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STABILITY IN DISTRIBUTION FOR A CLASS OF SINGULAR DIFFUSIONS

BY GOPAL K. BASAK AND RABI N. BHATTACHARYA*

University of California at Berkeley and Indiana University

Summary. A verifiable criterion is derived for the stability in distribution of singular diffusions,

i.e., for the weak convergence of the transition probability p(t; x, dy), as t -o o, to a unique invariant

probability. For this we establish (i) tightness of {p(t; x, dy): t > 0} and (ii) asymptotic flatness

of the stochastic flow. When specialized to highly nonradial nonsingular diffusions the results here

are often applicable where Has'minskii's well known criterion [4] fails. When applied to traps,

a sufficient condition for stochastic stability of nonlinear diffusions is derived which supplements

Has'minskii's result [5] for linear diffusions. We also answer a question raised by L. Stettner 1: Is the

diffusion stable in distribution if the drift is Bx where B is a stable matrix, and a(-) is Lipschitzian,

o(O) $ 0 ? If not, what additional conditions must be imposed?

*Work partially supported be NSF Grant DMS-9003324.

1L. Sttetner has indicated to the authors that the problem was originally posed to him by H. J.

Kushner.
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1 Introduction.

Consider a diffusion {X(t): t > 0} on Rk satisfying Ito's equation

XX(t) = X + j BXx(s)ds + j o(XX(s))dW(s), (1.1)

where B is a kxk matrix, o(.) is a Lipschitzian (kxl)-matrix-valuedfunction on Rk, and {W(t): t >

0} is a standard 1-dimensional Brownian motion. Let p(t; x, dy) denote the transition probability

of the diffusion. The following definitions apply to general diffusions, and not only to those of the

form (1.1) with linear drifts.

DEFINITION 1.1. A diffusion is stable in distribution if its transition probability p(t; x, dy) con-

verges weakly to some probability measure 7r(dy), as t - 0o, for every x.

It is clear that stability in distribution implies the existence of a unique invariant probability. It is

simple to check that stability in distribution follows from (i) tightness of {p(t; x, dy): 0 < t < oo}

and (ii) the following notion of asymptotic flatness.

DEFINITION 1.2. The stochastic flow {Xx(t): t > 0, x E Rk} is asymptotically flat (in probabil-

ity) uniformly on compacts if

sup P(jX(t) - XY(t) > e) * 0 as t --- oo, (1.2)
x,yEK

for every e > 0 and every compact set K.

We will actually derive a stronger property than (1.2) called asymptotic flatness of the stochastic

flow in the 6-th mean (6 > 0), which means that for every compact K

lim sup EIXX(t) - XY(t)I6 = 0 (1.3)
t oor,yEK

In the special case when a trap x* exists, i.e., Xx(t) = x* for all t > 0, (1.2) with y = x* implies

stochastic stability defined as follows.

DEFINITION 1.3. Let x* be a trap. Then {Xx(t) : t > 0, x E Rk} is stochastically stable (in

probability) if for all e1 > 0, C2 > 0 there exists 6 > 0 such that
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sup sup P(IXX(t) - X* > El) < E2 . (1.4)
O<t<oo {(x:j-X*j<8}

Consider the question: Under what conditions on B and a(.) is the diffusion stable in distribution?

If o(.)o(.)' is nonsingular, then the existence of an invariant probability is equivalent to stability in

distribution, and Has'minskii's well known criteria apply (Has'minskii [4], Bhattacharya [2]). Our

main interest lies in the singular case : a(x)a(x)' is of rank less than k for some x. In this case

the existence of a unique invariant probability does not necessarily imply stability in distribution,

as may be shown by examples (e.g., k = 1, B = 1, a(x) = x). If a(.) _ a is a constant matrix,

then a well known necessary and sufficient condition for stability is that all eigenvalues of B have

negative real parts (See, e.g., Arnold [1] pp. 178 - 187 ). If v(.) is linear, i.e., every element of a(.)

is a linear function, then x = 0 is a trap and stability in distribution is equivalent to stochastic

stability (in probability), which has been extensively studied by Has'minskii [5], Chapter VI. We

are primarily interested in the case a(0) $ 0, i.e., 0 is not a trap. In this case if the diffusion is

stable in distribution, the invariant probability has no discrete component. However, one may also

derive criteria for stochastic stability by the method used in this article (See Remark 2.4).

