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Disordinal Interaction

Abstract

In a factorial design with two or more factors, there is nonzero interaction when the

differences among the levels of one factor vary with levels of other factors. The

interaction is disordinal or qualitative with respect to a specific factor, say A, if the

difference between at least two levels of A is positive for some and negative for some

levels of the other factors. Using standard methods of analysis, there is a potentially

large probability of drawing incorrect conclusions about the signs of differences in the

presence of disordinal interaction. The maximum probability of such incorrect conclu-

sions, or directional errors, is derived for two-factor designs in which the factor of

interest has two levels and the number of levels of the other factor varies.

Key words: factorial design, interaction, disordinal interaction, qualitative interaction,

directional errors.
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Introduction

Consider a factorial design in which the main interest is in the effects of one fac-

tor, say Factor A, under various conditions represented by the other factors. For

example, in a two-factor design, we may be comparing two teaching methods (Factor

A) in effects on achievement for J ethnic groups (Factor B). Or we may be comparing

two methods of treating an illness (Factor A) for J different types of patients (Factor

B), varying in age, sex, and so on. Let gi. be the expected value in the cell with level

i of Factor A and level j of Factor B (i.e., the expected achievement in that cell, in the

first example above), and define =j= glj - J2j. If the Bjs are not all equal, we say

there is interaction between A and B. The interaction is disordinal with respect to

Factor A if 8j is positive for at least one j and negative for at least one j; otherwise, it

is ordinal with respect to A. (Note that interaction can be ordinal with respect to one

factor but disordinal with respect to others.) In a general factorial design with an arbi-

trary number of factors, interaction is disordinal with respect to a factor, say A, if

there exist two levels of A for which the difference is positive for some combinations

of levels of Factors B, C,..., and negative for other combinations of levels of those fac-

tors. In the biological sciences, the term qualitative or crossover interaction is used for

the same concept.

Although the definition of disordinal interaction can easily be extended to a wider

range of models, at least to all generalized linear models, and the issues it raises gen-

eralize similarly, the present paper will deal in detail only with a two-factor design to

which a fixed-effects analysis of variance model applies. The standard way of writing

that model is:
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Yijk = A + + Dj + Yij + tijks (1)
i= 1, ...,I; j=1,.. , J; k =1,. . , Kij; where the random error vector

e N (O, 2 I), and with the side conditions i = Xj = Yyij = I ij = 0. Designating

the expected value of Yi,k as ,ij, where glj = L + cq + ,j + yij, the side conditions

imply that A. is the unweighted mean of the gij. Let HA be the hypothesis that the

main effects of A (the ai s) are 0, and let HAB be the hypothesis that the AB interac-

tions (yij s) are 0. If I = 2, as in the educational and medical examples discussed

above, HAB is equivalent to the hypothesis that the Bs are equal for all j, and HA is

equivalent to the hypothesis that the average Bj = 0. The quantities gj± - fj are the

simple effects of Factor A, where 1j = I4j/I, and the average over j of the simple

effects are the cxis, the main effects of A.

In analysis of variance of factorial designs, it is customary to test for interactions

and, if no interactions involving a specified factor are significant, to assume there is no

interaction with respect to that factor--to assume, in the example above, that all 8-s are

equal to the average difference 8. Of course, it is recognized that acceptance of the

null hypothesis of zero interaction doesn't mean that interaction is really equal to zero.

In many cases, a small or moderate interaction, if not detected, would result in some

bias in the estimated effects of the relevant factor, but that might not make much

difference as far as the inferences or decisions based on the analysis are concerned.

However, the consequences of an undetected disordinal interaction are likely to be

more serious than the consequences of an undetected ordinal interaction of the same

size. In the examples given above, if we assumed Teaching Method 1 was better than

Method 2 for all ethnic groups, while in fact it was worse for some, or assumed Treat-
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ment 1 was better than Treatment 2 for all patient types when this was not the case,

the consequences could be highly undesirable. Such disordinal interactions have been

noted in both the biological-medical and social science-educational literatures (Simon,

1980; Cronbach & Snow, 1977). In deciding whether or not to use the standard

approach, it would be helpful to know how large the resulting probability of an errone-

ous conclusion about the direction of an effect can be. Such erroneous conclusions

will be called directional errors. In other words, a directional error is made if it is

concluded that a simple effect of some level of A is positive when it is really negative,

or vice versa.

Neyman, in a comment on a paper on factorial design presented before the Royal

Statistical Society by Yates (Neyman, 1935; Yates, 1935), considered this problem.

Yates gave as an example a 2 x 2 x 2 factorial experiment that had been carried out to

assess the effects of all combinations of three fertilizers on yield of peas. Because

interactions were small, Yates felt that the direction of the significant main effects of

two of the fertilizers could be assumed to hold under all combinations of the others.

