 can be calculated directly. For (ii) note that if G is a point mass at

z ,

P [i < ST] = P [p (0,1 - a) + z (p (M,1 - a) -p (0,1 - a)) 2 iz]

> P [p (M, 1 - it)> ] = 1 - a.

The case i = 1, G concentrates on two points is argued similarly. The theorem fol-

lows. E

This bound is obviously grossly inadequate since a great deal is lost in the passage

from (2.7) to (2.8) and (2.8) to (2.10). That the situation is actually much better is

suggested by what happens if i and G are kept fixed and n -> oo.

THEOREM 2. For all P,

PST = + c(P) Z1-a + o, (n-1/2) (2.11)n1/2
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where, D (zi) = 1 - a and I is the standard normal df., and

c (P) = G-1(1 - t) (1 t) dt (2.12)
o 2(7t(1 -t~r))112 (.2

Further,

1 1

c2(P) . t(Jz2dG - i(fzdG (z))2) (2.13)
0 0

with = iff G concentrates on at most 2 points.

Note that (2.12) and (2.13) imply that,

lirnP [ g<f[isT ] 1 -a
n

with strict inequality unless the distribution of T1 concentrates on at most 3 points one

of which is 0. Recall that by theorem 1 (ii), P [gjST . j ] 2 1 - a holds for all n if

the distribution of T1 concentrates on at most 2 points. The key argument in the proof

of (2.13) is due to Y. Ritov.

Proof. Note that,

j+1 n+1
P[U(+l)2c] = P[IE2>c IEiJ (2.14)

j+1 n+1
-P (1 - c) (Ei - 1) - Y, c (Ei - 1) 2 C (n + 2)- (j + 1)]

where E1, ... , En are independent standard exponential. Suppose j < n (1 - £),
£ > 0. Write c =c1 = j+1 /n+2(1 + v 1(j + 1)1/2) where v =0 (1)). Then,

(Ya2 (1 - C)2(j + 1) + C2(n - j + 1) = (j + 1)

where Q denotes order. Let,

Krj = r{(l-c)r(j+1)+(-C)r(n-j+1)}Kr

where Kr is the rth cumulant of E1. Then,

K3j 2cs73{-c3(n + 2) + (i + 1)(3c2 - 3c + 1)}

= -12

K41 = 9a74{e4(n + 2) + 2(j + 1)(3c2 - 2(c + c3)}
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= Q(j1)
and so on. Note that

Ili (n+2) c2 - 2c + 1 (2.15)
j+1 (- + 1)

(J + 1) + V2 +1 A2(J+ v, (n + 2)-1/2).
n +2 n +2 n+2

We can similarly write,

j r K- = A (+,v,(n +2)"1/2) (2.16)2 rj r V+
where Ar (*,*,*) is entire in its arguments and Ar (u, V, 0) _ Ar (u ) doesn't depend on

v. By standard results on Edgeworth expansions, see for example Bhattacharya and

Ranga Rao (1975),

P [ U+1)2C] = 1 - D(v A-1/2) (2.17)
k

- 4(v A-112) (j + l)-l12Bi (v, n+ 1 (n + 2)-1/2)i=1 ~n+2'

+ O (j - 2 ))

uniformly in IvI s M, n& j1 n (1 -e), 6< 1/4 where Bi(.,,) are entire. Take

k > 3/8- 1 so that the remainder in (2.17) is o (n-312) for j 2 n8. Let v, j range

freely subject to n j s n /2, Iv I . M. By (2.17) we deduce, ifpj -= +2'

n~~~~~~~~n+
p (j,1 - a) =pj +

z -a p (1 -P.) i1/2 + o u/-1).

Writing v = z [1- (1 - pj) ]1/2 nl/2 + w (j + 1)-1 and continuing in this fashion we

can deduce that if ri (pj)1/2

p(j 1 - a) =
p1 + l-a Co(r1) + C1(r1) C2(rj ) (2.18)

where Co(r) = r (1 - r2)1/2, and C1 and C2 are smooth. Therefore,

1 ZI-la 2 [r()p(,l-o0)-(p(j-l,l-c)
nn+2 + 1/2 2 [r (1_-r12)J-1/2(1+o(l))
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+ o (n 3/2)

Suppose i < 1. If Fn is the empirical of U1, . .., Un,

Fn (U j+1)) _1

P IU(j+1) >Cn n
I = PI [1 *l

I(j+1)1 UV~(+l) n

c P [inf{ x > U(1)sx cn

- 0 if cn - oo by (6), (7) p. 345

of Shorack and Wellner (1986). We hence obtain,

p(j,l-a) = o(-) (2.19)
n

uniformly in j.

