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ABSTRACT. We consider two independent Dawson-Watanabe super-Brownian
motions, Y' and y2. These processes are diffusions taking values in the
space of finite measures on Rd. We show that if d < 5 then with posi-
tive probability there exist times t such that the closed supports of Ytl and
t2 intersect; whereas if d > 5 then no such intersections occur. For the

case d < 5, we construct a continuous, non-decreasing measure-valued pro-
cess L(Yl,Y2), the "collision local time", such that the measure defined by
[O,t] x B -+ Lt(Y1,Y2)(B), B e B(JRd), iS concentrated on the set of times
and places at which intersections occur. We give a Tanaka-like semimartin-
gale decomposition of L(Yl,Y2). We also extend these results to a certain
class of coupled measure-valued processes. This extension will be important
in a forthcoming paper where we use the tools developed here to construct
coupled pairs of measure-valued diffusions with "point interactions". In the
course of our proofs we obtain smoothness results for the random measures
Ytg that are uniform in t. These theorems use a nonstandard description of
YV and are of independent interest.
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1 Introduction
There has been considerable recent interest in measure-valued critical branch-
ing Markov processes or superprocesses (see for example Dawson-Iscoe-Perkins
(1989), Dynkin (1990b) Fitzsimmons (1988) and Le Gall (1989) to name only
a few references). These processes arise as limits of systems of partides un-
dergoing random migration (which in this paper we will take to be Brownian
motion in IRd) and random critical branching. The independence of the indi-
vidual particles makes these models mathematically tractable. At the same
time from the point of view of potential applications it is desirable to intro-
duce interactions between colliding particles. In this paper we show collisions
between two potentially interacting populations occur typically if d < 5 and
not if d > 5 and in the former case construct random measures (collision
local times) which measure the number and locations of the collisions. The
properties of this local time derived in this work will be used in subsequent
work to construct, and in some cases characterize, models in which pointwise
interactions occur.

MF(lRd) is the set of finite measures on (Rd, B(Rd)) with the weak topol-
ogy, bB(Rd) (respectively Cb) denotes the set of bounded measurable (respec-
tively bounded continuous) functions from Rd to R, and we write v(p) for
f pdv and v1 < IJ2 if V2 - Vl is a measure (vi E MF(Rd)). Here then is our
central object of interest.

Definition. Let Xl and X2 be cadlag MF(Rd)-valued stochastic processes.
If e > O and pE bB(Rd), let

L"(XlIX2)(y= jJJP(X1 - X2)((X1 + X2)/2)Xl(dXl)X2(dx2)ds
where p,(x) is the Brownian transition density. The collision local time of
(X1,X2) is a cadlag, non-decreasing MF(Rd)-valued process, Lt(X',X2)
such that LR(XI,X2)(p) £ Lt(Xl,X2)() as e [ 0 for each p E Cb and
t > 0.

If Lt(Xl, X2) exists, it clearly is unique up to evanescent sets. Note that
in the definition of L"(X1,X2) p((xI + x2)/2) could be replaced by p(xi)
(i = 1 or 2) without altering the definition because of the uniform continuity
of y on compacts. We remark that in other studies of "local time" like
objects for measure-valued processes (for example, Adler-Lewin (1990)), the
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local time is constructed as an L2 limit rather than a limit in probability.
We could also construct the collision local time as an L2 limit under suitable
hypotheses, but these hypotheses would be too restnrctive for the future work
mentioned above.

For XI and X2 as above, the graph of X' is the random space-time set

G(X) ={(t, x): t > 0, x E S(X')} E B((0, x) x Rd),

where S(v) denotes the dosed support of the measure v. The closed graph
of Xi is

O(X') = U6>ocl(([S, cc) x Rd) n G(X')).
Note that c(Xi) is the closure of G(X') in (0, oo) xRd. If Lt(Xl, X2) eidsts
let L(X1, X2) denote the random measure on B((0, oo) xEd) given by

L(X1,X2)((0,t] x B) = Lt(XllX2)(B).
Hence S(L(Xl,X2)) is the closed support of L(X1,X2) in (0, oo) xEd. It is
easy to show from the above definition that

(1.1) S(L(Xl, X2)) C C(X1) n G(X2)
and hence the collision local time is supported on the space-times set of
collisions between the two "populations".

We introduce some notation to describe super-Brownian motion with im-
migration. Let PT denote d-dimensional Wiener measure starting at x, and
let Pt and A (on V(A)) denote the Brownian semigroup and infinitesimal
generator on the Banach space Cl of continuous functions with a finite limit
at infinity. If ,b E bpB(REd) (the non-negative functions in B(Rd)), let Ut ,b(x)
denote the unique solution of

(1.2) Ut4' = PttI j P. ((Ut_.S?,4)2/2)ds
(see Fitzsimmons (1988, Proposition 2.3) or Pazy (1983)). Let

MLF = MLF([O, cc) xEd)
It: p a measure on [0,co) xRd, I([0,T) xEd) <c

forall T>0, P({t} xEd)=0 forall t>0}
with the topology of weak convergence on [0, T] x Rd for all T > 0. If s > 0°
m E MF(Rd) and p E MLF we consider the following time-inhomogeneous
martingale problem on a filtered space (Q,F,Ft,) (unless otherwise indi-
cated all filtrations are right-continuous):
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(MS,m,p) Yt(q) = m(cp) + Zt(p) + ft Y7(Ap)dr + f f cp(x)p(dr, dx), t > s, p E D(A)
Yt= 0 for t < s

{Zt((p) t > s} is a continuous Ft - martingale with ZJ = 0 and

(Z(W))t = ft Yr(Wp2)dr.
A process Y on (Q, F, Ft, IP) is a solution of (M.,m,) if it is a continuous,
adapted MF(Rd)-valued process satisfying (Ma,m,,i).

Theorem 1.1 (a) There is a solution of (M.,m,) and the law, l?am,p} of
any solution of (M,m,) (on C([O, oo), MF(Rd))) is unique.

(b) Qa,m,p(exp(-Yt(V)) = exp{-m(Ut...) - ft f Ut-rp(X)dO(r, x)}
for all s< t and pEbpB (Rd).

(c) If =o C([o,oo),MF(lRd)), J-= B(Q°) and F0[s,t+] = n,a(Yr
s < r <t+n),n where Yr(w) = w(r) onQ°c, then (QO,FO,F0[S,t+],Yt,IJ,m,p)
is an inhomogeneous Borel strong Markov process (IBSMP) with continuous
paths.

(d) The mapping (s, m,p) -+ is Borel measurable, and if A e
.F0[s,t+] then p --+ P,m,p(A) is nfoa(p(A): A E B([s,t + n-'] x lRd})_
measurable.

Remarks. 1. An IBSMP is an inhomogeneous strong Markov process with a
Borel semigroup Q',tf(m) = Q.,m,,j(f(Yt)) (see Dawson-Perkins (1990, Def-
inition 2.1.0)). It is easy to show that Q"t extends to an inhomogeneous
strongly continuous (in t > s) semigroup on Ce(MF(pd)) where JRd iS the
one-point compactification of Rd. The same results held when A is the gen-
erator of a Feller process on a locally compact second countable space.

2. When p = 0 we of course get super-Brownian motion. This is a ho-
mogeneous Markov process and we let .Qm _= o,m,o (see Ethier-Kurtz (1986,
Ch.9)). For general p the existence of a unique Markov process satisfying (b)
is a special case of Dynkin (1990a, Theorem 1.1). It is easy to prove (a) us-
ing the martingale techniques of Roelly-Coppoletta (1986) and Fitzsimmons
(1988, 1989). The strong Markov property in (c) then follows as usual and
the measurability required in (d) is clear from (b). We leave the details as
an exercise.
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We will also need a bivariate version of Theorem 1.1. The proof is the
same as the one omitted above and carries over to the general Feller setting
without change.

Theorem 1.2 Assume Yi is a solution of (M,,,mi,p,i) (i = 1,2) on some
(11,.F,ZFt,I). Assume also that (Z1(Q1),Z2(p2))t 0 for all Vi E D(A)
(Z' is the martingale measure in (M,,mi,pi)). Then the law of (yl,y2) is
Q8,mi,M1 X .Qa,m2,p2.

Thus (yl, Y2) are independent (Ft)-super-Brownian motions if they sat-
isfy the hypotheses of Theorem 1.2 and p = 2 0. For d < 3, Evans-
Perkins (1989) showed that in this case Lt(Y1,Y2) exists and is absolutely
continuous in t (see Remarks 5.12 (4)). In Section 3 we prove (Theorem 3.6)
that if d > 6, then the closed supports of Yl and y2 do not intersect for all
t > 0 and hence if the collision local time exists it must be zero. In Section
5 we will show (Proposition 5.11) these supports do intersect at some t > 0
with positive probability if d < 5 by proving the existence of a non-trivial
collision local time. To establish the non-existence of collisions in the crit-
ical case when d = 6, we introduce (in Section 3) the random measure (on
[0,x) XIRd)

V(A) = j J 1A(S, x)Y,(dx)ds
(Y a super-Brownian motion) and show it is comparable to the restricted
Hausdorff measure of Taylor and Watson (1985) on the graph of Y (Theorem
3.1). The arguments here are similar to those used by Dawson-Iscoe-Perkins
(1989) (hereafter abbreviated D.I.P. (1989)) to analyze the "range" of Y.
Routine extensions of these arguments give the non-existence of higher-order
collisions in the critical cases (see Remarks 3.7).

Recently Dynkin (1990c) has completely characterized those sets which
intersect with G(Y) with positive probability (his results also apply to a-
stable branching mechanisms). These precise results, in conjunction with
an elementary estimate such as Proposition 3.3, would also establish the
above results on existence and non-existence of collisions, and would do so
in greater generality. The results on the Taylor-Watson restricted Hausdorff
measure are of independent interest and constitute a useful probabilistic tool
especially when used in conjunction with Dynkin's results, just as the Taylor-
Watson results complement the classical parabolic capacity results for Brow-
nian motion.
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In Section 4 (see Theorem 4.7) upper bounds are obtained for sup. Yt(B(x, r))
as r 4 0 (Y super-Brownian motion). (Here B(x, r) denotes the open ball
and B(y, r) will denote the closed ball.) These results are used in Section 5
but the reason for deriving a very precise asymptotic bound for small t is its
use in future work where it will be used to explicitly describe the unique law
of a pair of interacting populations.

Section 5 contains the main result of this paper, a Tanaka formula for
Lt (Xl,X2) ( ) when d < 5. Here Xl,X2 are continuous, adapted MF(JRd)_
valued processes on some (Q', , F, I) such that

Xt (p) = m'(v) +j X(AV)ds + Zti() -At(g), p E D(A), i = 1,2,

(Mmi m2) Zti(p) (i = 1,2) are continuous Ft-martingales satisfying

(Zi(p3), Zj(p,))t=6ij X.(W2)ds,
Ai (i = 1,2) are non-decreasing, continuous, Ft-adapted MF(1Rd)-valued
processes, each starting at 0.

Let M = M(m', mi2) denote the set of all continuous adapted processes
(X', X2) satisfying (Mml,m2) for a given pair (ml,mi2) in MF(Id)2. The
Tanaka formula (Theorem 5.9) exhibits Lt(X', X2)(p) in the semimartin-
gale decomposition of (Xt' x Xt2)(4) for appropriate b. Many of the terms
involve singular stochastic integrals and the results of Section 4 are used to
control these expressions. The Tanaka formula establishes the continuity of
Lt(Xl,X2) in (X',X2) E M (as well as t). A key result in this direction is
the fact that in d < 3 the rate of convergence of L"(Xl,X2) to Lt(Xl,X2)
is uniform in (Xl,X2) E M (and t) (Theorem 5.10). This will allow us to
easily prove existence theorems for pointwise interacting superprocesses in a
forthcoming work. More specifically, in this forthcoming work we will prove
existence and uniqueness theorems for Mmi,m2 when A' = Lt(X',X2) for
i = 1, 2. For now, however, the reader should treat Mml,m2 as a working
hypothesis that could potentially include other types of interaction. The case
A' = A2 - 0 (independent super-Brownian motions), which will be a setting
for a good part of this work, shows that we are not working in a vacuum.

Our results in Section 5 were motivated by a Tanaka formula for the
ordinary local time of the super a-stable process (d < 2a) in Adler-Lewin

7



(1989). In Section 6 we show how the bounds of Section 4 lead to a simple
proof of a slightly more general formula in the Brownian setting.

Section 7 contains a technical estimate needed to control the martingale
terms in the Tanaka formula of Section 5.

