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Abstract

We develop inequalities for the fraction of a bandlimited function's
Lp norm which can be concentrated on any set of small 'Nyquist den-
sity'. We mention two applications. First, that a bandlimited function
corrupted by impulsive noise can be reconstructed perfectly, provided
the noise is concentrated on a set of Nyquist density < 1/7r. Sec-
ond, that a wideband signal supported on a set of Nyquist density
< 1/7r can be reconstructed stably from noisy data, even when the
low frequency information is completely missing.
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1 Introduction
The 'Analytic Principle of the Large Sieve', as Montgomery [13] calls it, is a
family of iiiequalities for trigonometric polynomials which has found a variety
of applications in analytic number theory. From the point of view of the
present paper, such inequalities are interesting because they control the size
of trigonometric polynomials on "sparse" sets. For example, Montgomery
[13] page 562 gives the following inequality, whose form he attributes to
unpublished work by E. Bombieri. Let it be a positive measure of period 1,
and let S(a) = F,'++ ake21ika be a trigonometric polynomial of degree n
and-period 1. Then

j S(a) 2du < (n + 26-1) (sup [a, a+6]) I lakI (1)

As f0 IS()I2da=- k IakI2, this inequality has the following interpretation.
If T is a periodic set of period 1, and obeys the sparsity condition

nsupITn[a,a++ il < (2)

with e a small positive number, then, by taking o(da) = 1T(a)da in (1) we
have

ITn(o,i] IS(ct)12da/d 40 l] IS(a)12da < 3e. (3)
In short, only a small fraction of a trigonometric polynomial's "energy" is
localized to the set T. Thus if T is "sparse" in precisely the sense that (2)
holds;- then S cannot be concentrated to T. We will show below that, by
adapting an argument of Selberg, the constant in Bombieri's inequality (1)
can be replaced by (n-1 +6-1), and so the right side of (3) can be improved.

Independently of developments in analytic number theory, inequalities
analogous to (1) have been established for entire functions of exponential
type, which of course are close cousins of trigonometric polynomials. Let
Bp(Q) denote the class of entire functions of exponential type Q which are in

on the real axis. Such functions have Fourier transforms f(w) which vanish
for Iwl > Q, and hence are generally called Bandlimited; compare [9, 11] and
references there. Boas [1] showed that if p is a positive, sigma-finite measure,
placing mass less than e in every interval of length 1, then

J If lPdi < C(p, Ql) L IflPdt (4)
-00
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for every f E Bp(Q), Q < r. Again, if T is a subset of the real line satisfying
the sparsity condition

sup IT n [t, t + Q] < e(5)
t

this implies that

I If IPdt/ J If IPdt < C(p, Q)f. (6)

In words, only a small fraction of a bandlimited function's Lp-norm can
be concentrated on sets which are sparse in the sense that (5) holds. We
show below that an adaptation of Selberg's argument for the large sieve
gives a substantial improvement on the coefficient C in Boas' inequality in
case p = 2; and that a different but related argument gives a substantial
improvement in the case p = 1.

Our interest in such inequalities, and in getting good constants for them,
comes from signal recovery problems, which we describe in section 2 below.
Briefly, the existence of constants for which such inequalities hold implies the
existence of certain surprising phenomena in signal recovery. Most impor-
tantly for us, the better the constants in such inequalities, the broader the
range of cases in which those phenomena are known to occur.

In section 2, we sketch the signal recovery motivation of our study; in
section 3 we discuss L2 inequalities related to (4); in section 4, L1 inequalities;
in section 5, the limits of our technique; finally in section 6, we return to
inequalities of type (1) and applications to discrete-time signal recovery.

2 Sparsity and Signal Recovery
WVe are interested in three specific phenomena, which are discussed at length
in [5], where further references are given. Here we permit ourselves only a
brief discussion.

2.1 Perfect Recovery of a Bandlimited signal
Logan [9] discovered an interesting phenomenon. Suppose we measure a noisy
version r of a bandlimited signal b E Bi(Q):

r = b + n.
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Here n is the noise, about which we know only that it has finite L1 norm, and
that its support, although unknown, must be a sparse set. Think of highly
impulsive .noise.