The main distinction between nonsingular diffusions and singular ones in the present context is that

for nonsingular diffusions tightness of {p(t; x, dy) : t > 0} for some x is equivalent to stability in

distribution, while this is far from being true in the singular case. Here is a simple but interesting

example.

EXAMPLE 1.1. Let k = 2, B = Diag(-1,-1) and

X2 °
a(x) = c (

-X1 )

Then R2(t) := X2(t) + X2(t) satisfies dR2(t) = (C2 - 2)R2(t)dt, so that R2(t) = R2(0)

x exp{(c2 - 2)t}. Consider the case Icl = I/i. Then R2(t) = R2(0) for all t, which in particular

implies tightness of {p(t; x, dy) t > 0} for every x. On the other hand, there is an invariant

probability on every circle and the angular motion on the circle is a periodic diffusion. If icl $ V'5,

the only invariant probability is the point mass at the origin. If ici > Vd and X(0) $ 0, then

R2(t) -+ oo a.s. as t -- oo. If Icl < v' then the diffusion is stochasticaily stable a.s. and, therefore,
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stable in distribution. One may modify this example by taking a(.) so that of(.)u(.)' is nonsingular
on {lxl < r} for some r > 0, and letting a(.) be as above with c = ± V on {XIl > r}. In this

case the diffusion starting in {lxl < r} has the limit cycle property, converging in distribution to

the invariant probability on {III = r}, but still has infinitely many invariant probabilities - one on

each circle {lxl = r'}, r' > r.

The following simple example shows that (1.3) alone is not enough, and that tightness is needed

along with (1.2) (or (1.3)) to establish stability in distribution.

EXAMPLE 1.2. Let k = 1, b(x) = e-, o(s, x) 0. Then Xx(t) = ln(t + ex) oo as t 00,

but Xx(t) - XY(t) = ln(ft+e) -- 0 as t - 00, uniformly for x, y in a compact set K.

Finally, stable singular diffusions are not in general Harris recurrent, nor strongly mixing. To

derive central limit theorems and laws of iterated logarithm for processes such as Jfo f(X(s))ds a

convenient method in this case is to show that f belongs to the range of the infinitesimal generator

on L2(Rk, 7r) (Bhattacharya [3]). Estimates of asymptotic flatness such as (2.17) enable one to

identify a broad subset of the range.

Some qualitative aspects of asymptotics of singular diffusions have been studied by Kliemann [7].

2 The Main Result.

Assume that, for some A0 > 0,

Ila(x) - c(y)I Aolx - yl, for all x,y . (2.1)

Throughout - (dot) and I denote euclidean inner product and norm, while li denotes matrix

norm with respect to 1. Write

a(x) = C(X)a(X)

a(x,y) = (ca(x)-u(y))(a(x)-a(y))' (2.2)

Write Tr(A) for the trace of the matrix A. Our main result is
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THEOREM 2.1. Suppose a(.) is Lipschitzian. (a) If there exist a symmetric positive definite matrix

C and a positive constant y such that

2C(xz-y) . B(x y) _ 2C(x - y). a(x, y)C(x - Y) + Tr(a(x, y)C)2C(x-y).B(x-y) ~(x- y).C(X-y)
-ylx -y12 (x y) , (2.3)

then the diffusion (1.1) is stable in distribution. (b) If there exist a symmetric positive definite

matrix C and a constant,B > 0 such that

2Cx*Bx - 2Cx * a(x)Cx + Tr(a(x)C)
x*Cx

< -lIxI2 for all sufficiently large Ixt , (2.4)

then there exists an invariant probability.

The inequalities (2.3), (2.4) arise from the use of the Liapounov function v(x) := (x * Cx) 1- (for

a suitable e E [0, 1)) applied, respectively, to the stochastic processes Zxdy(t) := XI(t) - Xy(t) and

XT(t).

As a corollary we have

COROLLARY 2.2. Assume a(-) is Lipschitzian and all eigenvalues of B have negative real parts.

Assume in addition that

(k- 1)A2 < (2.5)0 AP

where AO is as in (2.1) and Ap is the largest eigenvalue of

p j exp{sB'}exp{sB}ds . (2.6)

Then the diffusion (1.1) is stable in distribution.