Then

m
gIsT= Xzj [p (j, 1 - a) -p (j - 1, 1 - a)] (2.20)

j=n

+ o (n28-1)
m~~~

By (2.19), if ft =

n

1 m z( (l- 2p )[pj (1- pj1) ]-112 (1 + 0 (1)))[T= -Izj(1+ ~1/2 2 [1(o()) (2.21)

+ op (n-1/2)

= T + 1/2 |fG -( 1- t) ( - 2ftt) [tt (1 - Itt) ]-112 (1 + o (1)) dt + op (n -1/2)

where Gn is the empirical df of VI, . . . , Vn .

Since, with probability 1, Gn 1 (t) converges uniformly to G-1 (t) and ft -* t we

can apply dominated convergence to obtain (2.11) for t < 1. If it = 1 we carry

through a similar argument for the upper tail j 2 (1 - £) n, upon noting that

P[U(J+1) 2 c] = P [ I -U(n_j) C]= 1 -P[U(n1j) 2 1c-]

or
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p(jll -a) = 1-p(n -j- l,a).

Finally we give Y. Ritov's argument for (2.13). Let

a(s) - (1-s)

Then, by integration by parts and Fubini,

1 1

c2(P) = J[Ju (1 - tu)irv (1 - nv)]112da(u)da(v).
00

Similarly,

1 1

cY2(P) = tf[G-1(1-s)]2ds - 2lJ[G-1(1-S)]dS ]2 (2.22)
0 0

11 1

= cJfda(u)Jda(v)ds
Os s

11 1

- tfda(u)Jda(v)ds dt
Os t

1 1

= 7cJ1(7u \viv) - nu n ]da(u)da(v)
00

where V denotes max. But, if u < v,

[u (1 - U)v (1 - v)]l/2 > u (1 - v) (2.23)

with equality iff u = v. Comparing (2.21) and (2.22) we see that (2.13) follows and

further that equality holds iff G-1 takes on at most two values or equivalently G con-

centrates on at most two points. The theorem follows. O

3 Some alternatives to the Stringer bound

It is not difficult to obtain bounds which can be proved to be conservative under

the Stringer assumptions. Unfortunately these bounds tend to be even more conserva-

tive in practice than the Stringer bound. Here are two examples.
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3.1. The Hoeffding bounds

Bickel, Godfrey and Neter (1989) discuss the following procedure. Hoeffding
(1962) shows that if 0 < T < 1, j = E (T) then P [T > a I < V (a), < a < 1

where V (a,) = ((1 - )/(1 a))n(la)(g/a)PZ. V (a4) is just

max{inf{e-bt Ep ebT : b . 0} : P concentrating on [0, 1], Ep T=}

which is achieved for P [T = O = 1 - P [T = 11= 1 - . Note that V 1 in a for

fixed , t in g for fixed a. Now define a (4) by,

V(a(u),4) = a, O < aln

a = 1, al/n < < 1.

Let

f = 1 a- (1-T). (3.1)

Equivalently,

V(T,gH) = a (3.2)

since V (1 - a, 1 - )=V (a,g).

Then, by a standard argument,

P [9< H ] 2 1-a . (3.3)

It is in retrospect not surpnrsing that this bound though used successfully for proba-
bilistic purposes is extremely conservative. For n large, o2 = Var (T1) > 0,

z2
p [ln/2( ) > z] 1--D(z) e 2

0 ~~~~~~~~~z(270 1/2

for z large. On the other hand, V (g + 1/2,) - e2z2. That is, V is conservative

because it replaces a2 by the worst case 1/4 and the normal tail 1 - D (z ) by e z2/2.

3.2. The Kolmogorov Smirnov bound

R. Pyke has suggested the bound,

gRP = T + da
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where,

p [supx (Fn (x) F (x)) < d+] > 1 -a(

and Fn is the empirical d.f. of T1, ... , Tn. Then,

1

P [g < RPI PI[(Fn (x)-F (x))dx < d+]
0

. P [sup(Fn (x)-F(x)) < d+ ].
x

This bound shares the asymptotic extreme conservativeness of the Springer and

Hoeffding bounds since

n 1/2d + ( 1 log 1 )1/2,

so that this bound replaces 1 - D (z) by exp (-2z 2) Alternatively we may seek approx-

imate bounds which will be tighter and yet reasonably conservative. There are a

number of Bayesian and other parametric proposals available - see Cox and Snell

(1979) for example. But none of these seems to behave reliably if the distribution of

T does not belong to the model.

The normal approximation bound, gIN T + z sn -1/2 where s2 (n - 1) I n is the

sample standard deviation is, of course, asymptotically correct but is known to behave

poorly (and is undefined for m = 0). A number of bootstrap alternatives are available
- see diCiccio and Romano (1988). As an example we consider the "nonparametric

tilting" bound which they show is "second order asymptotically correct".