The system of approximating branching Brownian motions is introduced
in Section 2 along with an associated nonstandard model. These are used in
Sections 3 and 4. Those unfamiliar with nonstandard analysis should be able
to still follow these arguments using the appropriate weak convergence tech-
niques. The historical process (Dawson-Perkins (1990), Dynkin (1990a), Le
Gall (1989)) would give another approach here but the nonstandard setting
allows us to refer more easily to parallel arguments in D.I.P (1989).

The process Zt arising in (Mam,p) is an orthogonal martingale measure.
As in Walsh (1986, Ch.2) we can extend the stochastic integral Zt(o) =

fO ffp(x)dZ(s, x) to fot ff(s, w, x)dZ(s, x) where p(s, w, x) is 1P x B(Rd)_
measurable ( P is the predictable a-field on [0, oo) x Q) and

I (jJ p(s,w,x)2X.(dx)ds) < oo for all t > 0.

The resulting stochastic integral (still denoted Zt(p)) is a continuous L2-
martingale satisfying

(Z(p))t = jXa(9)dS.
The same extension holds for processes Zt' in (Mml,m2). These extensions will
be used without further comment. cl, c2... will denote positive constants
arising in the course of an argument. Positive constants introduced in Section
i which arise in subsequent arguments are denoted ci.1, Ci,21.. ..

2 Branching Particle systems and the Non-
standard Model

We will introduce a system of branching Brownian motions which converge
weakly to a super-Brownian motion Y. Section 2 of Perkins (1988) contains
some additional properties of the labelling scheme we now introduce.

Let I=Uoo%Z + x {0, 1}n and if (Po, ...,) E I let i and
li@j = (Po ...I ) for j < i. Let {BP : , E I} be a collection of i.i.d.
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Brownian motions and let {e' :3 E I} be a collection of i.i.d. fair coin-
tossing random variables taking on the values 0 and 2. These two collections
are independent and are defined on a common (Qi, A,1). Given It EN and
{X17..., XK} C Rd define a system of critical branching Brownian partides
{N' : / E J} as follows. N' starts at xXo if Po < K and N' is identically A
(the point at infinity infd =Rd U {A}) if do > K. If j < 1/1 and NX # A,
then N[o - -" B't'l B'31 for t E U/p, (j + 1)/p) and

Blj3" B'" if e3i' =2 and j < 161
(i+1)/p bi A if e'3 = 0 or iI3

Once NO hits A it stays there.
Hence {N' : d E I} describes a system of particles which follow inde-

pendent Brownian motions on each [lp, (j + 1)/p) and independently die
or split into two with equal probability at each time (j + 1)/p.

Write 3, t if /3 E I satisfies /l31/p < t < (1/l3 + 1)/p and define a
measure-valued process by

Nt(")(A) - Nt(A) = p 1 1A(Nt) A E B(Rd).
'3'.t

Fix an initial measure m E MF(Rd) I N(¶) -- m in MF(Rd) (allow (xi)i<K
to depend on it) then S. Watanabe showed that N.() converges wealdy to
;Qm(Y E .), the law of super-Brownian motion, on D([O,oo), MF(d)) (see
Perkins (1990, Theorem 2.2)). It will be convenient to use the nonstandard
formulation of this result.

In the next two sections we will work on w1-saturated enlargement of a
super-structure containing R and (Q1, A,I ). Fix 77 E *NV-.IN and let p =2=7.
Choose K E *NI-IN and (xi : i < K) an internal sequence in *Rd such that
std(N(")) = m, where Std is the standard part map on *MF(Rd) and N.(H) is
the internal *MF(Rd)-valued process defined as above on ( *Q, *A, *Q) If
i: = L( *Q), the Loeb measure on the measurable space ( *fl, L( *A)), then
(DIP (1989, Thm. 2.3)) N.(H) ispm-a.s. S-continuous and Y(t) = st(N(P))(t)
(st is the standard part map on *D([O, oo), MF(JR))) is a super-Brownian
motion starting at m under jm . (Define Y 0O on the fm-null set on which
N(P) is not S-continuous.)
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The following Levy modulus was proved in DIP (1989, Thm. 4.5) as
a standard result. The nonstandard formulation we now give is then im-
mediate. We let h(v) = ((v A e'1)(logl/(v A e-1)))'/2. The function h is
non-decreasing.

Theorem 2.1 If c > 2 there are positive constants c2.1(C), C2.2(c) and c2.3(c)
and a random variable 6(w, c) on ( *Q, L( *A),2m) such that

(2.1)
A

M(s <. p) < c2.1m(1Rd)pc2.2 for 0 < p < C3.

(2.2) If 0< t - s 6(<w,c), s,t E *[0,oo), ,B t and Nf3 iZA, then

INt-NIj < ch(t -s).

Notation. T = {j/p : j E *No}, T is the set of internal subsets of T, and
A = Al is the internal measure on (T, T) which assigns mass A-' to each
point.

3 Non-existence of Collisions for d > 6

In showing that two independent super-Brownian motions do not collide, and
hence can only have a trivial collision local time, if d = 6, we use techniques
similar to those of Sections 3 and 5 of DIP (1989). In particular we work in
the nonstandard setting introduced at the end of the previous section.

Definition. V denotes the random (finite) measure on B([0, oo) XIRd) defined
by

V(A) = jJ 1A(S,x)Y,(dx)ds.
U = Up denotes the random internal measure on T x *B(Rd) defined by

U(A) = IT 1J A(S x)N.(dx)dA(s).
It is clear that stM(U) = V as where stM denotes the standard part map

on *MF([O,O) x Rd) and we consider U also as an internal measure on
*([0, oo) XJRd). We want to show V distributes its mass over the graph of Y,
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G(Y), in a uniform manner. Theorems of this type were proved in Perkins
(1989) and DIP (1989) for X and fT Ytdt, respectively, where these measures
were shown to be equivalent with the appropriate Hausdorff measures on their
supports. The scaling properties of Brownian motion suggest a modified
Hausdorff measure used by Taylor and Watson (1985)-see also the earlier
work of Hawkes (1978).

Let C(x, r) (C Rd) denote the dosed cube of side-length r and "lower
left-hand corner" x, and let

C(t, x,r) = [t,t + r2] x C(x,r) C [0, oo) xRd (t >O, x E Rd)

and
d

Co(t, x, r) = (t,t + r2] x fl(xi, xi + r] C (0, oo) x Rd.
*=1

If Cc [0,oo) xEd, B CRd and r >0, then

cr {(t,x) E [0,oo)xERd: It-t'I < r2 and Ix-x'l < r for some (t',x') E C}

Br _ {x ERd: Ix -x'l < r for some x' E B}.

Definition. If f: [0, e) -+ [0, oo) is non-decreasing near 0 and f(0+) = 0,
let

00

qJ(A) = liminf{ f(ri): A c U',C(ti, yi, r,), ri < 6}, A c [0, oo} X lRd.
i>1

qf is a measure on B([O, oo) xRd) and if f varies regularly at 0 (as will be the
case for the only f we will consider) qf is a constant multiple of the restricted
Hausdorff measure P - f - m introduced by Taylor and Watson (1985). Let
us set f(r) - r4 log log(l/r).

Theorem 3.1 If d > 5 there are constants 0 < c3.1 < c3.2 < oo such that for
any m E MF(Rd)

c3.lqf(Anf(Y)) < V(A) < c3.2qf(AnG(Y)) for all A E B((O, 00) XRd) 1m-a.s.

This result will be proved by making minor changes in the proof of Theo-
rem 14. of DIP (1989) which gives a similar connection between fot Y,ds and
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the ordinary Hausdorf f-measure of the range of Y (both are measures on
Rd). We will need some notation and terminology from DIP (1989).

Notation. an = 2-n/2, jin = 2n+1 bn = 2-'n

n {C(tx,2-n/'2) : t = (no+eo)2 n,i= (ni+ei)2-n/2 (1 < i < d),no ENo,

ni E Z (i > l),ei O or 1/2},
An,L = {C E An: C C [L-1,L] x [-L,L]d},

C3.3= P(IB21 < 1/2)/24,
I(t,e)={y E I : t-e there is a ,B̂ t such that 8j[py(t-e)] = y and

Nt # A}, 0 < c < t ([x] is the integer part of x).

Definition. C E Ain is bad iff U( *C) > 0 and U( *C7aK) < C3.3f(aK) for
K =2n,... 2n+l _ n.

Lemma 3.2 There are constants c3.4(L) (L E N) and c3.5 such that for
L E IN and n sufficiently large (n > no(L)),

(3.1)
A M(C bad and 2bn < 6(w, c))

< C3.4(L)m(1)2-2n(d-2)2nd/2 exp(-C3.52n/2) for all C E Ain,L-

Proof. Let C = [t, t + bn] x C1 E Ain and assume C is bad. Assume in
addition that 7bn < L-1 and 2bn < 6(w, 3). Since V( *C) > 0 we may choose
,le3 t' such that t' E *[t,t+ bn] and Nti E *C1. Clearly 7r = 81I[,(t- bn)] E
I(t, bn). Since it - bn -ttl < 2bn < 6(w, 3) we have

IN2b- N'X3j < 3h(2bn) < 6ak whenever k < 2n+1 n-

and therefore

(3.2) NA.tb E C3h(2bn)

and

[t - 7a27t] X .(NL-bY ak) C [t - 7a2,t) x D(Nt, 7ak) C C7ak
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for all k= 2f,...,2n+l n.

As C is bad this latter inclusion means that

(3.3) U([t - 7a , t] x B(Nt7 bnak)) < c3.3f(ak) for k = 2", * , 2"+' - n.

We have shown that if 7bn < L-1 then w.p.l. C bad and 2bn <6(w, 3) implies
there is a -Y E I(t, kn) satisfying (3.2) and (3.3), which in turn implies the
conclusion of Lemma 5.1 of DIP (1989). Now argue just as in the derivation
of Proposition 5.6 of DIP (1989) to complete the proof. The only difference
is that since t is fixed there is no need to sum over the time grid {(j + 1)bn} n
(L-1, L+ bn] and this results in the factor of 2-2n(d-2) instead of the 2-2n(d-4)
obtained in DIP (1989, Prop. 5.6). 0

Proof of Theorem 3.1. Let L E IV. If n > no(L) then since card(Ain,L) <
2 .4dLd+121n(1+d/2) Lemma 3.2 implies

Am (1(2bn < 5(w, 3)) 1(C bad )f (2(-jn/2)))
CEAn,L

< cl(L)m(l)n2nd/2 exp{-c3.52n/2} = (L)
SinceEn fn(L) < oo, the above together with (2.1) allows us to conclude
there is an No(L, w) < oo a.s. such that

(3.4) E 1(C bad )f(2-in/2) < fn(L) for all n > No(L; w).
CEAin,L

Fix w outside a null set so that No(L, w) < 00 for all L E IV and V = stM(U).
Introduce

A.n,L {C E Ain,L: C bad }

Ag"lL {C E Ajn,L: U( *C) > 0, C good (i.e. not bad )}.

If C E Aqn1L choose k E {n2,... 2"+' - n} such that V( *C7ak) > C3.3f(ak).
C7ak C [t, t + r] x C1, where C1 is a closed cube of side-length

2-2 + 14ak < 15ak < akl/2

where k' = k - 10 or k - 11 whichever is even (hence k' E [2n _ 11, 2n+1
n - 10]), and r 2-2n+l + 2(7ak)2 < (akl/2)2. Therefore there is a C' in Ak'
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such that C7ak c CO. Let A9!n,L be the set of cubes obtained by choosing one
such C' for each C in Aq' L. Note that

(3.5) U( *CO) > U( *C7ak) > c3.3f(ak) > c3.32 22f(ak&)
for all C' in AnL2

As in the proof of Lemma 3 of Taylor and Watson (1985) there is a AinL C
A,2L such that

(3.6) U C= U CD U C
AJ9n L A,.nX,L Cc1EAgLz

and

(3.7) no point in (0, oo) x Rd is covered by more than

2d+i cubes in {Co: C E A9n,L}
(the latter property is the reason we chose k' even and must sometimes work
with the semi-closed cubes Co).