PROOF (OF COROLLARY). In order to deduce Corollary 2.2 from Theorem 2.1 let C = P. It is

not difficult to check that
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B'P + PB = -I,

where I is the k x k identity matrix. Using this, we get 2Px * Bx = x * (PB + B'P)x = -jX 12. Also,

Tr(a(x, y)P) = TrvTa(x,y)VT

and
2P(x - y) * a(x, y)P(x - y) 2v'Pa(x - y) V 7Pa(x, y)VTP/rP(x - y)

(x - y) * P(x -y) T(x - y) .stn(x _y)

> 2( smallest eigenvalue of V'Ta(x, y)V) .

Therefore,

2P(x -y).a(x,y)P(x-y) k
+ Tr(a(x,y)P) < Z Ai(x,y) - A(x,y) , (2.8)(x- y).-P(x -y) i=2

where Al(x,y) AA2(X,Y) < *- - < Ak(X,y) are the eigenvalues of VTPa(x,y)VT. The right side of

(2.8) is clearly no larger than (k- 1)11 \I./a(x, y)v/1ll < (k- 1)(IIPII)(Ila(x, y)1I) < (k-1)ApA lZX-yl2
Now let y = (1 - (k - 1)ApA2) to obtain (2.3). 0

REMARK 2.1. Before proceeding with the proof of Theorem 2.1 let us note that if a(-) is Lips-
chitzian then (2.3) implies (2.4) for every 3 E (0,7). To see this simply take y = 0 in (2.3) and use

the estimate

_-YIX12 > 2Cx. Bx - 2Cx a(x, )CX + Tr(a(x, O)C)
= 2Cx Bx - 2Cx a(x)Cx + Tr(a(x)C) + O(lxI)

x .Cx
as lxl . o (2.9)

As we shall see in the course of the proof of Theorem 2.1, (2.4) implies the existence of an invariant

probability, but not uuiqueness. The stronger condition (2.3) also implies the asymptotic flatness

(1.3). The existence of an invariant probability and asymptotic flatness together immediately yield
uniqueness and stability.

PROOF OF THEOREM 2.1. Consider the (Liapounov - ) function
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v(x) = (x * Cx)1 ' (2.10)

for some E E [0, 1) to be chosen later. Define, for a given pair (x, y), with x 0 y,

ZX?Y(t) = X'(t) - XY(t)
ft

= - y+ BZX'Y(s)ds +] (a(X'(s)) - c(XY(s)))dW(s),

Tro -inf{t > 0: Z*Y(t) = 0} . (2.11)

By Ito's Lemma (See Ikeda and Watanabe [61 pp. 66-67)

v(ZxY(t)) - V(X - y) = j L(v)(XX(s),XY(s))ds

+ j(gradv)(ZX,Y(s)). (ci(X'(s)) -a(XY(s)))dW(s) ,(t < To)
(2.12)

where writing 9l for differentiation with respect to the i-th coordinate and using (2.3),

k

L(v)(x, y) := B(x - y) *( gradv)(x - y) + - E a,,(x,y)(ia9jv)(x - y)
=~~~~~~~~~~~~~t] 1

(1 - y)((x y))C(x - -y- C(x-y)
2 (x-y) Ca(x)y)C(x-y) + Tr(a(x y)c)

< (1- 0((x- y) . C(x -y))-'
x r_7lz_ l22 (x - y) . Ca(x, y)C(x-y)]

1 -yIx-yI'+2(l-e) (x- y).C(x - y)j
< (1- E)((x - y) - C(x - y))' [-7tx - yl2 + 2(1-E)AgACIx-y2

(2.13)

Here Ac is the largest-eigenvalue of C. Now choose E E [0,1) such that

-flrl := -yr + 2(1 - e)A'AC <0 (2.14)

Then we have
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L(v)(x, y) . -av(x - y)(,

with a := L. Consider the process Y(t) := exp{at}v(ZzY(t)). It follows from (2.12) and

(2.15) that {Y(t A r0) :t > 0} is a positive supermartingale. In particular,

EY(t A ro) < EY(O) = v(x - y) . (2.16)

Since Zx,Y(t) = 0 a.s. for all t > To, so that Y(t) = 0 for all t > ro, (2.16) implies EY(t) < v(x - y).

