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y2)
Let X1,... ,XN,Y be random variables with E(Y) < x and let Y(u)

denote the regression function of Y on X = (X1,... ,XN). Let d be the space

of functions containing the constant and main-effect components and,

possibly, some some interaction components and let d be the maximum

number of variables involved in any such component. Let j*(.) be the best

approximation in X to ji(*): E[(,u(X)-A*(X))2] SE[(p(X)-h(X))2] for

h E Z. Let p be a suitably defined lower bound to the smoothness of g*( ).

Consider a random sample of size n from the joint distribution of X and Y.

Let Y be a suitably defined finite-dimensional subspace ofX consisting of

splines. The dimension of Y is allowed to tend to infinity along with n. Let

Q(.) denote the least-squares estimate in Y of P*(.) based on the random

sample. Under suitable conditions, the L rate of convergence of Q(.) to

,*( ) is n p/(2p+d) and optimal.
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1. Introduction. Consider random variables X1, ,XN Y and let g(.) denote the

regression function of Y on X = (X1, ,XN), so that g(x) = E(YIX = x). Let p denote

the number of derivatives of the regression function (precise definitions will be given in

Section 2). Then, under suitable conditions, the optimal L2 rate of convergence on

compacts for estimating the regression function based on a random sample of size n from

the joint distribution of X and Y is n-pI(2p+N) (see Stone, 1982). One formulation of the

"curse of dimensionality" is that, for fixed p, p/(2p+N) is close to zero when N is large.

To get a faster rate of convergence, we could assume that A(xl, . ,xN) is an

additive function of x1,... ,xN or, more realistically, replace the goal of estimating the

regression function by that of estimating the best additive approximation /I*(.) to this

function. The optimal rate of convergence is now n (see Stone, 1985). In effect,

additivity reduces the dimensionality of the estimation problem fromN to 1.

More generally, we could allow some low-order interaction components into the

model. It is natural to conjecture that, under suitable conditions, the optimal rate of

convergence should now be n p/(2p+d) with d being the maximum number of variables

in any component. Suppose, for example, that N = 3 and let g*(-) be the best

approximation to the regression function of the form

g*(x1 ,x2,x3) = A0* + 9ij(Xl) + g2(X2) + g3(x3) + Ai12(xl ,x2) + kL13(x1 ' 3),
which is a hierarchical model that includes the constant effect, all three main effects and

two of the three two-factor interactions. The optimal rate of convergence should now be

np/(2p+2). One main purpose of the present paper is to verify the stated conjecture.

In order to achieve the rate of convergence n p/(2p+d), we will construct finite-

dimensional spline spaces that can be used both to approximate ji*( ) and, in conjunction

with the method of least squares, to estimate this function from the sample data. Thereby,

we will accomplish the second main purpose of this paper, which is to lend further

theoretical support to the use of finite-dimensional spline spaces in functional inference.
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2. Statement of results. Consider random variables X1 , ,XN, Y, where

x1, * * XN are [0, 1]-valued and Y has finite mean. Then X = (X1, ,XN) ranges over

C = [0, 1] .It is supposed that the following condition is satisfied.

CoNDmoN 1. X has a densityf that is bounded away from zero and infinity on C.

Let M andM be positive numbers such that M. <f< M2 on C. Then Ml ,M2 . 1.

Set

(hi , h2) = E[h1(X)h2(X)] = JChl(x)h2(x)f(x)dx
and

1h 1122 (h, h) = E[h2(X)] =Jh2(x)f(x)dx
C

for square-integrable functions hi ,h2 , h on C. Two such functions are regarded as being

equal if they differ only on a set of Lebesgue measure zero. Let u( ) denote the

regression function of Y on X, which is defined by g(x) = E(YI X = x) for x E C.

Given a subset v of 1,... ,N}, letXv denote the collection of all square-integrable

functions h on C that depend only on the coordinates xi, I E v, of x = (xl,... x). We

refer to #(v) - 1 as the interaction order of Xv. (If v is the empty set 0 or, equivalently,

if #(v) = 0, then X6v is the space e of constant functions on C.