Neyman questioned this assumption, and gave an example of possible true yields for

which Yates' analysis could lead with high probability to recommending a procedure

that was actually harmful. Traxler (1976) verified and extended Neyman's results, and

they were further generalized by Bohrer and Sheft (1979).

Of course, the problem can be avoided by analyzing the simple effects of the cru-

cial factor, that is, the factor's separate effects for each set of values of the other fac-

tors, and using an appropriate multiple comparison method to control the overall error

rate. However, with that approach, the factorial design loses its advantage in
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efficiency over one-factor-at-a-time designs, since the power for testing simple effects

is much lower than power for testing the average effect, particularly when the multiple

comparison nature of the problem is taken into account.

The three studies mentioned (Neyman, Traxler, and Bohrer & Sheft) all considered

a three factor, 23 design as first investigated by Neyman. The results are rather com-

plicated and difficult to grasp intuitively, since there are three possible interactions of

Factor A with the other factors--AB, AC, and ABC--to be considered. In contrast, in a

two-factor design, the situation is much simpler, and the problem can be considered in

greater detail. Some results on error probabilities for a two-factor design will be given

in this paper.

The analysis will be restricted to a balanced two-factor design: Kij = K for all i,j,

with two levels of Factor A, analyzed under the standard analysis of variance model

(1). Suppose the hypothesis HAB is tested at some level a'. If the AB interaction is

not significant, HA is then tested at level a. If the main effect is significant, it is con-

cluded that the difference between the two levels of A is nonzero and is in the same

direction for all levels of B. Given this sequence, what is the maximum probability of

a directional error, and how does it vary with a'?

The Supremum of the Probability of a Directional Error

Suppose the main effect of level 1 of Factor A is a, which without loss of general-

ity will be taken as nonnegative. Then SSA/'y is distributed as Xi2 A (where SSA is

the sum of squares for the main effects of Factor A, and X2w is the chi-square distri-

bution with degrees of freedom v and noncentrality parameter w), with the noncentral-

ity parameter XA = (2JKa2), or a = (,A/ (2JK))1/2. What is desired, then, is
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sup ProbxA [ Accepting HAB at a' and rejecting HA at a],

or

sUp ProbXA a', a [ TAB < TA;a' and TA > TA;a], (2)
di

where TAB and TA are the test statistics for testing HAB and HA with level-a' and

level-a critical values TAB;a and TA; a, respectively, and the supremum is taken over

all configurations of the ,ij for which there is disordinal interaction (di).

If o& were known, TA (TAB) would be the test statistic SSA / a2 (SSAB / a2), distri-

buted as X2,XA(X2s, A). If a2 were not known, TA (TAB) would be the test statistic

MSA /MSW (MSAB / MSW), distributed as F1, ,, XA (FJ_1, V, X,), where FU,V,W is the F dis-

tribution with numerator degrees of freedom u, denominator degrees of freedom v, and

noncentrality parameter w, and the variance is estimated with df = v. Since for known

a2 or fixed MSW, TAB and TA are independent, and TAB is stochastically increasing in

XAB, the supremum (2) will be attained for the disordinal interaction that results in the

minimum noncentrality parameter XAB. Disordinal interaction requires minS.< 0,
j J

under the constraint that the average 8j = 2a. A set of cell means satisfying these con-

ditions is: all J cell means for Level 2 of Factor A are 0; one cell mean for Level 1 of

Factor A is barely smaller than 0; and the other J cell means for Level 1 of Factor A

are equal to 2aJ/ (J - 1). For the derivation of this set of means, see the Appendix.

Since the noncentrality parameter for A, XA, equals (2JKa2), it follows from the

configuration described above that the noncentrality parameter XAB, which equals

(2JKa2/(J - 1)), is equal to XA/(J - 1).

The implications of this result for the probability of directional errors will be given
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first in detail for J = 2, followed by a briefer description of results for J = 3. It will

initially be assumed that a2 is known, since the probabilities of directional errors for

known a2 should be good approximations to those that obtain with large degrees of

freedom v.

J = 2

Variance known. Since TA and TAB (in (2)) are independent with a2 known, the

required supremum is given, for fixed XA, by

ProbXA[TA> 2xi] Probx TAB < Xx]2 (3)

where TA and TAB are iid. noncentral chi-square with 1 df and noncentrality parameter

XA, and x2 is the level-y critical value of a central chi-square distribution with df of

v. Note that as XA - 0, the product (3) approaches a (1 - a'), while as XA -4 °9 (3)

approaches zero, and these same limiting values would apply for all J. Furthermore,

for any XA, the probability will clearly be minimum over J for J = 2. From the

results for J = 2, described in this section, it then follows that the maximum is

achieved for some nonzero finite value of XA for all values of J.