That is,

E(Zxly(t) CZx,y(t))l- < exp{-at}((x - y) C(x - y))1C , (t > 0) . (2.17)

This establishes the asymptotic flatness of the stochastic flow (in the 2(1 - e)-th mean) .

In view of Remark 2.1, to complete the proof of Theorem 2.1 we need to show that (2.4) implies

the existence of an invariant probability. But (2.4) implies Lv(x) -k -oo as lxl - oo, and the

existence of an invariant probability follows from Has'minskii [5], Theorem 5.1, p. 90. Note that v

may be modified near the origin to make it twice continuously differentiable on all of Rk. 0

REMARK 2.2. (Almost Sure Asymptotic Flatness). The proof of Theorem 2.1 may be slightly

modified to show that if (2.3) holds then the stochastic flow is asymptotically flat almost surely,

i.e., there exists a finite random variable VX'y such that

v(ZxtY(t)) < Vx,Yexp{-at} a.s., (t > 0) . (2.18)

REMARK 2.3. (Nonlinear Drift). If instead of a linear drift one has an arbitrary Lipschitzian drift

b(.), then Theorem 2.1 holds with B(x - y) (in (2.3)) and Bx (in (2.4)) replaced by b(x) - b(y) and

b(x), respectively. There is no essential change in the proof.

REMARK 2.4. (Stochastic Stability). If the origin O is a trap, i.e., oa(O) = 0, then {p(t; 0, dy): t > 0}

is trivially tight. In this case the proof of Theorem 2.1 shows that it is enough to check (2.3) with

y = 0 (for all x). In view of (2.18), the diffusion is then stochastically stable a.s. and in the 6-th

mean. More generally, if the drift is b(.) (b(.) and a(-) are assumed to be Lipschitzian), and if x *
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is a trap, i.e., b(xz) = 0, a(zx) = 0, then a sufficient condition that X"- x* a.s. and in the 6-th

mean exponentially fast for every x as t -p 00, is

2C(x-x) -b(x) - 2C(x - x*)
-

a(x)C(x - x*) + Tr(a(x,x)C)(x X*).C(x X*)
< -YIX - x*12 for all (x xx*) , (2.19)

for some positive definite matrix C and some y > 0. In the case b(-) and a(.) axe both linear this

result may also be derived by the method of Has'minskii [5]. Note that a(x, x *) = a(x) if a(x*) = 0.

REMARK 2.5. Suppose the left side in (2.3) is greater than or equal to 7j2X - yj2 for some >

0 and all x - y. Then one may show (by the method of proof for asymptotic flatness) that

IX(t) - XY(t)j -f o, a.s. (and in the 6-th mean) exponentially fast as t - oo. This is true for

the general noulinear case, if B(x - y) is replaced by b(x) - b(y). Similarly, if the left side of (2.4)

is greater than or equal to ,31x12 for all x then IXY(t)i - oo a.s. as t . oo for all y if y is not a

trap.

REMARK 2.6. (A Criterion for Stability in Distribution for Nonsingular Diffusions). Since (2.4)

ensures tightness, a nonsingular diffusion with drift b(.) is stable in distribution if (2.4) holds (with

Bx replaced by b(x)). Although for nonsingulax diffusions Has'minskii's useful criterion of positive

recurrence is available, it is not very suitable if the infinitesimal generator is far from being radial.

We give a simple example where Has'minskii's criterion is not satisfied, but (2.4) holds.

EXAMPLE 2.1. Let k = 2, B = Diag(-1, -1), a(x) = (61 + 62(x2)2)I where 61 > 0, 62 > 0 are

constants. To apply Has'minskii's criterion we compute (See, Bhattacharya [2])

a(r) infxx a(x)x-r) = li=nfr 1X122 1

,(r) 2xz Bx + Tr(a(x)) 1 =(i_ + 261/62
IxI=r (x b())11 2~ 61 + 62r2

I(r) j i3:()du = (1)-2)lr + O(1) (2.20)

According to Has'minskii's criterion (see [2], [4]) a sufficient condition for stability in distribution

is
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j exp{-I(r)}dr = j} dr <ar (2.21)

In the present example

00 00~~~~~~~f exp{I(r)}I exp{-I(r)}dr = oo for all 62>; ] () dr < oo iff 2 < 1. (2.22)

Thus, according to Has'minskii's test, the diffusion is stable in distribution if 62 E [0,1). On the

other hand, taking C = I, the left side of (2.4) is -21xl2. Thus the criterion (2.4) is satisfied and

the diffusion is stable in distribution no matter what the value of the nonnegative constant 62 iS.