Logan 19] proposed estimating b by the minimum L1 projection:

/1(r) = arg min llr-bil1. (7)
bEBI (fl)

Here II * denotes the L1 norm; and ,1(r) in general depends nonlinearly
on r. Surprisingly, under certain conditions 81(r) = b perfectly, whatever be
the size llnlll of the noise.

Let W = Q/ir, so that W-1 is the usual Nyquist interval for entire func-
tions of type Q. Given a set T C R, let PT be the operator that restricts
support to T, so that (PTf)(t) = f(t)1T(t). Define the operator norm

jo(T, W) sup IIf
fEBi(() llfllI

Logan [9] showed that if T _ support(n) and llnll < oo, the condition
po(T, W) < 1/2 ensures that /h(r) = b exactly, even though n may be of
arbitrarily high energy and of arbitrary form (subject to the constraint on
its support). He proved that po(T, W) < WITI, which shows that if the set
T is sparse in the sense of small total measure this perfect recovery phe-
nomenon occurs. He asked the question for what other sets T the inequality
uo(T, W) < 1/2 would hold. See [5] for further discussion, and explanation

of the connection of po(T, W) < WITI with the uncertainty principle.
In section 4 below we give Theorem 7, which may be used to considerably

extend the range of cases where Logan's phenomenon is known to occur.
Define the Maximum Nyquist Density by

p(T,W) = Wsup Tn [t,t+
Combining inequality (21) of Theorem 7 below with the notation of this
section gives

1po(T,W) = sup fTlflIdt
fEBI(fn) f ifldt

< n(Q/(2 _ sup IT n [t, t +1/W]j
sin(Q/(2W)) t
7r

=-p(T,W).2
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Since p(T, W) < WITI, and since one can easily construct examples where
p(T, W) is arbitrarily small yet WITI = oo, this inequality can be a consid-
erable improvement over yo(T, W) < WITI. It implies

Corollary 1 Suppose that r = b + n, b E B1(Q), that linlli < x, and that
supp(n) = T has Nyquist density p(T, W) < 1 . Then yo(T, W) < 2; the
solution ,31(r) of the minimum LI-problem (7) is unique, and recovers the
signal perfectly: 131(r) = b.

In other words, the noise can be supported on a set of infinite measure, yet
if the support occupies a fraction less than 1/r of each Nyquist interval, the
original bandlimited signal will be recovered perfectly by the L1 technique.

Earlier work on inequalities for entire functions, such as Nikolskii's [14]
could be adapted to show that the density threshold for Logan's phenomenon
is at least as large as 1/(2 + 2ir); this is considerably weaker than the result
here. Improving the constant in the inequality (21) would raise the known
threshold for this phenomenon from 1/r to something larger. On the other
hand, the condition p(T, W) < 1/2 is easily seen to be not sufficient to
ensure perfect recovery, so there is limited room for further improvement in
this direction.

For later use, it is convenient to have the following stability result.

Lemma 2 Let r = b + n with b E B1(n) and suppose that for some set T
satisfying pco(T, W) < 1/2 we have In - PTnII, < e. Then for any solution
131(r) of the minimum Ll-problem (7),

1113(r) - bl1 < 2(1 - 2yo(T, W))-<E
Thus, if the noise is almost concentrated to a set of Nyquist density

p < 1/7r, the L1 method almost recovers b.
Although the argument for this Lemma is a simple extension of the ar-

gument for uniqueness, it does not seem to have been recorded in either [9]
or [5]. We prove it in the appendix, section 7.

2.2 Recovery of a Sparse Signal
In exploration seismology, there arises the problem of recovering a wideband
signal from noisy observations when it is essentially impossible to obtain
reliable low frequency information [5, 16, 8, 19].
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This situation may be modelled as follows. Suppose that we are interested
in recovering a signal s, when our measurements are

r =s+z+b,

where z(t) is noise, known to be small in Li-norm, and b(t) is an unknown
bandlimited function b E B1(fZ), of arbitrary but finite L1 norm. Because
the nuisance function b is unknown, and may be much larger in norm than
s, there is no reliable information in r about the low frequency behavior of
.