Results were computed for a = .05 and a' varying from .05 to .95. In each case,

the supremum of the probability of a directional error appears to be a unimodal func-

tion of XA, and thus, has only a single relative maximum. Although an analytic proof

of unimodality has not been found for arbitrary a', it is easily proved for a' = a. The

probability of a directional error can then be expressed as

RXA(l - nkA)' (4)

where CA is the probability that a random variable distributed as noncentral xiA is

greater than %2;a that is, nxA is the power of the tests of HA and HAB. By (4), the
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supremum of the probability of a directional error as a function of lc;A when a' = a is

therefore unimodal, reaching a maximum of .25 when 7EXA = .50. Since 7XA is a mono-

tonic increasing function of XA, unimodality with respect to XA follows.

Using (3), the supremum of the probability of directional errors was calculated for

different values of a' and XA using the GAUSS statistical software system on an IBM

PC. Table 1 gives the supremum over all XA of the probabilty of a directional error

for a = .05, as a' varies from .05 (.05) .95, and the values Of PA = (XA)112 for which

the supremum is achieved. (Results are reported in terms of PA, the noncentmlity

parameter used by Fisher, because it is proportional to the main effect of Factor A.) In

Figure 1, the supremum of the probability of a directional error is plotted for varying

PA, for a = .05 and a' = .05, .25, and .50.

Insert Table 1 and Figure 1 about here

Note that, as mentioned above, all the curves in Figure 1 are unimodal. The value of

the noncentrality parameter for which the supremum is achieved appears to decrease

with a'. The supremum, of course, becomes smaller as a' increases, but remains

above .05 even when HAB is tested at level .50. The supremum over all XA at

a' = .50 is .062; it reaches .05 only when a' becomes as large as .58. The overall

supremum for a' 2 a is at a' = a and, as pointed out above, is .25, a result which is

independent of the value of a.

Variance unknown. Since the variance known case provides a good approximation

to the supremum of the probability for large sample sizes, the supremum with unk-

nown variance was considered in addition for the very small sample size K = 3, giving
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degrees of freedom 8 for the estimates of a 2. Figure 2 shows the relations between

the supremum with known variance and the supremum with variance estimated with 8

df, for a' = .05. The comparison was also carried out for a' = .25 and a' = .50. For

a' = a it follows from the positive quadrant dependence of TAB and TA (Lehmann,

1966, Example 1, Part (iv)) that the supremum is maximum when the variance is

known (though not necessarily for a fixed XA as can be seen). This conclusion follows

from the fact that the joint probability (2) is bounded above by the product of the

probabilities i1 = Prob (TAB < TAB;a') and it2 = Prob (TA > TA;a), where TAB and TA
are identically distributed and therefore TAB;a'= TA;a for a' = a. Since n2 then

equals 1 - il, the product is t1 (1 - i1) and is bounded above by .25, the supremum

for known variance.

Insert Figure 2 about here

Despite the very small value of 8 for the df, the results are reasonably close to

those in the asymptotic case of known variance. The supremum for a' = .05 is .21, as

compared with .25 when 2 is known, and in each case the supremum appears to be

moderately smaller for unknown than for known variance. It seems clear that with

sample sizes of 5 or above (df=16 or higher), the values would be very close to those

for the known variance case.

J = 3

For J = 3, the supremum of the probability of directional error was investigated

only for <Y2 known. Table 2 gives the supremum as a function of XA for ax = .05 and

aX' = .05 (.05) .95, with the P3A = (XA)112 for which the supremum is achieved. The
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overall supremum, achieved at ax' = a, is .476, considerably higher than the .25 for

J = 2. The supremum is .128 for ax' = .50, and doesn't become as small as .05 until aX'

reaches .77. Figure 3 shows the supremum as a function of PA for cx' = .05, .25, and

.50. Comparison with Figure 1 for J = 2 shows that, although the numerical values are

different, the shapes of the curves are remarkably similar for J = 2 and J = 3.

Insert Table 2 and Figure 3 about here

Conclusion

The results given here indicate that the standard approach to the treatment of

interaction in analysis of variance designs can result in probabilities of directional

errors of a magnitude too large to be acceptable in many situations, even in the best

case in which J = 2. (It is noteworthy that in a recent investigation of a somewhat

analogous issue in estimation, Fabian (1989) came to similarly pessimistic conclusions

about standard analysis of variance practice.) When Cx = a, the probability can be as

large as .25 for J = 2 and .48 for J = 3. Increasing the level (Cx') of the test for

interaction reduces the probability of error, but is of limited effectiveness for two rea-

sons: (i) the reduction to acceptable levels requires a drastic increase in Cx', and (ii)

the procedure that has been investigated is, of course, only part of a strategy, since if

the main effect and interaction are both significant, further testing must be carried out,

adding to the probability of directional errors, and the probability that such further

tests will be needed increases as ox' increases.