Let A C [L-, L] x [-L, L]dbe compact. Since stM(U) = V and each C in
Ajn,L is dosed, we have (writing G and G for G(Y) and G(Y), respectively)

(3.8) AnlGc(UAb C)U(uAg C)
Jn,L in,L

where U' means the union is taken over those C which intersect A (note that
if x E A n G then x E Int (C) for some C E Ajn,L satisfying V(C) > 0). If
n > No(L, w) then (3.4) and (3.5) show that

E f(2-in/2) + E 1(C n A # 0)f(2-in/2)
CEAjbL CEA9jg,L

< En(L) + 1(C n A 0) c2 U( *Co)
CEAL

< en(L) + C22d+1 °U( *Aa2n..11) (by (3.7))
-- c22d+lV(A) as n -+ oo,
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where we have used the compactness of A in the last. In light of (3.8), this
shows

(3.9) qf(A n G) . c22d+lV(A)
for all compact A (let L -* oo) and hence all Borel sets A c (0, oo) X Rd by
the inner regularity of the finite measures qf(. n G) and V(.).

Consider now the upper bound on V. By Theorem 1.4 of DIP (1989) we
may fix w outside a null set such that

jYu(B)du <c3f-m(R(r, s] n B) for all B EB(Rd), < r < s < oo,

where R(r,s] = U,<U<8.S(Y) and f - m denotes the ordinary f-Hausdorff
measure (see also Proposition 4.7 of Perkins (1990)). Let 0 < r < s, B E
B(Rd) and A = (r, s] x B. Choose a sequence of covers {C(t', x,v r') i E 1\}
(n EN) of An G such that

(3.10) limZf(r') = qf(AfnG), lim supr, = 0.

Then {C(xP, rP) : i E N} covers B n R(r, s] and therefore

V(A) j Yu(B)du < c3f - m(R(r, s] n B)
< C3 lim Zf(c4r!)n1-.oo

< c5qf(A n G) (by (3.10)).
For a fixed M E N this gives the required upper bound first for A in the field
of subsets of (M-1, M] x Rd of the form

n

U(ri,sil x Bi, M-1 < ri < si < r2... < Sn< M, Bi E B(Rd),
i=1

and then for all A in B((M-1, M] x Rd) (note that qf(.- n G) is a.s. a finite
measure by (3.9)). Let M -+ oo to complete the proof. 0

In DIP (1989, Theorem 3.1(a)) it was shown that for d > 3

(3.11) Qm(Yt(B(x,e)) > 0) < c3.6t d/2m(1)Ed-2 for all t > &2.

In fact exact asymptotics for the left-hand side as e l 0 were found. We now
use the same techniques to prove a slightly stronger result.
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Proposition 3.3 Assume d > 3.

Qm(j Y(B(x,e))ds > 0) C3.7t-d/2m(l)ed-2 for a t > 4e2.

Proof. If t > O and x E Rd let

m(e, x)(A) = e-2 J 1A((Y- x)/e)dm(y).

Then

t+ 2

q(m,t,) _ fm(j Ys(B(x,E))ds > O)
t+C2

= 1 -limlm(exp{-#9 Y,(B(x,E))ds})

1 - limQm(. )(exp{-9e4 I Y8(B(0,1))ds})

=1-lm Qm(c.x) (.QYt ,2 (exp{ 9e4j Y.(B(0 l ))ds}))

by scaling, spatial homogeneity and the Markov property. Use Iscoe (1986,
Theorem 3.1) and Lemma 3.5 of DIP (1989) to see there is a non-negative
function u°°(x) (u (1, x) in the notation of Lemma 3.5 of DIP (1989)) such
that

q(m, t, e) = 1 - pm(-T) (exp{-Yt/,2 (u°)})
and, if Tr= inf{t: IBtI < r}, then

u°°(x) < clP(T312 < 1) for all IxI > 2
< c1P0(sup IBoI > IxI/4)

8<1

< c2exp(-_1x12/34) (reflection principle)
g(x)-

From Theorem 1.1 (with =_ 0) we see that for t > 462

q(m, t, ) < 1 -Qm(cIx)(exp(-Yt/,2(g))) + m(.X)(Yt,C2(B(O,2)) > 0)
= 1 - exp{-m(e,X)(Ut/,2g)} + c3.6Edt-d/2&-2m(1)2d-2 (by (3.11)).
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An elementary comparison theorem (e.g. Lemma 3.0 of DIP (1989)) allows
us to dominate Ut/,2g(y) by Ptl,2g(y) (Pt is the Brownian semigroup) and the
latter equals C3pt/,2+17(y) (pt(y) is the Brownian transition density). There-
fore for t > 4r2

q(m, t, e) < 1- exp{-Ce2c3 Jpt/e2+17((y- x)/e)dm(y)}

+C3.6t-d/22d-2m(l)Ed-2
< C3.7tcd/2m(j)ed-2. 0

Remark 3.4. By using the more precise estimate given in Theorem 3.1(b)
of DIP (1989) and being slightly more careful in the above argument one can
show that

Ct

f((j Y.(B(x,e))ds > 0) < C3.sEd-2(]pt(y-x)dm(y)+c(e,6,m)) for al t > 6

where lim41oc(e,6b,m) = 0 for each 6 > 0, m E MF(Rd). Theorem 3.1(b) of
DIP (1989) shows this bound is best possible up to the value of c3.8.

The following elementary corollary is also a consequence of the more
precise results of Dynkin (1990c) and the general results of Taylor-Watson
(1985).

Write q'(A) for qg(A) when g(r) = rc.

Corollary 3.5. Assume d > 3. If A C (0,oo) XIRd satisfies qd-2(A) = 0,
then A n G(Y) = 0 lm-a.s.

Proof. We may assume A C [6,7oc) x Ed for some 6 > 0. If qd-2(A) =
0 there is a sequence {C(t?,x?',r'): i E IV} (n E IV) such that A C
U1 Int (C(t?, x' , r,)) and lim,oO Zi(r )d2 - 0

12(An O(Y) 9 0) < I? ('(')Y(C(Xn,rn))ds > O)

< C -d/2m(21) (rin)d-2 Proposition 3.3)
i=l

-O as n-+oo. 0
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Theorem 3.6. Assume d > 6. If Y', Y2 are independent super-Brownian
motions starting at ml and m2, respectively, then 6(Yl) n (Y2) -0 and
hence S(Yt4) n S(Y2) - 0 for all t > O pm' x pm2-a.s.

Proof. Theorem 3.1 implies qd-2(6(yl)) = 0 Qml_a.s. if d > 6. Hence
Corollary 3.5 and a Fubini argument shows that O(Y') n G(Y2) = 0 a.s. if
d>6. 0

Remark 3.7 (i) It is easy to use Theorem 3.1 and Proposition 3.3 to see that
qg(O(Yl) n ((Y2) n ([6, co) Xld)) < 0o for all 6> 0 pm' x pm2 as where
g(r) = r6-d log log 1/r (d > 3). As above one can then show that for d > 4, if
Yi (i 1, 2, 3) are independent super-Brownian motions then nfl=1S(Yti) = 0
for all t > 0 a.s. Similarly there are no quintuple collisions in three or more
dimensions.

(2) The non-existence of collisions between independent super-Brownian
motions for d > 7 is a simple consequence of Proposition 3.3 alone. Theorem
3.1 was needed to treat the critical six-dimensional case.

4 Uniform Regularity Results for Super-Brownian
Motion

In this section we derive uniform (in (t, x)) bounds on Yt(B(x, r)) as r 1 0
for the super-Brownian motion Y. Estimates on Yt(B(x, r)) for a typical x
in S(Yt) were obtained in Perkins (1988) to find an exact Hausdorff mea-
sure function associated with Yt but additional work seems necessary to get
uniform bounds. We continue to work with the nonstandard model N(A)
(j = 27 E *IN -l) introduced in Section 2. This richer nonstandard model
allows us to define the following processes, originally introduced in Perkins
(1990, Sec. 4). If r E *[O, oo), let r = [rp]/p where [x] denotes the integer
part of x. If B E B(RJd) and r > 0, let

Nr,B(A) = , 1(N7 E *B,Nt+r E A), t E *[0, ),)A E*B(fd)
-y,r+t

Hence Nr,B is an internal *MF(Rd)-valued process which at time t records
the contribution to Nt+r from descendants of particles which were in *B at
time r.

18



Notation. {At : t E *[0, oo)} is the internal filtration on ( *Q, *A) defined
by

At = *cr(B/,el3: |,B| < [ty]) v (nu>t *a(B: 1,61=[ta],s < u))

(here *a(X) is the internal * - a-algebra generated by the internal X). Let

t= a(At) for t E [0, oo) and let Ft= F'to V {Im-null sets}.
{5t : t > O} is a standard filtration (but is not right-continuous) and

Y is (Ft)-adapted. It follows from the nonstandard construction of Y that
for each fixed r E [0, oo) and B E B(lRd), Nr,B is imas S-continuous and
yr,B(t)= st(Nr,B)(t) satisfies

(4.1) Qf(yrEBE CIFr) - QYrIB(C)Ii -a.s. for all Borel measurable

C in C([O, oo), MF(Rd)) and all Borel B such

that aB is Lebesgue - and m-null .

(See (4.7) and (4.8) of Perkins (1990) where this is shown if B is a ball. The
same proof works for B as above.)

Notation. (a) If v E MF(Rd) let vPt(A) = Pv(Bt E A), and let

D(v r) = sup{Iv(B(y, r)) : y ERd).

(b) If x, y E Rd, write x y if x - y E Z d and let ir(x) denote the unique
point in [O,l)d such that x ^ 7r(x). If A c Rd let A = UkEz d(k + A) =
{x x a 3a E A}.

(c) (d) =j1 if d> 2

p(r) =r2(log+ 1/r + l)o(d)l 4P(r) - r2(log+ 1/r + 1)a(d)-l

Let c4.1 E [Vd+ 4, Vd+ 5) and let B,3 denote the set of open balls, B (y),
of radius r-= c4.1h(2-1) and centered at a point y in (2-Z )d. (Here a
Z = {an : n E Z }.) We may, and shall, increase c4.1 slightly so that
m(9B) = 0 for all B in UnB1n. In what follows we will always assume n
is large enough to ensure rn < 2. For each such n and each j E Z + we
construct a class Cn(j) of subsets of Rd with the following properties:
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(4.2) YB E Bn, 3C E Cn(j) such that B c C

(4.3) VC E Cn(j), 3B E Bn such that C c B

(4.4) VC E Cn(j), Pm(B(j2-n) E C) < D(mPj2n,rn) + W(h(2-n))
(4.5) card Cn(j) < (m(l) + 1)2c4.2n (c4.2 depends only on d).

For each Bn(y) E BBn with y E [0, 1)d, let C be a (disjoint) union of balls
of the form k + Bn(y) (k E Z d) where we keep adding on translates of
Bn(y) until the mPj2n measure of the union exceeds cp(h(2-n)). Hence C will
satisfy (4.4). Continue in this manner using new translates of Bn(y) until
every k + Bn(y) is contained in one (and only one C). Each such C will be
a disjoint union of sets in Bn(y) and hence satisfy (4.3). The class of C's
constructed in this way (for Bn(y)) are mutually disjoint and all but one will
satisfy mPj2n(C) > p(h(2-n)). Hence by (4.3)
(4.6) no. of C's constructed from one Bn(y)

< m(Bn(y)) (h(2 ))l + 1.

Now repeat this procedure for each of the 2nd choices of y in [O, l)dfn (2-nZ )d.
Cn(j) is the set of all C's constructed in this manner. (4.5) is then dear from
(4.6). (4.2) is immediate from this construction.

Lemma 4.1 ForfQj - a.a.w, if 2-n < 6(w,3) (6(w,3) as in Theorem 2.1)
then

sup{Yt(B(x, h(2-n))): x E Rd, j2n < t < (j + 1)2 }

.u{Yt32fC(1Id) C E Cn(j), t E [0,2)} iVj Z

Proof. Fix w outside a lQ -null set such that Y = st(N) and yu,c
st(NU,c) for all non-negative rational u and C E Uj,nCn(j). Assume 2-n <
S(w,3). Let x E Rd and choose y E 2-nZ d such that |x - yI < Vd2-n <
Vdih(2-n). Fix j EZ +. Then

B(x,4h(2-n)) C B(y, (d + 4)h(2-n)) C Bn(y) c C for some C E Cn(j)
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(the latter inclusion by (4.2)). If t E j2-n, (j + 1)2-n), 3, t and Nt" #&A,
then INt-N- 2-n < 3h(2-n) (recall 6(w,3) > 2-n) and hence

(4.7) Nt3 E *B(x,h(2-n)) =* N.O2 E *B(x,4h(2-n)) c *C

Therefore

Yt(B(x, h(2-n))) < °Nt( *B(x, h(2-n)))
< 01 Z1(N.2_n E *C, Ntf # A) (by (4.7))

- ONT2n¶C( *Rd) -y2-n,C(Rd)

The result follows. 0

Notation. If f : lRd __ [0, oo] is Borel, let

G(f, t) = J sup P (f(B.))ds.