The problem as stated is obviously ill-posed. Luckily, with an additional
piece of prior information - sparsity of s - stable recovery is possible. Con-
sider the following reconstruction rule (essentially the continuous time version
of one discussed by Santosa and Symes, [16]). Let al(r) be the minimal L1
norm reconstruction:

a,(r) = argminI -1 1 : r = .-+ b, b E B1(Q);

in the case of more than one minimnizer, select any minimizer.

Corollary 3 Suppose that in the above model lizill < i77 and that s is ap-
proximately concentrated on a set of low Nyquist density: i.e.

IS - PTSII1 < 772

for some T satisfying
p(T, W) < 1/r.

Then any solution al(r) as above satisfies

lIs - al(r)II, < 2(1 - rp(T, W))' (rl + 72) + 711

In short, approximate sparsity of s allows approximate recovery from
noisy data even though the low frequencies are rrissing.

This result follows from the stability result, Lemma 2, and a few simple
observations. First, we have the identity al(r) = r - /1(r). Second, under
the given conditions, putting n _ s + z, we have r _ b + n, and lin -
PTnlIl < 771 +i2. Hence the stability Lemma applies and 1 31(r)-b II1 < 2(1-
2uo(T, W))-l (qi + 2). The result then follows from the triangle inequality.
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2.3 Recovery of Missing Data
We now describe an application of L2-type inequalities. Suppose we have
noisy observations on a bandlimited signal b E B2(Q). Unfortunately, there
is a set T of time indices where observations are missing, so we only observe

r(t) = b(t) + n(t), t T;
where IIni12 < c, say. The problem is to recover b for all t E R from these
partial observations, and to do so stably, i.e. with error at worst proportional
to e. See [5], section 4.

Define the ideal low-pass operator

(Pwf)(t) = 12| f(w)eiwtdw

with f(w) = f f(t)e-iwtdt the Fourier transform. Define the operator norm

Ao(T,W) IiPWPTI12,
where PT is the support restriction operator introduced earlier. [5], section
4, describes how a convenient iterative technique (the method of alternating
projections), may be used to recover b for all t, stably, provided Ao(T, W) < 1.

The uncertainty principle is developed in [5], to get the inequality

Ao(T,W) < /IT (8)

Theorem 4 below affords a considerable improvement on (8). Let us see how.
First, if f PWPTS where s E L2, then f E B2(Q); and as Pw and PT
are both projections, IIfI12 < 11sI12. Second, as Pw and PT are self-adjoint
operators on L2,

IIPTPwsII2IIPWPTII2 IIPTPWII2 = SUP 1 2IIII

fT If 12< SUp f If 12
fEB2(f)f1I

The inequality (11) of Theorem 4 below, taking d4(t) = 1T(t)dt, gives that
for every f in B2((Q) we have

|If 12 < (W + b-') SUp IT n [t, t + 6]1 | I l2.9
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Substituting in the definition of Nyquist density, we get

A2(T, W) < 2 p(T, W). (10)
The improvement from inequality (8), which uses the total measure of T,

to (10), which uses density, can be significant. In the missing data problem,
(10) allows data to be missing on a set of infinite total measure, yet still
guarantees that the alternating method will recover the bandlimited signal
stably, provided the Nyquist density of the ri'ssing observations is less than
1/2.

It may be instructive to compare this result with what we could conclude
by applying earlier inequalities such as (4). The coefficient Boas gives is
C(p, Q)1/p-=7 + 2 n for Q < r. From this we could conclude only that a
density at the half-Nyquist smaller than .02 is sufficient for stable recovery.
One may adapt results of Plancherel and Polya [15] to get an even weaker
conclusion. Results of Duffin and Schaeffer [6] and of Nikolskii [14] can be
adapted to get the improved constant C(2, ir) = (1 + ir), but even this gives
only the conclusion that Nyquist density smaller than about 1/4 is sufficient
for recovery.

We now turn away from the signal recovery setting, and focus on the
inequalities for bandlimited functions which drive these results.