REMARK 2.7. A specific question raised by L. Stettner to one of us during a visit to the IMA

in 1986 at the University of Minnesota was: Is the diffusion (1.1) stable in distribution if a(-) is

Lipschitzian, cr(Q) $ 0, and all eigenvalues of B have negative real parts? It is obvious from (2.5)

that the answer is yes for k = 1. A counter example is contained in Example 1.1 for the case k = 2

(with a(-) modified near the origin), which can be extended to k > 2. The two examples below

show that even when restricted to nonsingular diffusions, the answer is "yes" for k = 1 and "no"

for k> 1.

EXAMPLE 2.2. (k > 2). Let B = -61 (6 > 0), a(x) = dr2I (d > 0) for r _xI > 1 and a(.)

is nonsingular and Lipschitzian on Rk. In this case Has'minskii's criterion (2.21) is necessary as

well as sufficient. But I(r) = (k - 1 - 2)In r (r > 1). If a < k22 then the first integral in (2.21)

converges, implying that the diffusion is transient. If 6 = k2 then the first integral in (2.21)

diverges, as does the second integral, and the diffusion is null recurrent. If 6 k2 then (2.21)

holds so that the diffusion is positive recurrent and, therefore, stable in distribution.

EXAMPLE 2.3. (k = 2). Let B = -6I,

a(x) =(1 2 X;:;2
V-AllX2A2X2 + e

where 6, A1, e are positive constants. Note that the positive definite square root of a(x) is Lips-

chitzian in this case. Then
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/(r)=i3(r) = jinf (A?-26)112+e 1AZ- 2jXI=r
I(r) =L(r) j=-3( du. (2.23)

Has'minskii's criterion for recurrence (or, transience) is necessary as well as sufficient here. If

A2 = 26, then 3(r) = 1 and both the integrals in (2.21) diverge, which implies the diffusion is

null recurrent. If Al > 26, then fJ' exp{-I(r)}dr < x, so that the diffusion is transient and no

invariant probability exists.

Acknowledgments. We would like to thank Ananda Weersinghe for bringing his recent manuscnrpt

"Almost sure stability of diffusions" to our attention. In this, the author deriives asymptotic flat-

ness for a class of stochastic flow assuming certain conditions on the drift and diffusion coefficients.

These assumptions are different from ours. For example, when specialized to linear drift and affine

linear diffusion coefficient the criterion in that manuscript is similar to (2.3) but omits the middle

term on the left. We also wish to thank the referee for helpful suggestions.

References

[1] Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. Translated from

German. Wiley-Interscience, New York-London-Sidney.

[2] Bhattacharya, R. N. (1978) Criteria for recurrence and existence of invariant probability mea-

sures for multidimensional diffusions. Ann. Probab. 6 541-553. (1980). Correction Note, Ibid 8

1194-95.

[3] Bhattacharya, R. N. (1982). On the functional central limit theorem and the law of iterated

logarithm for Markov processes. Z. Wahrsch. verw. Gebiete 60 185 - 201.

[4] Has'minskii, R. Z, (1960). Ergodic properties of recurrent diffusion processes and stabilization

of the solution of the Cauchy problem for parabolic equations. Theor. Probability Appl. 5

179-196. (English Translation).

11



[5] Has'minskii, R. Z. (1980). Stochastic Stability of Differential Equations. Translated from Rus-

sian. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands - Rockville, Maryland,

USA.

[6] Ikeda, N. and Watanabe, S. (1981) Stochastic Differential Equations and Diffusion Processes.

North Holland, Amsterdam.

[7] Kliemann, W. (1987). Recurrence and invariant measures for degenerate diffusions. Ann.

Probab. 15 690-707.

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

DEPARTMENT OF MATHEMATICS

INDIANA UNIVERSITY

BLOOMINGTON, INDIANA 47405

12