Let Xbe a collection of subsets of { 1,... ,N} and set

X = I Mv Vy v =={hv: hvEc forveA

and d = maxVE#(v). Then d-l is the maximum interaction order of the components of

M. Observe that d = 1 if and only if every function in M is additive. It is assumed that M

is hierarchical: if v is in Xand il is a subset of v, then r1 is in X. Set

MO6 h E M :h i M for every proper subset r of v), v E X.

(Here h ±M6R means that (h , k) = 0 for k E M .) Then (under Condition 1)

g= @ °
v

each h E X can be written uniquely in the form h = lvhv, where hv E NO for v E X;'

clearly, h0 = E[h(X)]. (See Section 3 for the proof). We refer to MO, v E X/, as the0 ~~~~~~~~~~~~V
components ofX, to C% = if as the constant component, toXv with #(v) = 1 as a main-
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effect component, and to Mv with #(v) 2 2 as an interaction component. There is a

unique best approximation g*(.) in X to u(*):

E[(,u(X},*(X))2] = mi n E[(ju(X)-h(X)2].
hEM

(This follows from Lemma 1 in Section 3 by a standard completeness argument in the

context of Hilbert space.) We can write ,*(.) = Yuvp( ) for uniquely determined

)E v E X'; clearly E()=E X*(X) = E(X) = EY. Observe that g(.)=g(.) if

and only if u(*) E M.

Let (X1 I Y). ., (X, Y,) be a random sample of size n from the joint distribution

of X and Y and set Y = (Y1+ +Y )/n. It follows from Condition 1 that X1, ,X, are

distinct (with probability one). Set C' = (X1, ,Xn). Consider the space of all real-

valued functions whose domain includes C'. Let Xn denote the semi-inner product

on this space defined by

(hi ,h2)n =h hl(Xi)h2(Xi)
and let 1. jl denote the corresponding seminorm: llhll= (h,h) 2=ThenIIlII21.

Let K = Kn denote a positive integer and let Ik, 1 < k < K, denote the subintervals of

[0, 1] defined by Ik = [(k-l)/K, k/K) for 1 < k < K and Ik = [1-1/K, 1] for k = K. Let m

and q be fixed integers such that m 2 0 and m > q. Let e/ = eY denote the collection ofn

functions s on [0, 1] such that

(i) the restriction of s to Ik is a polynomial of degree m (or less) for 1 < k < K;

and, if q .0,

(ii) s is q-times continuously differentiable on [0, 1].

A function satisfying (i) is called a piecewise polynomial; if m = 0, it is piecewise

constant. A function satisfying (i) and (ii) is called a spline. Typically, splines are

considered with q = m-1 and then called linear, quadratic or cubic splines according as

m = 1, 2, or 3. Let Bj, 1 <j < J, denote the usual basis of v9 consisting of B-splines (see

de Boor, 1978). Then, in particular, B1 .0 on [0, 1] for 1 <j < J and I B1 = 1 on [0, 1].

Observe that K < J < (m+ 1)K.

Given a subset v of {1, ,N}, let 3/v denote the corresponding interaction spline
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space, defined as the span of all functions g on C of the form

g(x) = [ g,(x,), where x = (x1, xN) andg, E EY forl E V.

Then V has dimension J#(v), where #(v) is the number of integers in v. (In particular,

Yo= ' has dimension J = 1.) Set Y = I (v= gV: gVE v forVEA. Also, set

0 = {g E v g ±> for every proper subset r1 of v), ve X.

(Here g Ln > means that (g,h)n = 0 for hEy...) Then I= 0

The space Y is said to be singular (with respect to C') if there is a nonzero function

g E such that g = 0 on C'; otherwise, > is said to be nonsingular. Suppose Y is

nonsingular. Then (.,.) is an inner product on Y and li is a norm on >; that is,n

I1II12n > 0 for every nonzero function g E Y. Moreover (see Lemma 2 in Section 3),

v=Y 0: each g e can be written uniquely in the form g = IVgv, where gVE Y,
for Ve X; clearly, g0 = n 1( ,g).