3 Concentration in L2 Norm
Theorem 4 Let p be a a positive sigma-finite measure, and f E B2(Q).

J If 12dd < (fQ/r + 6-l) (sup ,[t, t + 6]) f 12. (11)

The theorem follows imnmnediately from the next two lemmas.

Lemma 5 Suppose that g is supported on [-6/2,6/2], and that convolution
with g is a continuous, invertible linear operator on B2(Q). Then

if12du< C2(g, Q)(sup1[t, t + 6]) J 12f (12)

where

C2(9g Q) = 119112 (sup{ e°O E B2(0)}
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Proof. Under the hypotheses, given f E B2(Q?), there exists a unique
f* E B2(Q) with g *f= f . By Cauchy-Schwartz

Jif 2dp = JIg * f*12du = -6/2 g(h)f*(t - h)dh124d(t)
rr6/2 r~~~6/

</| g(h)12dh t|/ lf*(U)12du(_ 116/2 jgh~d t6/2 f()ldud,s(t)
00 U+6/2

- ll9II2I If*12(u) ] du(t)du
< lIgI1211f*112 (SUpIL[t, t +6])

By definition12 < C2(9,Q) and the lemma follows.
We remark that the constant C2 has the following alternate definition:

02(g, Q)-= I12 sup 1/I1(W)12. (13)

Lemma 6 There exists g of support [-6/2,6/2] satisfying the hypotheses of
Lemma 5 for which

C2(g, Q) = (Q/ir + S-'). (14)

Proof. We use a function g constructed by Selberg in connection with
the Large Sieve; once again, see the article by Montgomery [13]. Our account
of the construction of g follows closely that of Vaaler ([18], pages 185-186).
The construction uses Beurling's function [3]:

sin0x0o -1

B(x) =(1 ) { -(- n) 2 _ E (X _ m)<2 + 2x-1}.
Xr n=O m=-oo

Among other properties, B is entire of type 2ir and majorizes the signum
function. Selberg uses this function as follows. Let E = [a, d] and put

CE(X) = I{B(f - x) + B(x -c)}.2

It turns out that
CE(X) > 1E(X) (15)

L00
J CE(X - 1E(X)dx = 1 (16)
-00
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and, for a certain function CE supported on [-2ir, 2r]

O21
CE(X) = cE(t)e&iXtdt (17)

(i.e. CE is entire of type 2ir.)
To apply this, fix 6 and set A 6/27r. Let r(x) = CE(AX) where E

[-AQ, AM]. Then, by (17)

(t) =- F(x)etxdx (18)

is supported in [-2irA, 2irA] = [-6, 6]. An explicit formula for '7(t) in terms
of elementary functions is given in Vaaler. We need only the value y(O),

7(0) = 2
12 r(F)dx = 2

L. CE(y)dy
_Q/7 + b-17

the last step using (16). Now r is nonnegative and entire of type 6. By a
theorem of Fejer there exists a function G such thatF =IG12 and G is entire
of type 6/2. Put g(t) = rfooo G(x)eitwdx; then g is supported in [-6/2,6/2],
and by Parseval and definition of G,

js/2 Ig2 = _(0) = Q/ir + 61. (19)

Given f E B2(f2), define

f*(t) f1 (w)/G(w)eitwdw.

This defines a bounded linear operator on B2(Q). Indeed, by (15), 1/G(w) E
[0, 1] for w E [-Q, Q] and so, by Parseval

IIf*112 < 11f112. (20)

Combining (20) and (19) gives the desired result (14).
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4 Concentration in L1 norm
Theorem 7 Let p be a positive, sigma-finite measure, and let f E B1(SI). If
fZ< 2r then

r f~~/2 r
] If d.< -( s/2j(up As[t t +6])]Ifl (21)

The proof is structurally analogous to that of Theorem 4; one simply
combines Lemmas 8 and 9 below.