The next result is readily obtained by taking limits in Proposition 2.6(c)
of Perkins (1988).

Proposition 4.2 Iff :Rd -+ [0, o] is Borel and 4Pm(f(Bt)) < A, then

Qm(Yt(f) > A) < exp{-A(4G(f,t))-'}.

Let q8(y) = EkEZ d PJ(Y + k) denote the transition density (on [0, 1)d) of
r(B.) (and set q5(y) = 0 if y j [0, 1)d).

Lemma 4.3 Let r E [°0 )).

(a) sup, PY(B, EB(O, r))< c4.3rd(sd/2+1)
(b) IfB is a ball of radius r then

Gp(1i,d.t) <C24.4if (r)

providing t < r2-d, if d >2, or t <log -, ifd=2.
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Proof. (a) If y E [0, 1)d then

qs(y) = (2irs)-d/2 E exp{-Iy + kl212s}
kEZ d

d oo

< II( Z exp{-(yi + ki)2/2s}(27rs)"l/2)
i=1 ki=-oo

oo

< (2(2irs)-1/2 + 2 Z excp{ k2/2s}(27rs)jl/2)d
k=1

< (2(27rs)'/2 + 2 exp{-x2/2s}(27rsF1/2dx)d
< (S-1/2 + 1)d.

Therefore

Py(BS E B(0, r)) = Po(r(Bq) E 7r(B(-y, r)))
- J 1(z E 7r(B(- y, r)))q(z)dz
< cdrd(S-1/2 + 1)d

where cd is the volume of the unit ball in Rd (recall r < 1/2). This gives (a).
(b) If d > 2, B is a ball of radius r < 1/2 and t is as in the statement of (b),
then

G(1a,t) = fo'supyPU(B, E B.(0,r))ds

(4.8) <r2 + fi2V c4.3rd(Sd/2+ 1)ds

< r2 + c4.3trd + c4.3rdr2(1d/2)(d/2 - 1)-1

< r2 + c4.3r2 + c4.3(d/2 - 1)'r2 c4.3r2.

If d = 2, then (4.8) still holds and we get

G(19, t) < r2 + C4.3tr2 + C4.3r2 log+ t/r2

< r2 + c4.3r2logl/r + c4.3r2[loglog- + 2log-]. 0

Notation. Let Yt denote the diffusion on [0, oo) with generator (y/2)d2/dy2
and let {PO : y' > 0} denote the laws of y on path space. The process is
absorbed at 0.
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Lemma 4.4 P"'(supt<T y(t) > A) < exp{-2(x/X - Vfy)2/T} VA > y'.

Proof. The transition density of y is given on p.100 of Knight (1981). This
readily gives POY(expOy(t)) = exp{20y'(2 - Ot)-'} for 0 < 2/t. The result
now follows from the weak LI inequality by the usual application of Markov's
inequality (the optimal 0 is t-1(2 - 2(y'/A)1/2). 0

We now combine the three previous estimates to derive the required
bound on yj2-¶,C. Recall rn = c4.1h(2-n).

Lemma 4.5 There is a C4.5 such that

A( y2-ncC(Rd) > A) < 2expnc4.52nn(d)}
t<2-n

for all j2-n and C E Cn(j) such that

(4.9) 8(D(mPj2-n,rn) + p(h(2-n))) < A,

rn < 2, and
2~~ ~ ~ ~ ~ ~ d2

j2n log /rn, if d = 2.

Proof Use (4.1) to bound the required probability by

JQm(Yj2-n(C) > A/2) +-m(1(Yj2-n(C) < A/2)Q 2nIc( sup y(Rd) > A))
t<2-n

< exp{-A(8G(1c,j2-n))-l} + pl/2( SUp y(t) > A)
t<2-n

((4.4) and (4.9) allow us to apply Proposition 4.2)

(4.10) < exp{-A(c4.48b(rn))-1} + exp{-2n( -1)2A},

where we have used (4.3) and Lemma 4.3 to bound the first term and Lemma
4.4 to bound the second term. An easy calculation now shows the first term
in (4.10) is the larger and gives the required bound. 0
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Lemma 4.6 (a) t e-÷ D(mPt, r) is non-increasing on [0, oo) for each m E
MF(Rd), r > 0.
(b) There is a c4.6 such that

D(mPt, r) > c4.6D(m, r) V 0 < t < r2 m E MF(Rd)_

Proof (a) By the Markov property it suffices to show D(mPt, r) < D(m, r).
If y E Rd then

mPt(B(y,r)) J1(z - yj < r)pt(z - x)dm(x)dz

|111(1w + x - yj < r)dm(x) pt(w)dw

< D(m, r) pt(w)dw = D(m, r).

(b) Choose y such that m(B(y,r)) > D(m,r)/2. Then

mPt(B(y,r)) > 1(Ix -yl < r)PX(Bt E B(y,r))dm(x)
1(jx - y < r)P0(Bi E B((y - x)t-12, rt"1/2))dm(x)

. c1m(B(y,r)) > (ci/2)D(m,r)

where cl = inf{PO(Bi E B): B a ball of radius 1 containing 0 }. 0

Here finally is the main result of this section. Recall that

d f ~~r2(1 + log+ 1) d> 2D(m, r) = sup{m(B(y, r)) : y ERd} and Wo(r) = { 2(1+log+ )2 d=2

Theorem 4.7 Assume d > 2. There exists C4.7, c4.8 such that for any m in
MF(Rd) and Qm-a.s. 3ro(w) > 0 such that

D(Yt,r) < c4.7max(D(mPt,c4.8r),cp(r)) for all t > 0 0 < r < ro.

Proof. Let

An(j) = { sup
j2-n<t< (j+l1)2-

D(Yt, h(2-n)) > cl(D(mPj2-n, rn) + p(h(2 n)))},
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where cl > 8 will be chosen below. Let

= r2-d
Tn = n

|log(l/rn)
if d >3
if d =2

Then (2.1) and Lemmas 4.1 and 4.5 imply that for rn < 2

fQm (Uj<2nTnAn(j)) <
A

1m(An(j),6(w,3) > 2-") + C2.lm(Rd)2-nc2-2
j<2nTn

< 1: E 2exp{-c4.5cl(D(mPj2-n, rn) + p(h(2-n))2nn-d(d)}
j<2nTn CECn(j)

+ C2.1m(JRd)2-nc2.22C4.2n
< 2 Tn(m(l) + 1)2exp{-c4.5c,w(h(2-n))2nn a(d) }

+ C2. m(d)2-nc2.2 (by (4.5))
< 2n(l+c 2)Tn(m(l) + 1)2 exp{-Clc2n} + C2.1m(d)2n 2,

where c2 depends only on d. Now fix cl large enough so that the last expres-
sion is summable (note that Tn < 2nC3). By Borel-Cantelli we have Qm-a.s.
for large enough n

sup
j2-n<t< (j+l1)2-

D(Yt, h(2-n)) < cl (D(mPj2-n, c4.lh(2-n)) + cp(h(2-n)))

o<j2-n <Tn,

and therefore by Lemma 4.6(b) (with mPj2-n in place of m in that result)

(4.11) D(Yt, h(2-)) < c3(D(mPt, c4.1h(2-)) + p(h(2-))) V 0 <t < Tn.

Take n larger still (if necessary) so that Tn exceeds the lifetime of Y to get
(4.11) for all 0 < t < oo. The required result follows by a standard argument
which allows us to replace h(2-n) by a sufficiently small continuous parameter
r at the cost of increasing c3 and c4.1. 0

Corollary 4.8 If d > 2 then for any m in MF(Rd)

lim sup sup D(Yt, r)p(r)1 < C4.7 for all 6 > 0 l)m - a.s.
r4O t>6
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Proof. Lemma 4.6 implies

sup D(mPt, c4.8r) = D(mP.s, c4.8r)
t>6

< m(l)6-d/2(2c4.8r)d.

The result is now clear from Theorem 4.7. 0

In the next section we will also need a uniform (in t) upper bound on
f f l(Iy1 - Y21 < r)dYtldYt2 as r I 0 when Y1 and y2 are independent super-
Brownian motions starting at ml and m2, respectively. This in turn requires
an elementary covering argument implicit in Perkins (1988) and DIP (1989).
This argument (Proposition 4.10) is of independent interest since it gives an
elementary proof of the fact that dimS(Yt) < 2 for all t > 0 a.s. (the reader
is invited to derive this from the proof of Proposition 4.10).

Notation. If 0 < e < t, let Z(t, e) denote the cardinality of I(t, e) (the latter
was introduced just prior to Lemma 3.3).

Lemma 4.9 Conditional on YTt., Z(t, e) is a Poisson random variable with
mean 2Yt- (1)e-

Proof. The internal conditional distribution of Z(t, e) given At-, (or equiv-
alently At-,) is binomial with mean z 2Yt_(1)e-l and number of trials
NtN_,(1) (see DIP (1989, Lemma 4.1, (4.2))). The lemma is now a simple

consequence of the well-known weak convergence of the binomial distribution
to the Poisson. 0

Proposition 4.10 Let Y*(1) = supt>oYt(l). For Q? -a.a.w for n suffi-
ciently large (n > N(w)) for any j E N S(Yj2_n) is contained in a union
of 2n+2(Y*(1) V 1) balls of radius 3h(2-n).

Proof. The previous lemma and an elementary calculation shows that

; M(Z(j2-n, 2n) > 2n+2(Y(J -l)2-n(1)V1)IF(j,-l)2-n) <exp{-2n (2 log 2- 1)}
(bound the conditional distribution of Z(j2-n, 2-n) by a Poisson distribution
with mean 2n+1(Y(j_1)2-n(l) V 1) and apply an elementary large deviations
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estimate). Therefore

M( max Z(j2 ,2 ) > 2+2 (Y*(1) V 1)) < 22exp{-2 + (21og2- 1)}

is summable over n. By Borel-Cantelli we can fix w outside a 1 null set
such that there is on N1 (w) so that

(4.12) max Z(j2-n 2-n) < 2n+2(Y*(1) V 1) for all n > Ni
1<,<22Th

and 6(w,3) > 0 (S(w,c) as in Theorem 2.1). Choose n > N1 so that 2-n <
6(w, 3) and Y2n+t= 0. Then for any j EN

(4.13) S(yj2-n) C U B(x,3h(2-n))
XEI(j2-n,2-n)

and (4.12) together with I(j2-n 2-a) = 0 for j > 22n shows that (4.13)
covers S(yj2-n) by a union of at most 2n+2(Y*(1) v 1) open balls of radius
3h(2-n). 0

Theorem 4.11 Assume d > 2. There is a C4.9 such that for any mi1, m2 in
MF (lRd) /3 > 0, and Qm' xIm2-a.a. w there is an r, (/3, w) > 0 such that

(4.14) supJ 1(jY - Y21 < r)dYt1(yj)dYt2(y2)
t>pZ

< c4.9(supYtl(1) v 1)r4-4/d(log l/r)2/d+2 for r < r, (3, w).
t

Proof. If d = 2 this is a simple consequence of Corollary 4.8 (in fact one
can reduce the power of the logarithm) so assume d > 2. We work on the
obvious product of Loeb spaces so that w = (w', w2). Fix f > 0.