Set di = max{#(7luv): 71, ve.#}. Then d < d1 < 2d.

CONDmTION 2. jd = 0(n 1-6) for some 3 > O.

The next result follows from Lemmas 4 and 5 in Section 3.

THEOREM 1. Suppose Conditions 1 and 2 hold. Then P(Y is singular) = o(l).

Let Y(.) be defined by Y(Xi) = Y. for 1 < i < n. Let f(.)= ,*I7f$QV( where

'V(-) E °forv E X4, minimize jjY(.)-gjjn = n1ln [Y_-g(Xi)]2 g E . Then Q(.)is the

least-squares fit in Y to the sample data and %(.) = Y. We think of Q(*) as an estimate of

j*(.) and of V.(*) as an estimate of *t( ) for v E X. If is nonsingular, then ft(*) and

9'V(-),v E X, are uniquely determined.

CONDMoN 3. The function E(Y2 X = x), x EC, is bounded.

Given the positive number bn and the random variable Zn for n . no? Zn = Op(bn)
means that limc lim supnP( I Zn I > cbn) = 0.

THEOREM 2. Suppose Conditions 1-3 hold. Then

sup var(ftV(x) IX1 ,.** ,X J)Op(
x ACn) Op(I),V

so

sup var(ft(x) I X1, *.. * ,Xn) = Op(Jn).
XEC



6

Let 0 < 3< 1. A function h on C is said to satisfy a Holder condition with exponent

'3if there is a positive number M such that I h(x)-h(xo) I < M xxxo 3for xo, x E C; here

lxI is the Euclidean norm (x2+ +x2)112 of x = (x , ,x). Given an N-tuple
a = (ar1 aN) of nonnegative integers, set [a] = a1+ +aN and let Da denote the

differentiable operator defined by

Da= a
a a

dx 1 1 N

Set p = m + '3. When the following condition is satisfied, p can be thought of as a lower

bound to the smoothness of g*.

CONDITION 4. For V E X and [a] = m, the function v( ) on C is m-times

continuously differentiable andDA* ) satisfies a Holder condition with exponent'3.

THEOREM 3. Suppose Conditions 1-4 hold. Then

IIE (
...

* -ln)1° P ^
VEX

so

IIE(ft(. I X1 ')Xn p(-)1 pt ]l

Theorems 2 and 3, which will be proven in Section 3, have the following

consequence.

COROLLARY 1. Suppose Conditions 1-4 hold. Then

"A"'(V)-v )ll 0°[j+ In V E JV,
so

11H(~ ~o) * 11=°[P + Jhl]
Given positive numbers an and bn for n 2 nO, an - bn means that anlbn is bounded

away from zero and infinity. Set y= 1I(2p+d) and r = p/(2p+d). Observe that if Condition

2 holds with J - n#y then p > (dl-d)/2. The next result follows from Corollary 1.

COROLLARY 2. Suppose Conditions 1-4 hold and that J n- Then

IIft( /(()||= 0p(n r), yeVX,
so

II,, F )11= Op(n-r).
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The L2 rate of convergence in Corollary 2 does not depend on N. It is clear from

Stone (1982) with d = N that this rate is optimal. When d = N, it is possible to use the

tensor-product extension of de Boor (1976) referred to in the proof of Lemma 9 below to

obtain the pointwise and Lo rates of convergence of Q(.) to A*(.) (see Koo, 1988).

Chen (1989) has obtained results along the lines of those of the present paper with

penalized least-squares estimation with Xl,-. ,XXn replaced by deterministic design

points xl,..- , xn. For mathematical convenience, however, he imposes the severe

restriction on the design points that they form a (suitably regular) balanced complete

factorial design. Under this restriction, his results for d < N are new and imply those for

d <N. He also assumes that A(() E X and (essentially) requires that p . dm for some

positive integer m with 2m > N, which is much more restrictive than the requirement

p > (dl-d)/2 for Corollary 2. (In a private communication, Chen stated that the condition

2m > N in his paper can be replaced by the condition 4m > d.)