Lemma 8 Suppose that g is supported on [-6/2,6/2], and that convolution
with g is a continuous, invertible linear operator on B1(Q). Then for f E
B, (fl)

JIfIfdy < Cl (g S)(supq [t,t + 6]) (22)

where

C1(g,Q) = lugl0 (sup{f I *yll : E B, (Q}f

Proof. By hypothesis, given f E B1(Q), there exists a unique element
f* of B1(Q) satisfying f = g * f*. We have

IfId I 6/2g(h)f*(t - h)dhld,i(t)
-6/2

< 1giooJjf*(u)Ij 6/2 d,tt(t)du
. lIg9I-11fFll (SUPt[t't+b])

As lg.l0llf*lll/llfll<Cl(g,Q), the lemma is established.
There is an equivalent definition of the constant C1 (g, l) in terms of

Beurling's theory of minimal extrapolation [2, 4]. We recall some definitions.
Let h(w). be a continuous function given for w E [-Q, Q]. Let M(h, Ql) denote
the collection of all finite signed measures on the line with t'(w) = h(w) for
w E [-Q, Q]. The transforms of these measures all agree with h on [-Q, Q?]
and so are all extrapolations of h. Minimal extrapolation is defined as follows.
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By definition, each measure in M(h, Q) has a finite total variation Var(v).
Let To denote the smallest such variation:

T0(h) = inf{Var(v) : v E M(h,Q)},

with Tn(h) = oo if M(h, fl) is empty. Using these definitions, we may write

Cl(g,Q) = TOWl/g)l110o.
Up to normalization, Cl (g, Q) is the To norm of the function 1/4(w).

For general h, it is difficult or impossible to compute minimal extrapo-
lations. In this sense, C1(g, SI) is much harder to work with than C2(g, Ql).
However, in certain special cases minimal extrapolations are known. Beurl-
ing, in the Mittag-Leffler lectures [4], gives some general ideas. Logan [11]
gives several examples and specific computational tools. By combining some
of the ideas presented there with a few new ones, it is possible to compute
the minimal extrapolation of 1/4 in the case where g is a "boxcar".

Lemma 9 Let g(t) = b&I1{jtI<6/2} with S < 2, and 1 < p < m. There
exists a signed measure v representing the convolution inverse of g; i.e. if
f f * v(= f f -u)dv(u)) with f E Bp(r) then g * f = f. Convolution
with v is a bounded linear operator of Bp(r), with operator norm

sup{I lf*llP : f E Bp(ir)} = /(23)lIf lip sin(irb/2)' (3

Proof. The Fourier transform of g is 9(w) sin(w6/2) Below we willw6/2
construct a finite signed measure v so that

9(w)'(w) = 1 w E [-, r]. (24)
As f Idvl(u) is finite, and

If* vIIp . J IIf(- - u)llpldvl(u) = lIfIIp lIdvl(u), (25)

convolution with v is a bounded linear operator on Bp(7r). By the convolution
theorem and (24), v is a convolution inverse to g on Bp(r). The measure v
has the special property that

max Ii'(w)l I= IdvI(u); (26)
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from this, (24), and the formula for 4 it follows that the operator norm of
convolution with v is not larger than .2 Theorem A of Logan [11] showssin ir6/2)
that equality holds in (23).

Construction -6f v requires some preparation. Let 9(w) denote the 2ir-
periodic extension of 4(w) away from the fundamental interval [--r, r], and
define h(w) = l/9(7r + w). Then, as 6 < 2, h(w) is defined on the whole real
line, continuous, and 2ir periodic. Now

A__ _ __ __ _ 1

[log A] sin2A A2 -

and so h(w) is convex on (0, 27r). Moreover, h is even, so by e.g. Theorem
25, page 25 of Hardy and Rogosinski [7], the Fourier coefficients of h,

hk = 2 L h(w)eikwdw

are nonnegative, sum to h(O), and the inversion formula
00

h(w) = E hke
k=-oo

holds, showing that h is indeed a Fourier transform.
Define now

00

v= (-1/)khk
k=-oo

where 8k is the Dirac mass at k. The measure v is finite since f ldvl =
Z hk 1= hk = h(O). Note that

00

v(; = e] wudv(u) = I(-l)khke7ikw
k=-oo

00

= E hke-ik(w-)
k=-oo

= h(w -7r).