Given T1, . . ., Tn I let { Psi I be the exponential family of distributions placing

mass proportional to ets on t = TI,. . ., Tn. Let T1*, . ..,Tn* be a sample of size

n from Ps . Let

u(s) = dP (t) = T eDefine s by,sTi

Define &' by,

PiIT >T = 1-a
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and

'tilt =

That is, Itit is the 1 - a UCB for L when sampling from the exponential family

{P'*}. Calculation of ftilt requires simulation of T under P, for a range of values of

s.

A natural simplification is to replace Ps* [T a ] by its Hoeffding lower bound

B (a,s) and then solve, if possible, B (T,s) = 1 - a to get s and let g = (s*).
Compromises between the bootstrap and Hoeffding bounds such as this one are under

investigation.

The essential difficulty of this problem is that M is typically moderate even though
n is large so that M is approximately Poisson rather than normal and we are not close
to asymptopia. It is this set of circumstances that the Stringer bound seeks to capture.

The following bound is proposed as a compromise between the Stringer and Gaus-

sian bounds behaving like Stringer for M small and like the Gaussian bound for M
large. Our point of departure is to write,

n M
£ Ti = £Vi,
i=1 i=1

where M has a binomial (n,n) distribution and Vi has the conditional distribution G
of Ti given Ti > 0.

1) We estimate t not by the bootstrap which would be Mln but the larger
p (M, 1 - a), where p (M; 1 - a) is as defined previously.

2) We estimate the distribution G by G, the empirical distribution of the positive Ti
ifM > 0. If M = 0 it is conservative to take G point mass at 1.

For any t we accordingly estimate P [£1, Ti > n t - nt] by,

P*[ AfJ= Vi* 2 np (M, 1 - a) V - nt] where, under P *, M* has a binomial

(n,p (M, 1 - a)) distribution and Vi* are independent identically distributed G. We

then can solve, ifM = m, for tag

M*
P* > np(m,1-a)V-nt] 2 1-a (3.1)

*=1
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M*

and P*[ XVj*>np(m,l-a)V -nt] < 1-a.
*=1

We then use

=T + ta.

as our bound.

1) If m=0,V* E1,A [M* >np(0,1-a)-nt]

P* [A] = (1 - (1 - p (0, 1 - c))n)P* [A Im* 2 1]

= (1 - a)P* [A Im* . 1]

since p (0, 1 - a) = 1 - alm. The second term is = 1 iff nt 2 np (0, 1 - a), that
A

is, iff u = ta =p (0, 1 - a)

2) If m =1,

^ 1 ka
ta = V1(-+p (1,1-a)--) (3.2)

n n

where P* [M* 2ka] > 1 -a, if M* bin (n,p (1, 1 - a))

p * [M* > kx] < 1 -a

3) For m > 2 we can approximate further to obtain a bound in closed forn. Note

that,

M*
E (XVi*) = np (m, 1 - a)V

M*
Var* ( Vi*) < n {p (m, a)s 2 + p (m, a) (l p (m, l a)) I2}

where,

1
2

s 2 - 1il(Vi - V)2

This leads to

T= 1+ (p(mloc)[sv2+(1p(m,l-oc))V2])1'2 (3.3)1(a2

by (2.18) As n -* oo, p (M,l-ao) --*>t, s 2 ->Var(V), V-E(V) and the
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bound is asymptotically correct. Since M / n p (M, 1 - a) we expect the bound

to be conservative.

P. Lorentziadis has carried out a small simulation of this approximate bound with

encouraging results. In all cases n = 100, a = .05 and 1000 simulations were per-

formed. We took X = .06, .12. The distributions G considered were:

1) Uniform (0, 1)

2) G = p{1) + (1 - p) {t) a mixture of point mass at 1 with point mass at t with

probabilities p and 1 - p. We used,

a) p = .5, t = .5

b) p =.9, t =.1.

For comparison we table,

CsT - the coverage probability of the Stringer bound

CN - the coverage probability of our bound

mSt((mN) - the average overshoot of the Stringer (new) bounds when they cover.

That, is msT _ E (ST - ,u)+ and mN is defined similarly

CST MST CN mN

Situation 1

2a)

b)

1.00 .05 .95 .03

1.00 .06 .96 .04

1.00 .07 .98 .05

x= .06
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Situation 1

2a)

b)

Further investigation of this bound and

approximation for m > 2) is envisaged.

CST mST CN mN

1.00 .07 .95 .04

.99 .08 .96 .06

.99 .09 .97 .07

x= .12

the "exact" form (without Gaussian

Acknowledgement: I thank P. Lorentziadis for the simulations and J. Neter for helpful

conversations.
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