When d = 1, the results in this section were obtained by Stone (1985). When d = 1

andN = 1, similar results were obtained by Agarwal and Studden (1980) in the context of

suitably regular deterministic designs. The results for additive regression (d = 1) have

been extended to robust additive regression by Mo (1990a, 1990b).

There is a growing literature on the methodological aspects of finite-dimensional

additive and interactive spline modelling. See Stone and Koo (1985), Friedman and

Silverman (1989), Breiman (1989) and, especially, Friedman (1991). For the correspond-

ing methodology based on penalized least-squares estimation, see Barry (1983, 1986) and

Wahba (1986). For other related additive methodologies, see Buja, Hastie and Tibshirani

(1989) and Hastie and Tibshirani (1990).
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3. Proofs. The arguments in this section were partly suggested by those in de Boor

(1976) and Stone (1985).

LEMMA 1. Suppose Condition 1 holds, set = 1 - E1-M22E (0, 1], and let

h EM76forv E X. Then
V V

(3.1) [[ h (X)] ] 2 ( E[h;v(X)]
PROOF. Recall that M1 ,M2 . 1. We will verify (3.1) by induction on #(A#). Observe

first that it is trivially true when #() = 1. Suppose #(Qt) . 2 and that (3.1) holds

whenever Xf is replaced by X" with #(Q') < #(k). Choose a "maximal" 71 E X (that is,

such that il is not a proper subset of any set v in X). We first verify that

(3.2) E[[ hv(X)] ] .M12Mj2E[(hT(X))2].
If #(q) = N, then (3.2) follows immediately from the definition of dj'. Suppose, instead,

that 1 < #(r) < N-1. We can write X = (X1 ,X2), where X1consists of Xl, 1 e i7, in some

order and X2 consists of Xi, I E r1, in some order. Then X1 is C1-valued and X2 is C2-

valued, where C1 = [0, 1]N#(71) and C2 = [0, 1i#(n). LetfX denote the density of X,
fX the density of X2 andfx IX the conditional density of X2 given X,. ThenfX and

fX are bounded above by M2, so

fX I Xl(x2I xl) 2M 1M2 fx(X2)9 X1 E C1 and x2 C2.
We can write h (x) as h (x2) for x = (x1 ,x2). Sincefx is bounded below by M1 , we

conclude from the definition of MO that

E[V hv =
] |fX (xl)dxl|J [h (x2) + hV(xi,x2)] fx2IX,(x2Ixl)dx2
.mM 2 inf [h (x2) + I hv(x1 x2)] fX2(x2)dx2

= 1M 2 infE[[h77(X2) + v(x1' 2) ]

. Ml2M-2E[h2(X)]
and hence that (3.2) again holds.
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It follows from (3.2) that

(3-3) E [[h(X) - h(X)] ] M72M~2E[hj(X)I 1e R.

We conclude from (3.3) that

[E[h(X) I h('An] (1-M 2M )E[h (X)]E[£ hv(X)
and hence, by the induction hypothesis, that

2-
E[h[v (X)]

> [1 I1-My2M2J {E[h(X)) + E[h[h(X)] ]}

2[1- -{m E[h (X)) + [l _ f7Ml2J £E[h;(X)]}
#(-227

V~~~~~~~~V7
> [l2_lM-J£E[h;(X)].

Therefore (3.1) holds for X. o

LEMMA 2. Suppose Y is nonsingular, g E 0for V E Xand 0.gv =0. Then gv =0

for Ve X.

PROOF. It suffices to show that if v is maximal, then g = 0. To this end, as an

application of Lemma 1, we can write g = INv), where -

E Y for r a proper subset

of v and £(V) denotes summation over proper subsets of v. Then
2= (g J(v)~ =0llgvlln2 = (9v' £(V)g)n=°

and hence gv=0. o

Write Xi = (Xii, *** XiN) for 1 < i < n.