A more direct attack on the problem would be to test the hypothesis that the

interaction is ordinal, rather than testing the hypothesis of no interaction. A maximum
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likelihood test for this hypothesis was developed by Gail and Simon (1985), who pro-

pose a strategy of assuming all effects are in the same direction (assessed by the main

effect) if the hypothesis is accepted. Unfortunately, the probability of directional

errors is even higher under this strategy than under the standard strategy, so that it

should be used only if it seems highly unlikely that disordinal interaction is present.

An intermediate approach is taken by Azzalini and Cox (1984), who developed a test

for the hypothesis of zero interaction with power higher under disordinal than under

ordinal interaction. The probability of directional error using their test, while smaller

than that under the Gail and Simon procedure, is still much higher than under the stan-

dard strategy. Berger (1984) developed a likelihood ratio test for the hypothesis that

the interaction is disordinal, and for J = 2 the Berger and Gail-Simon tests have been

improved by Berger (1989) and Zelterman (1989). Further work to develop a satisfac-

tory strategy for minimizing the probability of directional errors, without undue

sacrifice of power, is necessary, both in the specific designs investigated here and in

the much wider class of designs for which these considerations are relevant.
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Appendix

Determining a Configuration of Cell Means which Maximizes the

Probability of a Directional Error

Since TA and TAB are independent with a2 known, and ProbXA ([ TA > TA;a ] is not

affected by the interaction, we must find

supProbxA[T<TAB--TAB, (5)
di

where TAB is distributed as noncentral X2 so the supremum in (5) will be attained

for the disordinal interaction that results in the minimum noncentrality parameter XAB,

regardless of the value of a'. Disordinal interaction requires minm , < 0, under the con-
J

straint that the average 6, = 2a (for the main effect of Level 1 of Factor A to equal a),

and we want to find a configuration with these properties that minimizes the interaction

noncentrality parameter. Such a configuration is found as follows.

Start with any set of means Atj- Since the effect of B is irrelevant, constants can

be added to the columns as desired, so that without loss of generality, set I1jj = 0 for

all j. Since 6 is assumed positive, for disordinal interaction 6. must be < 0 for some j;

without loss of generality, make that j = 1. To obtain the infimum of the disordinal

interaction, set 61 = 0 (i.e., 21 = 0); if it were any other value, the interaction could

be decreased by increasing 81 towards zero and reducing all other 6's proportionately.

Under these conditions, by use of Lagrange multipliers, it is easily seen that the

infimum of the interaction occurs when 2j = 2aJ /(J - 1)), j = 2, . . . , J. Alterna-

tively, the result follows from the fact that (a) interaction is a Schur-convex function

of the difference vector 8, and (b) the vector (0, 6,6, . . . , 6) is majorized by all other

vectors 8 satisfying the constraint that the minimum component must be < 0.
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Figure captions

Figure 1. Supremum of the probability of a directional error with known variance,

J = 2, a = .05, a' varying from .05 (upper curve) to .50 (lower curve).

Figure 2. Supremum of the probability of a directional error with known variance

(solid line) and estimated variance (dashed line), a = .05, a' = .05.

Figure 3. Supremum of the probability of a directional error with known variance,

J = 3, ax = .05, ca' varying from .05 (upper curve) to .50 (lower curve).
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TABLE 1

Supremum of Probability of Directional Error
as a Function of a' for a = .05, J = 2.

a' Supremum

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

.250

.191

.158

.134

.116

.102

.090

.080

.070

.062

.054

.047

.041

.034

.028

.022

.017

.011

.005

Value Of PA for Which
Supremum is Attained

1.96

1.80

1.70

1.63

1.57

1.52

1.47

1.44

1.41

1.38

1.36

1.34

1.32

1.31

1.30

1.29

1.28

1.27

1.27
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TABLE 2

Supremum of Probability of Directional Error
as a Function of a' for a = .05, J = 3.

a' Supremum

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

.476

.383

.324

.280

.244

.215

.189

.166

.146

.128

.111

.095

.081

.067

.054

.042

.031

.020

.010

Value Of PA for Which
Supremum is Attained

2.68

2.52

2.42

2.34

2.27

2.22

2.17

2.13

2.09

2.05

2.02

1.99

1.96

1.94

1.91

1.89

1.86

1.84

1.82
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