Condition on wl satisfying 6(wl, 3) > 0 (6(w, c) as in Theorem 2.1),
ro(wl) > 0 (ro as in Theorem 4.7), and the conclusion of Proposition 4.10
(for n > N(wl) say). We now argue conditionally on wl and hence will work
with respect to i: . Assume n is taken sufficiently large so that n > N(w'),
h(2-n) < ro (wl), 2-n < 6(wl,3), and D(mPt,c4.sr) < p(r) for all t > ,B and
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r < h(2-n) (see the proof of Corollary 4.8). Then on {(w22,3) > 2-n} we
have for , < j2-n < t < (j + 1)2-n)

J J1l(Iyi-Y21 < h(2-n))dYt'dY2 < 4.7p(h(2-n)) Jn (d(y2,S(Ytl)) < h(2))dY2

(by Theorem 4.7 since h(2-n) < ro(wl))
(4.15)

< C4.7 (h(2~n | (d(Y21 S(yjl2_n)) < 4h(2 n)d t2

(since 2- < 6(wl, 3))

< c4.7p(h(2-n))y",n
where

Sj,n= {y d(y, S(Y%'2-n)) < 7h(2-n )}
y,n - y2,Sj,nj2n

t<2-n

and we have used 6(w2, 3) > 2-n to condude that each particle in S(Yt2)
within a distance 4h(2-n) of S(Y%l2n), is the descendent of a particle in

S(yj22-n) within a distance 7h(2-) of (Y%2_n) Use the nonstandard con-
struction of Y2 to make this rigorous. By the choice of w1 and Proposition
4.10

Pm2(B E S ,n) < 2n+2((Yl)*(l) V 1)m2(1)s8d/2cih(2 n)d

c2c1(w1 )m2(1)s-d/22-n(d/2-1)nd/2
where c3(wl) = (Yl)*(l) v 1. Therefore

G(1 sj, t) < (c2c3(wl) d/22-n(d/2-1)nd/2) A lds

<C4C3(Wl )2/dn2-n(1-2/d)

By (4.16) if j2-n > , and

(4.17) A > 4c2c3(wl )m2(1)#-d/2nd/22-n(d/2-1)
we may apply Proposition 4.2 to conclude

jjv&2 (yj22n (Sj,n) > A) < exp{-A(4c4c3(w1 )2/d)-ln-12n(1-2/d)}
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Let An= (4c4c3(w1)2/d)17n22-n(1-2/d). Then (4.17) holds for n > no(w', /3, m,(1))
and so

Q (Yj22-n(Sj,n) > An) < e

Argue as in Lemma 4.5 to obtain for n > ni(wl, 3, m1(1))

Ai;? (Yjn > 2An) < 2e17
By Borel Cantelli for m2-a.s. w2 there is an Ni(w2) such that

sup Yj,n < 2An for all n > Ni(w2) V n(wl,/3,m(l))
je3<j2-n<2n

- N2(W)-

Returning to (4.15) we see that for a.a. w there is an N3(w) E IV such that
for n > N3(w)

sup J1(yl - Y21 . h(2 ))dYtldYt2 <C4.79(h(2))2An
2,3<t

< C5c3(wl)2/dh(2-n)4-4/d(log 1/h(2-n))2+2/d
(4.14) is a trivial consequence of the above. 0

5 A Tanaka Formula for Collision Local Time
Let ml,Im2 E MF(Rd) and assume (Xl, X2) are continuous adapted MF(JRd)_
valued processes on (Q', F',F,P') which satisfy (Mml,m2) (in the Introduc-
tion). We first show how to enlarge the probability space to construct a
pair of independent super-Brownian motions (Yl, y2) so that Y' > X'
i = 1,2. Recall the notation (no1,Y),FO[S,t+],Pa,m,p) from Theorem 1.1.
Let Ft =-F°[0,t+].

Define

-=Q' x Q° xQ°, YF=Y' xF xY, JYt=F XFtX X JF,t,

and if Q, = Q o,o,p, define IP on (Q, F) by (see Theorem 1.1(d))

1 (B x C1 x C2) = j 1B1()QAl(WI)(C1).QA2(W1)(C2)dPI(W).
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Here A'(w') is the random measure on [0, oo) x lid defined by

A'(w')([O,t] x B) = A'(w')(B).

Let ir : -4 Q' denote the projection mapping and denote points in Q by
w =(w',Y,Y2). Let Ygi(w) = Xt(w') + yti > Xti(w'). Roughly speaking,
when an individual of population X' is killed by Ai we think of the parti-
cle living on in an afterlife and use 1i to record the subsequent evolution
of the descendents of these dead particles. There is no further interaction
between these deceased particles and the two lving populations and hence,
conditioned on w', Yi, i = 1, 2, should be independent.

Theorem 5.1 (a) IfW E bYF', then

(5.1) lP(W o 7rlYt) = F'(WTt) o 7r IP - a.s.

(b) (yl, y2) are independent (Ft)-super Brownian motions starting at ml
and m2, respectively (under 1P).

(c) If ZtY(p) is the martingale part of Yt%p) (p E D(A)) then

(ZY'(p,), Z'((p) o T)t = 6j (Zi(pi), z'Q(WA))t o ir = tij j Xs o 7(cp)ds.

Proof. (a) Let B E YFt and Cl, C2 e Yt. Then if W E b;F',

1BX C,XC2W O 7rdP = 1B(W)W (W)QAl(WI) (Cl)IA2(WI)(C2)dP (W')

- J 1B (W')1P'(IWV1tY) I(W')Q A1 (wi) (Cl)Q A2(Wi) (C2)dJP (w')

since Theorem 1.1 (d) shows that fQAji(WI)(Ci) is Ft-measurable. Therefore

J 1BXC1xC2W O 7rdIP 1BxC1xC2 I (WIYt) o rdI

and (5.1) follows.
(b) Since Zti(p) is on (Ft)-martingale (a) shows that Zti(W) o 7r is an

(Ft)-martingale under .P and

(5.2) (Zi(pi) o ir, Zi(j) o lr)t = 6,j Xsi o ir2)ds
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because Zt(pj) o Zt(j) o ir - 6ij fo X o 7r(Vp)ds is an (Ft)-martingale by the
same reasoning. Let Ft = x F't X Ft D Ft and

Z= i(yo) -|j Y'(Ay)dr - A'(W) o r, y E VD(A).
If s < t, BE F:' and C1,C2 E FO, then

F (1B xCxC2(Zt (p) -Zs)))

- LQA1(w') X QA2(W)(1ClcxC2( Z((P)(w, -Z.(p)(w .)))dJ '(w')
o

because Zt(p)(w', ) is an (F't x F5)-martingale under PA'(W) X QA2(WI) by
(Mo,o,Ai(wO)). Therefore -'(p) is an (it), and therefore an (Ft), martingale.
The same reasoning shows Z-'pv)Z?((p) - 5,fY28( p)ds is an (Ft), and
hence also on (Ft), martingale and so

(5.3) (Zi(i) j(wj))t =i;|Y',, (Vs2)

If y E D(A) then Zty'(V) Zti(s) o ir + Zz(v) is a (Ft)-martingale by the
above and

Yti(sO) = m'(s) + Zty (s) +j Y(AV)dr i = 1,2, y E V(A).
If s < t then

F(Zz(so)Z?i(so) ° irF.) = P(Zt'(s) o F(Ze(sofI).)F.);)
'(Ztj(Vj) 0 7r'(Vj) jF8)

and so

(5.4) (Z-'(si), Zj(sj) o7r = 0.

(5.2), (5.3) and (5.4) imply

(ZYi(o) ZY3(so))t = Si j (I2)ds
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Theorem 1.2 now implies (b).
(c) is immediate from (5.2) and (5.4). 0

The above result extends easily to more general super-processes such as
super-Feller processes.

(a) implies that (X,A) =(Xl,X2,Al, A2) (on (Q',F',Fq,IV) and (X,A)o
ir on (Q, F, Ft, I') have the same law and, more significantly have the same
adapted distribution in the sense of Hoover-Keisler (1984). This means that
all random variables obtained from (X, A), respectively (X, A) o 'r, by the
operations of composition with bounded continuous functions and taking con-
ditional expectation with respect to (F`), respectively (Ft), have the same
laws. It implies, for example, that if we identify (X 1, X2, A1, A2, Z1, Z2) with
(Xl,X2, Al, A2, Zl, Z2)or, then (Mml,m2) holds on (Q2, F,t, P ) (this is es-
tablished in the previous proof). Therefore in studying properties of (X, A)
we may as well work with (X, A) o ir on (Q, , Ft, I') and hence we may, and
shall, assume there are independent (Ft)-super-Brownian motions (yl,y2)
starting at ml and m2, respectively, and such that Yt' > Xt for all t > 0

i = 1, 2. In the future when working with systems such as (Mmi,m2 ) we will
simply assert the existence of dominating super-Brownian motions (yl, y2)
"without loss of generality by enlarging the probability space if necessary".

Let A and R,x denote the generator and a-resolvent of 2d-dimensional
Brownian motion, respectively. It will be understood that a > 0 if d < 2.

Lemma 5.2 For any y in D(A),

Xl x Xt2(X ) m x m2(y)

+ jJJP (Xl,X2)[X(dXi)Z2(ds, dx2) + X,2(dX2)Zl(ds,dxl)]

- jJJc| Y(Xl,X2)[Xl(dxi)A2(ds, dx2) + X,2(dx2)Al (ds, dx)

+ jfJ Ap(xi, X2)X1 (dxi)XJ2(dX2)ds.

Proof. If p(xl, x2) is a linear combination of functions of the form pl(xl)p2(x2)
where Wi E D(A) (call this class of W's C) this is immediate from (Mm1,m2)
and Its's lemma. A theorem of S. Watanabe (see Ethier-Kurtz (1986, p.17))
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implies £ is a core for A and the result follows for all p in V(A) by taking
limits. 0

To obtain a Tanaka formula for collision local time we want to set O(xl, x2)
-6O(xl - x2)b((x, + x2)/2) in the above. If ,b E bB(Rd) we introduce some
approximate identities and set 4,((x,,x2) = P(Xl- x2)b((x + x2)/2) and
(B,, B2 are independent Brownian motions in lid)

G ( 2)=Re,b (x, x2) = pl x Px2(j e Spe(Bl - B>)((Bl + B )/2)ds

- kdj e-2a8pP+4((xl - X2)/2)P.'((xl + x2)/2)ds,

where kd = 2(4-d/2) and we have used the independence of B' + B2 and
B' - B2. Let

GC&/(x,,x2) = kdj e-2a'sp((Xl-x2)/2)P,O((x,+X2)/2)ds-= Gas,o/(x,,x2).

If b E Co(Rd) then 0,(xl,X2) E Co(Rd) and G,S,, E D(A) solves AGa,b
aGc,eb - 0. (If a = 0 and d > 3 it is easy to check Ga,, 1ill> Go,,/
and AGa,',b Ii -4, as a ] 0.) Hence the previous lemma gives us, first
for b E Co(Rd) and then for any b E bB(lRd) by taking bounded pointwise
limits,

(Te) Xt' x X2(G,f,b)- x m2(Ga,"b)
+ foff Gc,b(xl,x2)[X: (dXi)Z2(ds, dX2) + X,2(dx2) + Zl(ds, dxj)]
-otf f Ga,'C/(Xl,ix2)[X:(dxl)A2(ds, dX2) + XJ2 (dx2)Al (ds, dxl)]
+aCot fGf,O(XIXf2)X (dx,)X,2(dx2)ds

-of ffpe(XI - X2)t((XI + x2)/2)Xl(dx,)X.2(dx2)ds,
for all ,b E B(1Rd).

We now show that each term in (T,) converges as e j 0.

Notation. g,(x) = fXo e-tpt(x)dt if d > 3 or a> 0. Here go(x) = c5.,1x12-d
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if d>3. Define