(24) follows, since by definition of h we get £(w) = 1/g(w). Also (26) follows,
since

bJ(wr) = h(0), (27)
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and, as we have seen, h(O) = f Idvl. The properties claimed for v have now
been verified, and the proof is complete.

Remark. The minimal extrapolation property of the measure vi con-
structed in this proof follows from (26).

5 Optimality
The particular kernels we have introduced above, via Lemmas 6 and 9, are in
certain senses best possible. That is, for certain combinations of 6, Ql, they
are best possible for use with Lemmas 5 and 8.

Let us first describe the optimality of the Selberg function. In our termi-
nology, Selberg [17] showed that if 5Q is an integral multiple of 7r then

inf{C2(g, Q): supp(g) C [-6/2, 6/2]} = (f/lr + 6-1);

compare especially [18]. For 6Q/r nonintegral, though, the Selberg function
is suboptimal. The best kernel in such cases has been characterized by Logan
(see the announcement [10]). If 6fl < ir the analysis is particularly simple:

Lemma 10 For fl < 7r

inf{C2(g,Q) : supp(g) C [-6/2,6/2]} = (6/2+ (6)) 1 (28)

and an optimal kernel is

k(t) = l{ltl<6/2} cos(Qt) (29)

Proof. It is enough to restrict attention to kernels in L1. For any L,
kernel g,

C2(9,Q) > j 9gj2/jg(Q)j2
Define

I2 = SUp{1'(Q)j2 supp(g) c [-b/2,6/2] and 11g112 = 1}.

Then for all g supported in [-6/2,6/2]

C2(g Q) > 2. (30)
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Recalling that

(1) = 12 g(t) cos(Qt)dt,

it follows from Cauchy-Schwartz that the optimization problem defining I2
has for its unique solution a function proportional to (29).

For the kernel (29), we have

A 6/2
k(w) = ] cos(Qlt) cos(wt)dt,

so that

2 k( - cos(=t)t2 cos(wt)dt.

Since 6fQ < r, we have cos(wt) > cos(Qt) > 0 for t E [-6/2, 6/2] and jwl < Q,
and so

02A
2k(w) < 0 for w E [-Q,1].

Hence k is concave on [-Qf, Ql]. But as k is even we get

inf Ik(w)I = k(Q)
wE[-nj1fl

so

C2(k, Q) = I21;
that is, (29) attains the lower bound (30).

We calculate
J6/2

I2 = cos2(Qt)dt
-6/2

- (1/2 + sin(Q6) (31)

and (28) follows.
We now turn to optimality of the boxcar function for use with Lemma 8.

Lemma 11 If £l6 < ir then

inf{C,(g,Q): supp(g) C [-6/2,6b/2]} = /2
sin(akt/2)

and any optimal kernel is proportional to 1(..6/2,6/2].-
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Proof. For any kernel g

Cl(g,Q) > 1100019,/lg() I
Letting I,, denote the value of the optimization problem*.

sup{I9(Q)l: supp(g) c [-6/2,6/2] and 190llo 1}1,
we have that for all g supported in [-6/2,6/2]

Cl(g. Q) > Ioo'
For £Q6 < Xr the function cos(Qt) is nonnegative on [-6/2,6/2]. It follows
that

r6/2=10-6 /2 g(t) cos(QtU)dt
is maximized, subject to Ig(t)I < 1, by taking g(t) = 1[.6/2,6/21. Hence
1o0 = sin(fl6/2) Lemma 9 shows, in effect, that with this choice of g we
actually have equality C1(g, Q) = I,;1 - hence the optimality of this kernel,
for small 6.

6 Discrete Time
For readers interested in the geophysical prospecting problem which moti-
vates section 2.2, it might be useful to have analogs of the above results for
discrete time. Such results would provide a significant strengthening of re-
sults of Santosa and Symes [16] and help explain the conditions sufficient for
success of methods of Levy and Fullagar [8] and Walker and Ulrych [19].

6.1 The 12 setting on the discrete circle
We first state an improvement of the Bombieri-Montgomery inequality (1)
based on Selberg's function.