LEMMA 3. Suppose Condition 1 holds and let t > 0. Then, except on an event having

probability at most 2(m+1)Nexp(-2nt2), the inequalities

!nHi'11(X.1)p21(X1) - E[Hp(X1)p2(X tc77M [ (Xll)]E[H1p21(Xll)]
hold simultaneously for all polynomials p11... lP1N'P21 . ,p2N of degree m. Here

Cmis a positive number that depends only on m.
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PROOF. By an elementary compactness argument, there is a positive number cm such

that ifp is a polynomial of degree m, then

(3.4) <c2)I2(x)dx
It follows from Hoeffding's inequality (Theorem 1 of Hoeffding, 1963) that, except on an

event having probability at most 2(m+1)2exp(-2nt2), the inequalities

11 xk11 k1N k21 k2N k11 k1N k21 k2NI
n i i XiN Xil *XiN - EX1 XN 1 XN < t

hold simultaneously for all choices in 0,- ,m) of k11,... ,klN,k2l,... ,k2N It

follows from (3.4) and (3.5) that

n Xinpi1 (Xi1)p2I(Xi1) - E[H1p1I(Xd)p2I(Xd) I < tcm_ _op_ll(x)dx_l__ f_21(x)dx
Since

E [Hpi1(x1)] = 1| In2(xlf(x)dx 2 M1J Hp 11(xl)dx . C1 7 J 11(x)dx

and, similarly,

21 1 2
jE HP (X)] = 21(x)dx

the desired result holds. o

LEMMA 4. Suppose Conditions 1 and 2 hold and let E> 0. Then, except on an event

whose probability tends to zero with n,

(3.6) (g1 , - E[g1(X)g2(X)] . eE[g (X)]E[g2(X)],
g1 '82e671uv for some f1, v E XY.

PROOF. It suffices to verify the desired result when q = -1 and d = N. Then d1 = N,

is the span of all functions g on C of the form
N

g(x)= H gl(xl), where x = (xl,1 xN) and g, E e for l< l <N,

and (3.6) simplifies to

Gi(vek, 2)n (X)92(X) |I <2.[}s(k1,... ,kN) and92
Given k,1 .,kN E { 1, ,K}, set k =(k,I ,kN)k and

Ik {x=(x, ,XN)X lXEIk for l<l<N).
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Let ind(* EIk) denote the indicator function of Ik, which is defined by ind(xEIk) = 1 for

x EIk and ind(xeIk) = 0 for x t Ik. Given polynomials Pk ,̀Pk of degree m, define
1N

the multivariate polynomial Pk by

Pk(x) =Pk (x ) ..Pk (XN), x= (xl, ** xN).
1 N

Then every function g in Y can be written in the form

g(x) = £ pk(x)ind(xeIk), x E C.
k

Thus we can write

g1 (x) = Pplk(x)ind(xEIk) and g2(x) =P2k(x)ind(xEk) XE C.
k k

Observe that

g1 (x)g2(x) = XPlk(x)P2k(x)ind(xEIk), X E C.
k

Hence

E[g (X)g2(X)] = k P(XEIk)E(plk(X)P2k(X) XEk),
kE[g1(X)] = k P(XeIk)E(plk(X) EI)

and

E[g2(X)] = I P(XEIk)E(p2k(X) XeIk).

SetJk= {i: 1 < i < n and Xi EIk}. Then

En[g1(X)g2(X)] = Pn(XEIk)EnPk(X)P2k(X) XEI
where

En[g1(X)g2(X)] = (g1 92)n = n- i 1(X)92(XI)

Pn(XeIk) #(7

and

En(plk(X)P2k(X) I XEIk) = # Ey 7 plk(Xi)p2k(Xi).

Choose E1 E (0, 1) such that E2i+2ei . e. It follows from Conditions 1 and 2 and

Berstein's inequality (see Theorem 3 of Hoeffding, 1963) that, except on an event whose
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probability tends to zero with n, j Pn(XEIk) - P(XEIk) < ElP(XEIk) for all k and hence

(1-c1) (1+e1)M2
v< P (XElk) - k\ for all k.