1+log+(1/jxD) d_2
go(x) =

~~~~d=

A bit of integration shows that

(5.5) 2G2l1(xl,x2) =g (xl -x2) d>3 or a>O,

(5.6) c5.2(a)1og+(1/jXj) < gc,(X) < C5.3(at)go(x) d = 2,

(5.7) ga(x) < C5.4(ai)go(x) d = 1.

Lemma 5.3 Assume b E bB(IRd) and a > 0 (a > 0 if d < 2).

(a) IG,e,b(xl, X2) - G,> b(xi,X2)1 <. {c.5Ik1bIooelIl- x21-d if d > 2

1C,5..5II10el/2 if d =1

If 4) > 0, limelo Ga,'(xl, X2) = G&,b(x,xX2) for all (xl, x2).
(b) IGa,e,b(Xi,X2)I < eae 2-|Ogax2(Xl-X2)

Proof. (a)

(5.8) IGa,'b(xl,x2) - Gcr(xlxX2)1 <

kdlII4IIOJo e-2a. IP+f,/4((X1 -X2)/2) - p8((x1 - x2)/2)jds

<KdJ.1000 e`2a 1+1 I(Opu/Ou)((Xl- X2)12)Iduds.
Use j(9pu/9u)(z)j < pu(z)(2u)'l(d+IzI2/u) and an elementary calculation to
obtain the inequality in (a) for d > 2. If d = 1 the above bound on 9rpu/9ul
implies I(apu/au)(z)I < clu-3/2. As we also have IPI+f,4(X) - Ps(x)I <
s-1/2(27r)-1/2 (5.8) shows that

IGa,o,b-Gc4'l < killlII[j(2rs)-1/2ds + j e-2ascls-3/2 (e/4)ds]
< kllltloo[E1/2 + C1E1/2/2].
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For d > 2, pointwise convergence off the diagonal is clear from the above.
On the diagonal, the pointwise convergence of Ga,c,b(xl, xi) to G/'a(xl, xi)
if kb > 0 is a simple consequence of Monotone Convergence.

IGat,C(X1i x2)1 < kdII4o fo"' e-2a*p+e/4((X1 - x2)/2)ds
(b) = kdlllloo f.7 ec 1/2e-2auPu((xl- x2)/2)du

< eae/2 Jjbjgoo9a/2(Xl- X2) °0

In order to control the martingale term on the right-hand side of (T,) as
e 1 0 we need the following estimate which is proved in Section 7.

Lemma 5.4 Let Y' and y2 be independent (,Ft)-super-Brownian motions
starting at ml and m2, respectively.

(a) If 3 < d < 5 there are constants c5.6(t) (t > 0) such that

jJ(g|a(Yl -Y2)YJ1(dyi))2Yl2(dy2)ds)

C6t'Mll 1) ff(log+(l/lxl
-

x21) + 1)ml(dxl)m2(dx2), if d 3,
<C5.6(t) () +1) j{ f (Ixi - X216-2d+ 1)m1(dxl)m2(dX2), if d = 4,5,

for all a>Ot> 0.

(b) If d < 2 there are constants c5.7(a,t) (a,t > 0) such that

P(j0 J(Jgra(Y1 -y2)Y(dya))2Y2(dy2)ds)

< c5.7(a,It)m1(j)(ml(1) + 1)m2(1).
Recall that M= M(ml,im2) is the set of all continuous adapted processes

(Xl,X2) satisfying (Mm1,m2).

Corollary 5.5 Assume d < 5 and

(5.9) JJlog+(l/llX -x21)m'(dxli)M2(dX2) <oo if d = 3

(5.10) Jf jx1 - X2162dm1(dXi)M2(dX2) < 00 if d = 4,5.
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Then for any ,bEB(JRd), T>O and a>O (a >0 if d<2),

lim sup sup ff[ G,t,b(xl, x2)Xl(dxl)Z2(dxl, dx2)
(Xl,X2)EM tTJJ

-jfJ Gcrb(xi, X2)Xl (dxl)Z2(dxldX2)I112

For any (X1, X2) E M, fff GaI(xi,X2)X (dxi)Z2(dsi, dX2) is a continu-
ous L2-martingale.

Proof. For E> 0 and (Xl,X2) E M, Doob's inequality and Xi < Y' shows
the above L2-norm is bounded by

C (JP(j(J jGa,cb(yl,y2)-GG(y1,y2)IY9l(dyi))2Y 2(dy2)ds)
o~~~

= CiI(( f| Ga,'f(yl, Y2) - Gyb(yi, Y2)1

(5.11) xIGa,c(y',Y2) - Gab(y',y2)lY78(dyi)Y'l(dy')YI2(dy2)ds).
By Lemma 5.3(b), if E < 1 the integrand in (5.11) is bounded by 4ec'IbI01
gc/2(Yl- Y2)ga/2(Y' - Y2) which is integrable with respect to the measure
(Y81(dyj)Y81(dy')Y2(dY2)dsdP) by Lemma 5.4. The integrand approaches 0
as e I 0 on {(Yl,Yl,Y2): Yl :A Y2 and y' # Y2} and this set is not charged
by the above measure because y2 is independent of Y' and does not charge
points. The Dominated Convergence Theorem implies (5.11) approaches 0
as e -- O+ and the corollary follows. 0

Lemma 5.6 (a) Assume d < 5, and (5.9) and (5.10) hold. Then for any
bE bB(IRd), T > 0 and a > 0 (a > 0 if d < 2)

(5.12) lim sup sup // GQ,b(xl, X2)X.(dx1)X2(dX2)ds
e 0(Xl1X2)EM t<T J 1.

-|||=(x0.2)X 1 X.2(dX2)d
=O.
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For any (X1,X2) e M, foffGa. (xi,x2)Xl(dXl)X2(dx2)ds is a continuous
process with 1? integrable total variation over compact time intervals.

(b) Assume d < 5 and

(5.13) JJgo(Xl,X2)dml(xl)dm2(x2) < 00 if d < 4,

(5.14) Jx1 -x2I14dm'(xl)dm2(X2) < 00 if d = 5.

Then for any b E bB(Rd), T > 0 and a > 0 (a > Oif d < 2)

(5.15) lim sup sup l[Ga'C?,b(x1, x2)Xt'(dx )Xt(dX2)
++(Xl,X2)EM t<T i

- J G,b(xi, x2)Xt(dxi)X2(dx2)ll-°= 0.

For any (X', X2) E M, X1 x Xt2(Ga+b) is a continuous process such that
supt<T 1ff Gat/d(Xt' x Xt2)1 E L' for any T > 0.

Proof. (a) The supremum inside the Ll-norm in (5.12) is bounded by

(5.16) fJ J| (YlYGb(2) - Gob(yi,Y2)jI'61 (dyl)Y72(dy2)ds.
If d = 1 the above integrand converges uniformly to 0 and hence (5.16) ap-
proaches 0 in L'. Assume now d > 1. By Lemma 5.3 the integrand in (5.16)
converges to 0 as e I 0 for all Yi # Y2, and is bounded by 2e/2 11-0 ga2(Yl-
Y2) for e < 1. Lemma 5.4 and Cauchy-Schwarz imply g,/2(Yl-Y2) belongs to
L'(1(s < T)Ys'(dyi)Y,2(dy2)dsdF), and since this measure does not charge
the diagonal {Y1=Y2}, Dominated Convergence implies (5.16) converges to
0 in L'(!) as e 0. This gives (5.12). Since GQ,o,b is bounded and con-
tinuous, fO f f Gc,eo(xi,x2)Xl (dxi)X2(dx2)ds is a continuous process with
integrable total variation over compact intervals. The convergence estab-
lished above now gives the same condusion with e- 0.

(b) If d = 1 the uniform convergence of IGcf,ok G,x,b to 0 (Lemma 5.3)
and the bound Xti < Ytg make (5.15) obvious. Assume therefore d > 2 and
for a fixed 0 E B(JRd) define

q(ae, =,6) sup{IGctb(xi, x2) - G,,b(xi, x2)1 : Jx1 - x21 > 6}.
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Recall that lim, .o+?(a, E, 6) = 0 for all 6 > 0 by Lemma 5.3 (a). Let
(X1,X2) E M and T > 0. Then for E < 1,

sup IXt' x Xt2(Ga,,e) -Xt' x Xt2(G/)I < 7(ae, ,6) sup Xt (1)Xt2(1)
t<T t<T

+Ci(c, b) sup JJ1(I-x21 .6)ga12(i-x2)X (dx)X 2(dx2) (Lemma 5.3 (b))

< 77 (a, E, 6) sup Y,'(l)Y,2(1)
t<T

+Ci(a, t,) supJJ
t<T

l(lYl - Y21 . 6)g912(YI - Y2)Yt'(dyl)Y 2(dy2).
Let Rt denote the image of Ytl x Yt2 under the mapping (Yl, Y2) -| lYl - Y21I
Then if / > 0, ri(w,/3) > 6 (r1 as in Theorem 4.11) and we write go(IyI)
go(y),

sup J 1(lYl - Y21 . 6)go(Yl - Y2)yt'(dy1)Yt2(dY2)
/3<t<T

< sup Rt([O,6])go(6) - Jl(r < 6)g'(r)Rt([O,r])dr
,8<t<T

SUp Yl() V 1)[644/d(log 1l/6)2/d+2go(6)-J(r < 6)gO(r)rI(log 1/r)

(Theorem 4.11)
0 as 6 4 0 (recall d <5).

We have shown
(5.18)
lim sup 1(lyl - Y2) < 6)9o(Yl-Y2)Yt (dyl)Y t(dy2) =0 VP > 0 a.s.
610 ,3<t<T J

Let ?b = 1 in (T.) with (XI,X2) - (yl Y2) to see

(5.19) sup JJ| Ga, 1(yl Y2)Ytl(dyl)Yt2(dy2)
t<T

< m1 Xm2(Gc1l)+supjJJG | (dY)Z2l(dY,)Z2dY2)+Y2(dY2)Zl(dS, dyl)]
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+a T jj G,t 1Ys(dyl)Y82(dy2)ds.
The right side converges in L' as e j 0 to
(5.20)

m x m2(Gcl) + supjJJ G,l 1[Y.1(dyi)Z2(ds, dY2) + Y,2(dY2)Z1(ds, dyl)]

+QajJJ Ga1Y,(dy1)Y,2(dy2)ds=m' x m2(G.1) + rT

by Corollary 5.5, (a) and the hypotheses on ml, m2 (see (5.5)). Apply Fatou's
lemma in (5.19) (use Lemma 5.3 and (5.5)) to condude that

(5.21) sup(JJg12(Yl -Y2)Ytl(dy1)Yt (dy2)

-|Jf g/2(Y1 - y2)ml'(dyi)M2(dy2))
< 2rT

and in particular

(5.22) E(supJJg(yl -y2)Yt'(dy)Y2t(dy2)) <,x.

Let 6 01 0 satisfy ml x M2(-yl Y21 =in) = 0. Then

< sup(

(5.23)

sup JJ9./2(Y1-Y2)1(IY1 - Y21 < 6n)yt1(dyl)yt2(dy2)
t<o

J ga/2(Yl -Y2)Yt'(dyi)Yt2(dY2) - JJ9/2(Yl- Y2)m'(dy1)m2(dy2)

+ sup gff9a/2(Yl - Y2)(lYl - Y21 > 6n)Ytl(dyi)Yt2(dy2)
t<,8

|JJ9av/2(Yl - Y2)1(IY1 - Y21 > 6n)mI(dyi)m2(dy2)1

+JJ9,./2(Y1 - Y2)1(IY1 - Y21 < 6n)ml(dy1)m2(dy2)

I(,) + II(fn P) + III(fin)9
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Fix w outside of a null set such that rg3(w) -O 0 as / l 0, (5.18) holds and
II(S6, ,B) -- 0 as /3 . 0 for all n. The latter is a simple consequence of the
weak continuity of Ytl x yt2 and the choice of {6n}. If eo > 0 choose N1 so
that III(6n) < co for n > N1. Next use (5.21) and the choice of w to find
,B > 0 such that I(,B) + II(8N1, /3) < eo. (5.23) implies that for n > N1,

sup ga/2(Yl - Y2)1(jY1 - Y21 < bn)Ytl(dy)Y 2 (dy2) < 2o.
t<P

Now use (5.18) to find another N2 so that for n > N2

sup Jg|i/2(Yl - Y2)1(IY1 - Y21 < bn)Ytl(dy1)Yt2(dY2) < 2eo.
,8<t<T

We have proved

li6 Os<u<pTJ ga/2(yl- Y2)l(Iyl - Y21 < 6)Ytl(dyi)Yt2(dy2) = 0 a.s.

and hence also in L' by (5.22). Returning to (5.17) we may first choose S
sufficiently small and then e so that the Ll norm of (5.17) is less than our
given E0. As the estimate is uniform in (X1,X2) E M, the proof of (5.15)
is complete. The last statement is immediate from (5.15) and the weak
continuity of Xt' x X2. 0

Remark. It is dear from the above arguments that if one drops the sup
over (XI, X2) and deals with a single (X1, X2) E M then a.s. convergence
as well as Ll-convergence holds in both (a) and (b).

Lemma 5.7 Assume (Xl,X2) E M, d < 5, and (5.9) and (5.10) hold.
Then for any bE bB(Id), T>0 and a >O (a>0 ifd<2),

jT JJ IG,cO'b(XIi X2) - Gatb(xi, x2)jX(dx1)A2(ds, dx2)

(5.24) 0 a.s. and in L1,

and fot f f Gc/(x1,x2)X,(dxi)A2(ds, dx2) is a continuous process with inte-
grable total variation over compact time intervals.
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Proof. We may assume tk > 0. From (T,) we have

fffj Ga 0(xl, x2)Xl(dxi)A2(ds, dX2)

(5.25)
<mi xm2(G,,e,b)+f ff Gacb(X1, X2) [X (dxl)Z2(ds, dx2)+X2(dx2)Z 1(ds, dxi)]

+a ff f eG ,X'(x1, x2)X'(dx )X,2(dx2)ds.
The hypotheses on mi', Corollary 5.5 and Lemma 5.6(a) imply the right side
of (5.25) converges in L' uniformly in t < T to