Let S(ca) = E'' ake2""O be a trigonometric polynomial of degree n
and period 1, and let p be a nonnegative measure of period 1.

j IS(a)I2d,u < (n-I +±6) (sup[ca,a+6]) ElakI2 (32)
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The proof of (32) is analogous to the proof of (11). First, in an analog of
Lemma 5, one shows that

j IS(a12d1< C2(g, r(n - 1)) (sup jz[a, a + ) ZakI

where C2 has the same meaning as in section 3; one then invokes Lemma 6,
with argument Q = r(n - 1). By the above discussion, for (n - 1)6 integral,
the stated result uses the best possible value for C2. Compare also [13, 18].

Our application is as in [5], section 4. Suppose that r = (rt, t =0 . . . , N-
1) is a measured discrete signal. It contains noise and is missing low frequency
information; thus r = (I - PK)8 + n where n = (nt, t = 0, .. ,N - 1) is
a noise sequence, and PK is a circular bandlimiting operator, the matrix
that operates as least squares projector onto the span of the sinusoids with
frequencies in 1 2 <: <j K}

In this setting, which is analogous to section 2.1, recovery of s is possible
if s is sufficiently sparse. A mathematical statement is as follows. Suppose
we know a priori that the support T.supp(s) belongs to a certain class
T of sets; then the support of the difference si -so of any two proposed
reconstructions belongs to the class

'T2={T1 UT2 : Ti E T}.
Define Ao(T, K) = IIPKPT112, where the usual spectral norm is implied.
Donoho and Stark [5] show that if

A(T2, K) = sup AO(T, K) < 1,
TET2

then a priori knowledge that supp(s) E T enables stable recovery of s from
r, with stability coefficient 2(1 -A2)-1/2.

The large sieve, described above, affords a useful bound for AO in terms
of the discrete Nyquist density. Define the discrete, circular Nyquist density

p(t, K, N) = K/N sup #(T n [t, t + N/K]) (33)

with the interval [t, t+N/K] interpreted circularly. Theorem 12 below implies
that A2 < 2p. Define the class T as the collection of all sets of Nyquist density
less than 1; then T2 consists of sets of density less than 2 1. Hence we can
conclude that A(T2, K)2 < 4 1; and that for 1 < 1/4 stable recovery is possible.
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Theorem 12
AO(T, K)2 < 2 p(T, K, N). (34)

The argument is as follows. If (xt, t = , . . . , N - 1) is a discrete sequence
bandlimited to {-IV/2,... , K/2}, then, for appropriate coefficients (ak),

K/2

Xt = E ake27ikt/N
k=-K/2

Put n = K + 1, m = -K/2 - 1, etc. Then, with S(a) =-ake2rika,
S(N) = Xt. Let v,Ma denote the unit Dirac mass at a, and put A = EtET Vt/N,
with periodic extension outside [0, 1). Then

/0,|) IS(a)12du = Z 1Xt12
and

sup p[a, a + 6] = sup #(Tnl[, t + N6]).
c t

By Parseval's relation for the finite discrete Fourier Transform, EN-1 jxtI2
NZk lak 12. Using these with (32) gives

EtET IXt 2 < (K + 6-) 1 sup #(T n [t, t + N6]).
Z:N- 1Xt12 N t

Choosing 6-1 = K gives (34).
We summarize our discussion regarding stable recovery.

Corollary 13 Let T be the class of sets T with p(T, K) < I < 1/4. Then
A2(-T2, K) < 41 < 1. Given a priorn information that supp(s) E T and that
IInt l2 < e, stable recovery of s from r = (I-PK)s+ n is possible. Specifically,
there exists a nonlinear mapping s(r; e, T) so that

lIs - 9(r)II2 < 2(1 - 41)-1/2. (35)

The method which yields stable recovery in this result is a "subset search"
algorithm, along the lines of section 5 in [5]. For each subset T, one can
find, by a linear least squares projection, a sequence ST supported on T
which best approximates the data, in the sense that 11(I- PK)(9 - r)112

18



is minimized among all sequences s- supported by T. One then searches,
among all subsets T satisfying the sparsity constraint p < 1, for a subset T
with corresponding sequence ST satisfying 11( - PK)( T - r)112 < '. Such
a set exists, by hypothesis; call it T*. Then one simply sets S(r,E,T) =

ST*. Of course, as stated, this procedure is of combinatorial computational
complexity. A number of computationally effective methods for recovery have
been proposed [16, 8, 19]; it would be interesting to show that these obey
stability estimates of the type which we have just established for the subset
search method.