By Condition 2, K[N = o(n1) for some 8> 0. Thus there are positive numbers M3 and 8

such that, except on an event whose probability tends to zero with n, #(Yk) . M§ln8 for

all k. We conclude from Lemma 3 that, except on an event whose probability tends to

zero with n,

En(Plk(X)p2k(X) I XEIk) - E(plk(X)P2k(X) XEIk)

<,Ell (lk(X I XEIk)E 2k() i XeIk)
for all k and all choices of P1k and P2k. Consequently, except on an event whose

probability tends to zero with n,

1 (g1 g2) -E[g1(X)g2(X)]I < e1 I P(XEIk) IE(g1(X)g2(X) XEIk)
k+ El (1+e1) P(XEk) ((X) IXeIk)E(g2(X) XEIk)

< (El2+2E ) P(XElk Eg X XEIk)E(g2(X E

=(1+21k£E[ 1(9)n(Ek][ 2(X) IdXElk)]k

= 2~~~

< ______ _2(X)_ g1 ,g2 E Y. 0

LEMMA 5. Suppose Conditions 1 and 2 hold and let 0 < 82 < 81. Then, except on an

event whose probability tends to zero with n,

IIX£gvIIn2>3,#(G} I IgII% g,E I, for E Ar.

PROOF. Applying Lemma 4 with 0 < #(A)e < 8(/11, we see that, except on an1
event whose probability tends to zero with n, (3.6) holds and hence

2 2llgvl < (1+e)E[g2(X)], V E Xandg Ev'
so

£V V' (I+e)l E[g2(X)].
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Therefore, by Lemmas 1 and 4, except on an event whose probability tends to zero with

n,

II givl2> E[(£, gv(X))2] - #(G)EZV E[g4(X)]
2 1(s) 1-#(A E[4 (X)]

>1 1 2
2 1 +E -nVllVI

Since e can be made arbitrarily small, the desired result holds. o

Set 80 = (0) and Boo = 1. For V E X with v * 0, let $v denote the collection of

ordered #(v)-tuples j,, I E v, with]jEe1,(1. ,J} for l E v. Then #v) = J#(v). Forj E ov,
let Bvi denote the function on C given by

B (x) = n Bj(x,), X = (Xi X sN).

Then, for v E X, the functions B j Eev which are nonnegative and have sum one,

form a basis of v

Suppose Y is nonsingular and let g E Y. Then g = Lv gv' where gVE 0 vEAX, are

uniquely determined. Moreover, gv = Xbb .B . for V E A, where the b *'s are uniquelyJJV)VIvi
determined. Let v and j be fixed. Let G e Y denote the representor of the linear

functional g H%Ki on Y relative to the inner product ( X )n, so that b%] = (G .'g)n Now

G.=I f GVjv,, where GVV., E Y ° for v e*X. Thus GVjv, =X., r , B** , for

v E X, where the Y 'vjs are uniquely determined. Observe that

(3.7) (G%,GV"j")n='vjvj 'V,v' eXj E,vandj' E >v,
Observe also that, forvE #andj E ,(G BV) = I and hence 0 < 0IGVu112 = Yv

LEMMA 6. Suppose Conditions 1 and 2 hold. Then there is a positive number M

which does not depend on J, such that, except on an event whose probability tends to

zero with n,

(3.8) bll%vEb 2Bll2 .M lfXdQ2E b2 if 1. b -B E YEVfor E X.

PROOF. It follows from the basic properties of B-splines and repeated use of (viii) on

page 155 of de Boor (1978) that, for some positive number M49
[ bjBj(x)]2dx >2M41#(V)F . b2.
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for all choices of v E %r and bv E R and j E ${ Thus, by Condition 1 and Lemma 4,

except on an event whose probability tends to zero with n,

Ilj bvj vjn - 4 v £j bv
for all such choices. The desired result now follows from Lemma 5. o

LEMMA 7. Suppose Conditions 1 and 2 hold. Then, except on an event whose

probability tends to zero with n,

(3.9) £ £ ,<M2.MJ2d, ve ,Yandje/.
IV' j'

PROOF. Suppose that (3.8) holds and let v E AYand j E °v Then

m3Ij-d4 < m31j-d £ £ AVj '<JIGjln=123 MJi 3 vjv %Ji.GjIn=Y"jvi"
so .vj M3Jd and therefore (3.9) is valid. We now obtain the desired result from

Lemma 6. o

LEMMA 8. Suppose Conditions 1-3 hold. Then, except on an event whose

probability tends to zero with n,

maxmax var(I3IX1,.IX ,Xn)= Op(J n).