At = ml1 x m2(Ga) + jJJ|G,b (xi,X2)[Xl (dxl )Z2(ds, dX2) + X,2(dx2)Z'(ds, dx)]

+ a fff G<4(xi, x2)X.(dx,)X,2(dx2)ds.

Apply Lemma 5.3 and Fatou's lemma to condude (take b = 1 and use (5.5))

(5.26) f ffgc| 2(Xl - x2)Xl(dx,)A2(ds, dx2) < 2At for all t > 0 a.s.

If d > 2 (5.26) shows that Xl (dx,)A2(ds, dx2) does not charge {xi =x2} a.s.
Since SUpt<T At E L', (5.26) and Lemma 5.3(b) allow us to apply Dominated
Convergence to derive (5.24). (If d = 1 IIGa,,tOI - Gat'llIo -- 0 and there is
no need to worry about the diagonal.) The last statement of the lemma is
then obvious from the convergence in (5.24) and (5.25) (the latter for the
integrability of the total variation on compacts.) 0

Lemma 5.8 Assume d < 3 and

(5.27) f' r1dD(ml, r)dr < oo.

Then for any 'kE bB(ld), T > 0 and a >0 (a > 0 if d < 2)

lim sup 11 min(f [IGQ,,'(Xl, X2)-GC&(x,, X2)1Xl(dx,)A2(ds, dX2), 1)jj, = 0
c .O+ (Xl X2)EM''
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Proof. If w77(a, c, 6) is defined as in the proof of Lemma 5.6(b) then Lemma
5.3(b) gives us

J jGa,'clI(Xi X2) - Gc,b(x,,X2)IX.(dxl)

< 71(a, 6, S)X (1)

(5.28) +C1(a, 4) f 1(Wx1 - x21 . 6)g9a/2(XI - X2)Xl(dxl)
-< 77(a, 6 6)Y.'(1)
+C2(a, 4) f 1(IXl - X21 < S)go(Xl - x2)yjl(dxl) (by (5.6, 5.7))

If R02 ([0, r)) = Y81(B(x2, r)) then, integrating by parts, we have for d 2 or
3, and S < ro(w) (ro(w) as in Theorem 4.7)

(5.29) 1(X1 - X21 < )go(Xl - X2)yl(dXl) = J l(r < b)go(r)dRX2 (r)

< RX2([0,6])go(S) - jg(r)R?2[O,r]dr
< c4.7(D(ml, C4.86) + p(S))go(S)

,6
- go(r)C4.7(D(m ,c4.sr) + p(r))dr
(Lemma 4.6(a) and Theorem 4.7)

f(S).
Note that if So > S

j -go(r)D(ml,c4.r)dr = JC| -86s

> clD(ml, C4.86)(go(c4.85) - gO(C4.850))

Therefore

limsup610D(ml,c4.sS)go(S) < c2(limsup6o1D(ml,c4.s)go0(c4.850)

-go(r)D(m Cc4.sr)dr)
= g.860

-C3 gol(s)D(ml, s)ds.
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Taldng 6o I 0 we see that the left side of the above is zero and hence by
(5.27) the same is true for f(S). Returning to (5.28), we have proved (for
d = 2 or 3)

min(j J IGa,C b(Xl, X2) - Gcb(xi,,X2)1X'(dxi)A2(ds, dX2), 1)

(5.30)
<1(ro(w) < 6) + q(aIE,l 6) SUP,<TYY1(1)A (1) + c2(2,ti')f(6)A (1)

< l(ro(w) < 6) + 77(a, E, 6) SUPB<T Y2(1)(m2(1) + Z.(1))

+C2 (Ca, b)f(6)(m2(1) + ZT2(1)) ( by (Mml,m2)).
Recall that

(5.31) E(ZT(1)2) = EJ X82(1)ds < E Y,2(1)ds = Tm2(1),
lim,1o 7(a, E, 5) = 0, and lim61o P(ro < 6) = 0 (Theorem 4.7). It is therefore
clear that by first choosing S and then e sufficiently small we can make the
mean value of (5.30) uniformly small over all (Xl, X2) in M. This gives the
required result for d = 2 or 3. If d = 1 the result is immediate from the
uniform convergence of IGa,c,4 - Gc4'I to 0 (see Lemma 5.3) and the fact
that

E(l X,'(1)AS() < E(sup ll2)E(AT()
a9<T

< E(supY(1)2)"2[m2(1) + E(ZT(1)2)'/2] (by (Mml,m2))
a<T

is uniformly bounded (over (Xl,X2) E M) by (5.31). 0

Theorem 5.9 Assume d < 5

(5.32) 90o(XI - X2)dml(xl)dm2(x2) <00 if d <4,

(5.33) J X1 - X2 14dml(xl)dm2(X2) < 00 if d = 5,
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and (X', X2) satisfies (Mmn,m2). Then (X', X2) has a continuous (in t)
collision local time Lt(X',X2). For any tb E bB(Rd), Lt(X',X2)(1b) is a.s.-
continuous in t and satisfies

(5.34) limllsupILt(X',X2)(4')-Lt(X',X2)(,b))llll=o, forall T>O,
40l t<T

and, for all a> 0 (a> 0 if d < 2)

X1 x X2(G,.0)
=ml x m2(G&tk)+

(T) j JJ| G(x1,iX2)[X'(dx1)Z2(ds, dX2) + X2(dX2)Zl(ds, dxl)]

-|jfJ Gs,b(xi, x2) [X1 (dxi)A2(ds, dX2) + X2(dX2)Al (ds, dx )]

+ajJG&,b(xi,X2)Xl(dx)X,2(dX2)ds-Lt(Xl,X2)(k) for all t> 0 a.s.

Each process in (T) is a.s. continuous in t. The first process on the right-
hand side of (T) is an L2-martingale and each of the other processes on the
right-hand side has integrable total variation on compact time intervals.

Proof. Let ,6 E bB(Rd). The hypotheses on (Ml,M2) and Lemma 5.3 allow
us to apply Dominated Convergence to condude

(5.35) limmm' x mi2(Ga,et,/) = ml x m2(Ga)

(Note that if d = 1 this is trivial by the uniform convergence of Ga,ob and for
d> 1, mi x i2 does not charge the diagonal by (5.32) and (5.33).) Corollary
5.5 and Lemmas 5.6 and 5.7 show that as e 1 0 each of the remaining terms in
(Ti), except possibly for the last term on the right-hand side, converge in L'
uniformly in t < T for any T > 0. Hence there exists an adapted continuous
process LI(Xl, X2)(4) such that

(5.36) lim 11 sup IL"(XJ, X2)(tb) -Lt(Xl, X2)(4')III = 0 for all T > 0.
40O t< T
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We may now obtain (T) (this is (T) but with L in place of L) by letting e I 0
in (T,) and applying Corollary 5.5 and Lemmas 5.6 and 5.7.

We now show there is a continuous, non-decreasing MF(Rd)-valued pro-
cess Lt(X',X2) such that Lt(X',X2)(') - Lt(X',X2)(4') for all t > 0 a.s.
and all 4' E bB(Rd). Let D be a countable dense set in C,(Rd) containing 1.
(5.36) and a diagonalization argument show there is a sequence e 1 0 such
that

(5.37) lim sup jLJn4(X'X2)(4') _ Lt(XI,X2)(4')I = 0
n--+0t<T

t

for all T > 0 and 4 E D a.s.

The bound Xi <Y' and Theorems 1.1 and 1.2 of DIP (1989) imply w.p.1 for
any S > 0 there is a compact set K which supports L'In (Xl, X2)- L'n (Xl, X2)
for all n E V. Fix w outside a 1-null set so that this conclusion and (5.37)
both hold and let 77 > 0. Since Lt(XI,X2)(1) is continuous there is a 6 > 0
such that LEn(Xl,X2)(1) < 7 for all n EN. Choose a compact K as above.
Then

Len (Xl X2)(Kc) < 77 for all n EI

and hence {Ltn(Xl,X2): n E IV} is tight. (5.34) and Prohorov's theorem
imply Ltn (Xl, X2) -- Lt(X', X2) where the limiting MF(Rd)-valued process
satisifies

(5.38) Lt(X'X2)(4') = Lt(Xl,X2)(4) for all t > 0 and all 4' E 2D a.s.

This implies Lt(X',X2) is weakly continuous. It is also clearly increasing in
t since Lt(X',X2) is. Let n4t 4' (4' E bB(Rd) and bp indicates bounded
pointwise convergence). Then Ga4bn(Xl,X2) -- G,4'(xi,X2) for all xi :A x2
(and for all (xl,x2) if d = 1) and IG(,,n(xl,x2)1 . clgo,/2(xl- x2) (this is
clear from the estimates in Lemma 5.3.) Set4 = n in (T) and let n -4 oo.

The martingale term will converge uniformly in t < T in L2 to the same
expression with 4 in place of On, (by Lemma 5.4). Each of the remaining
terms in (T) except possibly the very last will converge for all t > 0 a.s. by
Dominated Convergence to the corresponding term with 4' in place of nn.
Therefore for an appropriate subsequence we have

Lt(X'IX2)(4'nk) -_ Lt(XlIX2)(4) for all t> 0 a.s.

45



As this is trivialfor L, it follows from (5.38) that Lt(XI,X2)(4) - L (XI X2)(4)
for all t > 0 a.s. for all t, E bB3(Rd). Therefore (5.36) implies (5.34) and
shows Lt(Xl, X2) is the collision local time of (X1, X2). This also gives the
a.s.-continuity of Lt(X1,X2)(0) for each ,b E bB(Rd), and shows that (T)
implies (T). The required properties of the other processes in (T) (continuity,
martingale property and integrable variation over compacts) are immediate
from Lemmas 5.6, 5.7 and Corollary 5.5. 0

Theorem 5.10 Assume d < 3 and

(5.39) J rl dD(m',r)dr < oo i = 1,2.

Then for any b E bB(IRd) and T> O

lim sup lmin(sup IL4(X17X2)(i)-Lt(X ,X2)(4'),l1)11 =0.
40(X1,X2)EM t<T

Proof. An integration by parts shows that (5.39) implies the finite energy
conditions ((5.32), (5.33)) in Theorem 5.9 (see (5.29)). Comparing (T) and
(Ti) we see that the result is a consequence of Corollary 5.5, Lemmas 5.6, 5.8
and (5.35). 0

Proposition 5.11 Suppose that (yl,y2) are as in Theorem 1.2, and are
therefore independent super-Brownian motions starting at ml and M2, re-
spectively. Assume d < 5, and ni #& 0 (i = 1, 2).

(a) P (G(Y1) n G(y2) #8 0) > 0.
(b) If (mI,m2) satisfy (5.32) and (5.33) then IP(Lt(Y',Y2) > 0) > 0 for

all t > 0.

Proof. (a) An easy first moment argument shows that for any 6 > 0,
(Xi, X62) a.s. satisfies the hypotheses (5.32) and (5.33) on (Ml,M2). An
application of Theorem 5.9 and the Markov property shows that if

Le (yl =y2)= Le(Yl y2) - L(Y'I y2), t > 6

then there is a continuous measure-valued process L6,t(Xl, X2) such that

lim P ( sup IL,6 (Y',Y2)(b) L6,t(Y',Y2)(4)1F8) = 0
40O 6<t<T
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for all pb E bB(lRd), and T > 6. Note therefore that (take b-= 1) for t > 6

.F(L6,t(Yl,Y2)(1) F6) = lihmF(1t(Y ,Y2)(1)16)

lim | P (XI -x2)(Y,6 P,)(dxj)(Y62P.)(dx2)ds

- jt|6 J JP2S(Xl-X2)Y56(dxl)Y62(dX2)ds ((5.5), (5.6) and Dominated Convergence)

(5.40) > 0 a.s. on {Y6' # 0,Y2 # 01.

Therefore (1.1) shows that P(C(Yl) n 0(y2) # 0) > 0. The results
of Section 4 of Perkins (1990) (see especially Proposition 4.7) show that
O(Y') - G(Y1) is countable. As t i-÷ L6,t(Y', Y2)(1) is continuous we can in
fact infer from (1.1) that F (G(Y') n G(y2) 54 0) > 0.

(b) This is immediate from (5.40) because in this case L6,t(Y',Y2)
Lt(Y'y2) - L6(Y', y2). 0

Remarks 5.12. (1) If d > 6, Theorem 3.6 implies that

(5.41) lim1e]P((Yl- Y2)Ytl(dyt)Y2(dy2)dt = 0 for all 6> 0 a.s.

since Gi f ([6, o) XlRd) (i 1, 2) (Ci is the closed graph of Y') are a positive
distance apart. Since Xi < yi, (5.41) must also hold for Xl and X2. Hence
the only possible collision local time for (X1, X2) is 0 (recall Lt(Xl, X2) is