6.2 The 11 setting on the discrete line
Now consider a different discrete time setting, with the time index being all
integers rather than the integers mod N. Let bl(Q) be the set of discrete
bandlimited sequences: sequences in 11 whose Fourier transform X(w)
0Z=xte-iwt vanishes for w outside of [-Ql,Q?]. Here we must have the

bandlimit Q < ir, in fact Ql << r in order for something interesting to
happen. Let us in fact assume that Q = ir/m for some odd integer m > 1.
m is then a sort of discrete Nyquist rate.

Theorem 14 Let Ql = r/m. For (xt) E b1(Q) and p a nonnegative measure
supported on the integers

E lxt IpQt}) < sin(m (sup p[t + 17 t + m]) E Ixtl (36)2m t ~~~~~~~~~~~~~~t

Proof. This is the discrete time analog of (21). The argument is entirely
parallel to that for Theorem 7, so we simply mention the steps. Let g = (gu)
be a discrete filter sequence, with supp(g) = {1,...,m}. The discrete analog
of Lemma 8 holds, and says that if convolution with g is an invertible operator
on bl(QZ), and if y is a measure supported on the integers, then

E IxtIi({t}) < c1(g, m) (sup[t + 1,t+m] E t

where

gxIII : x E (w)
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Ip norms and discrete convolution being intended in these definitions.
We specialize attention to the discrete boxcar g which is 1 on {1, 2, .. ., m}

and zero elsewhere. Defining g(w) = 1 e iwi, we can show that for this g

cl(g,Q) = IgI0/I4(Q9). (37)

As 1IgiloH 1 and
sin( '-w)
sin(w)

(36) follows.
The identity (37) is established by an argument similar to that for Lemma

9. Recall that m > 1 is an odd integer. Let 4 be a 2Q-periodic extension of g
away from the fundamental interval [-Q, Q]. Put h(w) = ei(m l)/2/(w Q).
One then verifies that

[log h(wu)]"-m14sin2(in(W - Q)) -4sin2(1(w -

which implies convexity of h on [0, 2Q]. The transform ht = f1, h(w)eiwtdw
is therefore nonnegative, the sequence vt eifltht+(mIl)/2 is a convolution
inverse to g on b1(Q), with variation norm vthv = h(O) = 1/4(Q).
Both (37) and the Theorem follow.

Here is our application. Suppose we observe r b + n, where b is known
to be in bl(r/m) and n is known to lie in 11. We apply the 11 projection

f1(r) = arg min IIr-blIl.
bEb, (w/m)

Let T be the support of n and define the discrete Nyquist density of T by

p(T, m) = m-1 sup #(T n [t + 1, t + m]).
t

By (36) and an argument similar to Lemma 2, the condition

p(T, m) < 2m/ sin(ir/2m)
implies f31 (r) = b exactly. For large m this condition for Logan's phenomenon
is approximately p < 1/r, the same as in the continuous case.
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7 Appendix
It is enough to prove Lemma 2 in the case b = 0, as the general case follows
by translation.

Suppose now that b = 0. By definition, 013(r) satisfies hr --13(r)lll <
jr-blt,. Now

lhr - bll = llnlll
while

hIr - /1|1, > IIPTnIIl - IIPT1I3I, + IIPTc/%i.- IIPTcnIll
= llnl--2E + IIPTcI3l, -IIPT/hIll.

By definition of #uO, and 31 E BI(Q)7

IIPTc/hI,I - IIPT/13l1 , (1 - 2so(T, W))h1i1/l1.
Combining these, we must have

l/%(r)hh1, 2(1 -2po(T,W))-lc
and the proof is complete.
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