PROOF. Set &2(x) = var(Y I X = x), x EC. It follows from Condition 3 that o2(.) has

a finite upper bound M4 on C.

Suppose that Y is nonsingular. Let Q denote orthogonal projection onto Y relative

to the inner product ( ' )n. Then (g,Qh)n = (g,h)n for all real-valued functions h

whose domain includes C' and all g E y. Given such a function h, write Qh in the form

Qh=J£b£ Bb wherelb .B .Ey0forIvE X.
V jY1M J' JYVIVI

Then b =(G , Qh) =(G ., h) andhence

bV = £, '£, -M't.,B( h)n v E /rand j E ,/Mi v 'j'i vjvj vi ve9ade~

The least-squares estimate i(.) can be written as

W( ) = QY(.)=X .B where I3 B je vO forve X.

Thus

(G Y( )) n Mi' n 9 V andj E



15

Consequently,

var(pVj Ix1 =l X l '* * *=£(Xi)[,
< M4nr1IIGVll2

Yn
= M4n1Yj.

The desired result now follows from Theorem 1 and Lemma 7. o

Theorem 2 follows from Lemma 8.

LEMMA 9. Suppose Conditions 1-3 hold and that L*(.) =0. Then

IIE@(ft .)I X,* ,xn)11n= °PV Ul VE X.

PROOF. Choose v E fand recall that Bvj j E /v, form a basis of V' Let g E Vv
Then g - X b(V)B -, where the b(v)'s are uniquely determined. Suppose Y is nonsingu-

lar. Let Gj(V) denote the representor of the linear functional g dbd(V) on otvrelative to the

inner product ( vn' so that b(V) - (G(V) ,g). Then G(V) - £j,IYB .,, where the iYV)'s
are uniquely determined. (Alternatively, (yYV)) is the inverse of the Gram matrix

((Bv XB )).) Let A(v)(/.L ) denote the orthogonal projection of p(*) onto Yv (relative to

the inner product )n). Then gv)(.) - £ fV)B j, where

J j V)JJ jE1V
Now

(V)(.)112 (* 3V)f3 .112 -v B )IY)(B B )1 n Jj.P() vj n JJ
V

J JV

By Conditions 1 and 2, Bernstein's inequality applied to the binomial distribution, and

the basic properties of B-splines,

11A(V)(.),,2 = 0p(j#(v)Z.(pj(V))2.
It follows from Conditions 1 and 2 by an extension of arguments in de Boor (1976)

and Stone (1989) that there are numbers M4 E (0, o) and c E (0, 1) (both independent of

J) such that, except on an event whose probability tends to zero with n,

V)n < M J#(V)C t -i l jtf

Consequently',

-(4v))= rp2#(V) [jc lj XjI 22#(B . A(v,H( )).
i

O iLi" i lJJV
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Since /(L*() = 0, we see that E((Bvj ,( ))n) = E(B .(X)j(X)) = 0 for j E 4v. Moreover,

maxvar((B vj,g( ))n) = n max var(B .(X)p(X)) = O(nAlf#(V))

Thus E[I.((B .=O(1n) and hence J=((B .,A()) )2=Op(1/n). Conse-

quently, (p(v))2O= 2#(v)In) and therefore

lip(V)(. )112 = op(J#(v) n) = Op(Adn), v e X.

Let A() denote the orthogonal projection of A(.) onto .O which equals the

orthogonal projection of y(V)(-) onto K)OThen 111i )II 2 < IIL (V)(_)ln and hence

AlV( 2l = Op(Jdln), v E .X.