right-continuous at t = 0 by definition).

(2) Theorem 5.10 is false for d = 4 or 5. As was mentioned in the
Introduction it will be used in a future work to construct pairs of super-
processes which may interact when particles collide. We will show there that
these interacting processes can only exist if d < 3 and the failure of Theorem
5.10 for d > 3 will then follow.

(3) The hypothesis on (ml,m2) in Theorem 5.9 are dearly necessary for
(T) to make sense if d < 4. If d = 5 we do not know if the power in (5.33)
may be increased to -3.

(4) The results of Section 4 of Evans-Perkins (1989) show that given a
pair of independent super-Brownian motions (yl,y2), as in Theorem 1.2, if
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d < 3 there is a progressively measurable measure-valued process K8(Y', Y2)
such that

J e(YJp Y2)b((Yl+Y2)/2)Ye (dyi)Y.2(dy2) -_ KJ(Y, y2)(b) a.s. and in lP

for each p < 2 and s > 0 (the LP-convergence is implicit in the Fourier
analytic approach of Evans-Perkins (1989)). Assuming (in', mi2) satisfy the
hypotheses of Theorem 5.9, it is then easy to see that

Lt(Y Y2)(b) =jKs(Y1,Y2)(b)ds forall E b(d) and t >O a.s.

(> is clear by Fatous lemma and equality follows by checking the means of
the total mass are equal.) A Radon-Nikodym argument, using the fact that
Xi < Y, then shows that if d < 3 and the hypotheses of Theorem 5.9 are
satisfied there is a progressively measurable measure-valued K. (Xl, X2) such
that

(5.42) Lt(Xl,X2)(?,b) = jK.(X1 X2)(O,)ds

for all E bB(Rd) and t >O a.s.

6 A Tanaka Formula for a Class of Measure-
Valued Processes

Let us briefly show how the methods of the previous section also apply to the
Tanaka formula of Adler-Lewin (1989) for super-Brownian motion in three
or fewer dimensions (see Tribe (1989) for an interesting treatment of the
one-dimensional case). The estimates required are considerably simpler than
those in Section 5.

Assume Xt is a cadlag, adapted MF(Rd)-valued process on ([,F, Ft, P)
such that

(6.1) Xt(P) = mi(9) + Zt(Y) + j X.(Ay)ds - A(),t > 0,y E D(A),
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Zt((p) is a continuous St-local martingale such that (Z(p))t = f0X,9(p2)ds,
At(p) is a cadlag, non-decreasing, adapted MF(1Rd)-valued process, starting
at 0. Here m is a fixed measure in MF(Rd).

Recall that the resolvent densities g9< were introduced at the beginning of
the previous section.

Theorem 6.1 Assume d < 3 and fgo(x)dm(x) < oo. There is a continuous
non-decreasing, adapted process L° (the local time ofX at 0) such that

(6.2) supIL°- j X.(p,)dsI-+0 for any T>0
t<T

andforalla>O (a>O ifd<2)

(6.3) Xt(g9) = m(ga) + Zt(ga) - At(gQ)
+fxft X,(ga,)ds-LL for all t >0 a.s.

Each term in (6.3) is cadlag, all but Xt(ga) and At(g,) are a.s. continuous,
and if At is continuous then each term in (6.3) is continuous. Zt(g9) is on L2_
martingale and the other terms on the right-hand side of (6.3) have integrable
variation on compacts.

Remark. Assume A = 0 and m has a bounded density with respect to
Lebesgue measure. Theorem 6.1 is then due to Adler-Lewin (1989) (see
Tribe (1989) for a stronger result if d = 1). Under these hypotheses Sugitani
(1987) proved the existence of a jointly continuous process LI such that

jXs(B)ds = J dt for all B E B(Rd),t .0.

(6.2) and the continuity of L-T shows our notations are consistent. By replac-
ing g,* with gy,(Y) = g,(y - x) in (6.3) one obtains a Tanaka formula for L4.
(The latter observation holds in the general context of Theorem 6.1 where
the obvious change in the hypothesis on m is required.)

Proof of Theorem 6.1. Let ga(x) = fJ'o e0$p,+,(x)ds. Then Ag,,-
afg,a -pe (a > 0 if d < 2) and so

(6.4) Xt(gol,e) = m(gaV,e)+Zt(gaCr)-At(gar,e)+aJX.(ga,c)dsJ Xs(pe)ds.
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As in Theorem 5.9 we will obtain (6.2) and (6.3) by letting e 4 0 in (6.4) and
showing that each term in (6.4), except for the last, converges uniformly in
t < T in LI to the corresponding term in (6.3). As the argument required for
each term is similar to but much simpler than the argument used to handle
the corresponding term in Theorem 5.9 we only give the details for Xt(gao,e),
i.e., we will show

(6.5) sup IXt(gct,) -Xt(9a) | ° as e I°
t<T

It is easy to see that g,,,(x) -+ ga(x) as e 4 0, the convergence is uniform
on Ixj > 6 for any 6 > 0 (and uniform if d = 1), and

g,e,(x)<c1(a)go(x) forall 0<E<1(ac>0 if d<2).

(6.5) is obvious if d = 1 by the above uniform convergence so we will assume
d = 2 on 3. If Yt > Xt is a super-Brownian motion (see Theorem 5.1 and the
ensuing discussion) and

(E,a) = sup jg"9, (X) -9g (X)1,
jxI>6

then

supXt(Ig.,, -gctl)< 77(e,a) sup Yt(l) +c,2sup 1(jxlj< b)gc(x)Yt(dx).
t<T t<T t<T

If T > fi > 0 and Rt(A) = Yt(IyI E A) then for S < ro(w) (ro as in Theorem
4.7)

(6.6) sup 1(jxI < 6)go(x)Yt(dx)
/3<t<T

sup j go(r)Rt(dr)
/3<t<T°

< sup c4.7[go(S)(D(mPt, c4.886)V P())+j (D(mPt, c4.8r)Vp(r)g9O(r)dr (Theorem 4.7)
/3<t<T a

O as b l °
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because D(mPt,c4.8r) < m(1)/,3&/2c2rd for all t > Pi. Just as in the proof of
Lemma 5.6(b), (6.4) with Y in place of X and Fatou's lemma show that

(6.7) SUPt<T Yt(ga) -m(ga) < (SUpt<T Zt(ga)) + cff1'Y(go)Yds
E L1

(the last by the arguments used to handle the second and fourth terms on
the right side of (6.3) - the martingale term is now much easier to handle
than in Theorem 5.9). (6.6) and (6.7) imply that

sup J1(IxI <S)gQ,(x)Yt(dx) L 0 for all 0<<, < T < oo.
O<t<T

To handle the supremum over t E [0,,] we use (6.7) and argue exactly as
in the proof of Lemma 5.6(b). This completes the proof of (6.5) and hence
(6.2) and (6.3). The remaining properties of the processes in (6.3) are clear
from the uniform (in t < T) L' convergence of each of the terms in (6.4). 0

7 Proof of Lemma 5.4
Lemma 7.1 (a) PT(gp(Bt- y)) = eat ft0 eavpv(x - y)dv

(b) If
a-1/2eav d = 1

h(axv) (log+(l/v) + al)e-v d= 2

v1-d/2e-v d > 3

then

px([pBu(gy,t(Bt y))]2) < c7.1e2o j h(cx, v)pv+(x - y)dv-

Proof. (a) is trivial.

(b) px(pBu (g,(Bt _ y))2)

= 2e2at Jj j| a(i+U)pr, (w -y)pv2 (w -y)pu(w - x)dv2dvidw (by (a))
00 00 d2

< cle2at lit e-a2vjd/2dv2e7av"pVi (w-y)pu(W- x)dvidw
t sl~~~
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If d > 2 the above is bounded by

2at 1 1-d/2 -cVwC7.1e V e- Pv+uXY)dvit

The results for d < 2 are similar. 0

Proof of Lemma 5.4. We may assume t > 1.

(jo J(Jgg(Yl - y2)Y.(dy1))21Q(dy2)ds)

= Jfj (d((g(Y1Y2)y(dyI))2)p5(y2 -x2)dsdy2m2(dX2)
= |JJj [Pm (gc(B5- Y2))]2pa(Y2 - X2)dsdy2m2(dx2)

(7.1) + JJj .Pm1(j [PBu(gc(Bu -Y2))]2)dup(Y2- X2)dsdy2m2(dX2)
(see for example Fitzsimmons (1988, (2.7)))

-I+II.

Consider I first. By Lemma 7.1(a)

I = Jfj| e2as[J e-avpV(X - X2)dvml(dxl)]2p5(y2 -x2)dsdy2m2(dX2)

= 2JJj e2cr[J|J j e-aV2PV2(x-y2)e-aCV Pv(X1-y2)dv2dvim1(dxz)m1(dxj)
P8(Y2 - x2)dsdy2m2(dx2)

(7.2)
<ci J e2aB (J e~'V v2d/2dv2)e-v1p,,,+,(X1-X2)dvjdsm1(dxj)m2(dX2)ml(IRd)
Assume now d > 2. Then

I < c2ml(RI)J f vhd/2pv1+B(Xl- x2)dvidsm1(dxl)m2(dX2)

< c3ml(ld) L, vld/2p2v1(xl- x2)dvjdsm1(dxj)m2(dX2)

< c3m'(R') f [f v/ P2 (X1- X2)dv1 + t f v ddvl]ml(dxl)m2(dX2)

52



(7.3)
{ C4ml(Id)[ff(X - X2 16-2d + 1)ml(dxl)m2(dX2) if d > 3

c4ml(Rd)[ff (log+(t/lxl - x212) +1)ml(dx1)m2(dx2) if d=3

by an elementary calculation where C4 depends only on d (recall t > 1). By
making minor modifications to the above arguments we find

(7.4) I < C4(a, t)ml(lRd)2m2(lRd) if d <2 a> O.

Now consider II in (7.1). Lemma 7.1 implies that

II<

C5 ffJf| f| e2a(8-) j h(cx, v1)p01+u(x1-y2)dv1dup,,(y2-x2)dsdy2m2(dx2)m' (dxi)t a 28-su
=C'5 |||||e2a8U h(a, Vl )P,l+u+(X1-Y2 )dvl dup,(2-()dsd2) (dX2l)Mldl
=C.5 fJf ja joc e2a(s-u)h(ce, Vl)Pvl+u+a#(Xl - X2)dvidudsM2(dX2)Ml(dxl)

<C6l J L e2 (8u)h(ce,Vl)P2(u+vI)(Xl - X2)dvldudsm2(dx2)ml(dxl)

because pvi+u+8(Xl-x2) < Cp2(u+vl)(XI -x2) when u < s < u+vi. Therefore,
setting w = u + vi, we get

II < C6e2at|jf min(t - u,vl)h(a,vl)p2(u+vl)(Xl - X2)dudvim2 (dX2)ml (dxl)

c6e2at 1] ] ] min(t - w + vi, vl)h(ca, v)p2w(l- x2)dwdv1m2(dx2)ml(dxl)
< c6e2atf [jj vlh(a,,vI)dv1p2u(y- Y2)dw

+ 1| 1I| tl(w > t)h(a, vi)p2w(Xi - x2)dwdv1)m2(dX2)ml(dxl)
o

VlPu(X 2)wv1

(7.5)
< c6e2t ff[f f vl h(a, vl)dvlp2v(Xl- X2)dw + tf h(a, vld)tdI2v1dv

+t j h(a, vl)f w-d/2dwdvi]m2(dx2)ml (dxl).tvl)
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If 3 < d < 5 and a = 0 this gives

II < c6 J j v d/2d wXp2(xi - X2)dw

+ tld/2 j v j d/v + t2 j vdvdl]m2(dX2)m'(dxl)

< c7 [ 3d/2p2w(Xl - X2)dw +t4d]m2(dX2)ml (dxl)

J m2(Rd)ml(Rd) if d=3

(7.6) < Cs(t) ff(1 +log+(1/ X1 - X21))m2(dx2)ml(dxl) if d = 4

fff(1 +lxi -x212)m2 (dx2)ml(dxl) if d=5

If d = 2 and a > 0, (7.5) implies

II < c6e2a JJJ[ vl((log+ 1/vi) + a1l)evlvdvlp2w(Xl - X2)dw

+1| (log+(1/v1) + ac-l)e-v1vIdvi
+t j (log+(1/vl) + a-') log(l + t/vl)ea'vldvl]m2(dx2)ml(dxl)

77) < Cg(a, t)M1(Rd)M2(Rd)
and a simpler argument gives the same upper bound if d = 1 and a > 0.

The result now follows from (7.3) and (7.6) if d > 3 (it suffices to consider
a = 0) and (7.4) and (7.7) if d < 2. 0
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