Observe that E(Qf( ) ,.* ,Xn) is the orthogonal projection of g(* ) onto Y. We
can write this orthogonal projection as Xv gv(*), where V(.)E forv4E.Now (.)

is the orthogonal projection of v ( )onto vfor V E XA so

£vp )ln=E( )9 £ vAv())n
=V(Av"' AMv())n
< Iv llgv( )llnlli(-)Iln
< (maxvllv(*)Iln) Xv IPL Q)Iln'

We conclude from Lemma 5 that

IIE(4(.)IX1, =...X)112 =IIOV(_II2=°P(vIlpLH(.)12) Op(A/n).
The desired result now follows by another application of Lemma 5. o

LEMMA 10. Suppose Conditions 1-4 hold and that g*(.) = g(*). Then

IIEV(fL*( ) I X , * X ) - YV(_ ) 112 = op(j-2p + jd-lln), v E

PROOF. It follows from Condition 4 (see Theorem 12.8 of Schumaker, 1981) that

there is a positive number M4 not depending on n or J such that, for V e X, there is a

function Ev with IIgv- ())ll MJ-P here h II= sup I h(x) is the L

norm of a function h on C. Choose v e A1 and let iq be a proper subset of v. Then

E[B71XpV(X] 0=0 for j E and hence

max I E[B 1i(X)gv(X)] | = O(Jf(fl)P)
j
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Moreover,

max var(B 1j(X)g,(X)) = 0(J,(n)).
i

Suppose Y is nonsingular. Let g1 denote the orthogonal projection of gv onto 0

(relative to the inner product ( ). Arguing as in the proof of Lemma 9, we get thatn

llg II2 = O'(y2P + J#(1)/n) = op(jF2p + j,d-/n).
Write gv = XcV gv, where gV77 E 1 for i1 c v. Let J(V) denote summation over all

proper subsets of v. Then gO is the orthogonal projection of I(V)gV onto >71 We

conclude, again by arguing as in the proof of Lemma 9, that

llg'i-g'I2= |ii(V)g 02 = Op(JTP + jd-1/n).
Replacing gv by g if necessary, we see that, for v E X, there is a function gEe 0 such

that v1,-pt,( )II2= O(f I+1/n) and hence _)112= op(P +Jd
Write the orthogonal projection E(Q(.)X1,.. ,X ) of ,(*) = g*(.) onto as

iV( ) where/gV(')=E(fV( ) Xl9 . Xn) E forVEX.Observe that

111VUv( *) _ A*( *)112 < llIVgV_- *( *)112
Thus

IIX1VuV(') - g*(. )I2 =op(j2p + jA1In)
and hence

IlEv(-) SVvl2 =op(j-2p + jd-lln).IIYI,uV() - = Og(f2"n
We conclude from Lemma 5 that

jjL (*).g 11n = op(r2P + A/dl/n) V E X,

and therefore that

,,AV(. A_H(_ l2=op(j- 2p+ jd lln) VEX. 0

LEMMA 11. Suppose Conditions 1-4 hold. There is a positive number M4 not

depending on n or J such that, except on an event whose probability tends to zero with n,

Ilg_,,( *)1122 + JF2p), v E #and g E VV
PROOF. Given V E af, set h = A, (.) and let g E v Then (see the proof of Lemma 4)

g can be written in the form

g(x) = 1 pk(x)ind(xEIk), x E C.
k
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By Condition 4, there is a function g, of the same form such that jig1-hIIx <. -P. m

being a positive number that does not depend on n of J. Then llgl-hll < M5J P and

11g1-hIln <M5. P, so

jighil<JIgg II2 2 3j2p and ji 2 2 j2lg-hj< 2jlg-g1 + 2MF252) and I-gllln l2Ilg-hlln + 2M52P).
It follows from Lemma 4 that, except on an event whose probability tends to zero with n,

Ig-gll2 <. 2Ig-g11 and hence
n~~~

IIg_hII2 <- 4lg-gl + 2M5F2P < 811g-h12j + lOM5F2p. o

PROOF OF THEOREM 3. It follows from Lemma 9 applied to the regression function

,u(. )-j*(*) and Lemma 10 applied to the regression function u*(.) that

IIE( ...)lx'X)-v ) = po+Jdln), VE An V n~
We conclude from Lemma 1 1 that

JjE(ftv( )jXI', ,X)-v )12= op(j'22+Jdln), vEa. o
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