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ABSTRACT

Using noisy data, the fl-method for estimating an underlying smooth function of M

variables, (xl, . . , XM), is based on approximating it by a sum of products of the

fonn rlm Om (xm). The problem is then reduced to estimating the univariate functions

in the products. A convergent algorithm is described. The method keeps tight control

on the degrees of freedom used in the fit. Many examples are given. The quality of

fit given by the fl-method is excellent. Usually, only a small number of products are

enough to fit even fairly complicated functions. The coding into products of univariate

functions allows a relatively understandable interpretation of the multivariate fit.

Key words: nonparametric regression, regression splines, knot deletion, function esti-

mation.



The Hl-Method for Estimating Multivariate Functions

from Noisy Data

1.0. Introduction.

Given data xn = (xl,. . . , xMn),n= 1,... ,N and values

Yn = f(xn) + En
where f(-) is unknown but assumed "smooth" in E(M) (Euclidean M-space) and the

{En} are "mean zero noise", estimating f (*) is a difficult problem.

In the one dimensional case, a number of satisfactory methods are available. These

include smoothing splines, kernel estimates, moving linear smoothers, and dks curve

fitting (see Breiman and Peters (1988), Breiman (1989)).

The situation in two or more dimensions is less satisfactory. Work is in progress

on interaction splines (see Gu, et. al (1988)). Tensor products of splines have been

proposed (see Schumaker (1976), (1984)). There is a new and promising approach by

Friedman (1988). One early and ingenious method is projection pursuit (see Friedman

and Stuetzle (1981)). The comments on projection pursuit in Friedman (1988) give

some reasons that explain why it has not been more commonly used in applied work.

The difficulty in accurately estimating complex multivariate functions using sparse

noisy data is summarized by the Bellman phrase "the curse of dimensionality". In

one dimension, 8 spline functions are enough to approximate most reasonably smooth
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functions. In two dimensions, if we use a tensor spline product with 8 functions per

coordinate, then 64 coefficients have to be estimated. The complexity of multivariate

surfaces can grow exponentially with dimension but usually our data does not.

Noisy sparse data does not lend itself to precise estimation. Properly employed,

this is the statisticians defense against the "curse of dimensionality". For instance,

the most compelling justification for linear regression is that the data set is too small

or too noisy to resolve any nonlinearities. Once this is no longer true, the justification

for a linear fit vanishes.

The method we investigate consists of approximating a function f(x), x e E(M), by

a sum of products:

J M
I= m_ O>jrn (xm) .

With noisy data, estimates require only a few products. Multivariate estimation is

reduced to the estimation of the univariate functions { j,m (xm)}. Furthermore, these

univariate functions can be estimated by a simple iterative scheme.

This reduction to univariate function estimation disarms 'the curse of dimensional-

ity". For example, in high noise situations, one product is often an adequate fit to the

surface. Then, the data is only supporting the estimation of a few univariate functions.

This approach is particularly appealing when the x-variables are qualitatively different.

If xl is yield in tons of potatoes per acre, and x2 is annual rainfall, then efforts to treat
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them as geometrically equivalent when normalized by some arbitrary measure of

spread arouses a disquieting skepticism. The fl-method treats each variable in its own

intrinsic domain.

To give an item of what the fl-method can produce, examine figure la-f. The left

hand illustration in each figure is the underlying function, the right side illustration is

the fit produced by the fl-method. In each case (xl, x2) was uniformly sampled 100

times on a square and normal noise added. The functions are in increasing order of

complexity, and signal/noise ratio (standard deviation of the function divided by the

standard deviation of the noise). The successive s/n ratios in la-lf are 1.0, 2.0, 2.0,

2.5, 3.0, 4.0. The equations of the functions and the sampled square are given in

Appendix II.

One hundred samples in two dimensions is about 10 samples per dimension. Still,

as seen from the figures, the fl-method is able to faithfully reproduce the underlying

function even in low signal/noise situations. In figure lf we are reaching the limits of

resolution. The underlying function is complex and 100 data points, even with high

signal/noise are not enough.

Figure 2a-d is an example fitted both in Gu, et. al (1988) and Friedman (1988).

Here (xl, x2) are sampled 300 times and s/n = 3.0. Figure 2a is the original function,

2b is a reproduction of the interaction spline fit (Gu, et. al (1988)), 2c is the fit of
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Friedman's (1988) program and 2d is the IH-method fit. The IH-method gives an MSE

about 20% lower than the published value for the interaction spline fit. Friedman

notes that his MSE is about the same as the interaction spline fit. But the random

numbers are not the same, so the comparison is not definitive.

Noisy data, even in two dimensions where it can be visualized, may bear an imper-

fect relation to the underlying smooth surface. To illustrate this, figure 3 contains bar

graphs of the noisy data for two of the previous examples. We leave it to the reader

to sort out which is which.

Another problem in estimating multivariate functions is how to understand the

result. A 2-dimensional function can be plotted in 3-dimensional space and visually

inspected. But understanding the shape of a function of 3 or more variables is not

easy. The H-method gives an efficient way of coding the information in a multivariate

function estimate. For instance, if the estimate of a function of 3 variables is a single

3
product H Om (xm), then all of the information about the estimate is contained in the 3

1

bivariate graphs of 4m (Xm) v.s. Xm.

In describing the Hl-method, we give the theoretical rationale in Section 2. It

derives from a numerical analysis problem of which an important special case was

solved in the early 1900's. The implementation is discussed in Section 3. The

theoretical HF-method uses an iterative scheme to get the product functions. The data
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implementation selected gives a convergent iteration scheme and also tightly controls

the degrees of freedom used in the fit.

Section 4 gives further examples on both real and simulated data in 2 and 3 dimen-

sions. Section 5 looks at the issue of centering the response variable and Section 6

gives a short summary. Appendix I describes our method for finding initial values for

the iterative scheme.

2.0. The fl-Method.

2.1. General Case.

The idea of the fl-method is this: given random variables y, x = (xl,.. . , xM)

denote by nL1 products of the form

M

i1 m-l (i)mx)

What we are aiming at is an approximation

E(yIx) I-I, + IF2+ +IIJ.
In particular, we want to find Eli,... , rIj to minimize

i
E[y - riX]2. (2.1)

That this is an effective approximation method is partially conveyed by the following:

write y as

y = E(ylx) + z
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where z is the noise component.

Proposition 2.2. If Ey2 < 0o, then for any £ > 0, there is a sum ofproducts

FI- + ** + lj
such that

E (y-Ill- -FIj)2 < Ez2 + e.

Proof. This follows from the fact that sums of products are dense in the class of

squared-integrable functions on E(M).

What makes the Il-method workable is that, like the ACE algorithm (Breiman and

Friedman (1985)), solutions can be gotten by iterated sequences of one-dimensional

conditional expectations. To minimize E [y - 1l ]2, make an initial guess

ri= iim(0) (xm). Hold 2(o) ... , 42) constant and ask for that function P1 (xl)

which minimizes

E [ Y- 01 (X1) lIPM0 (0) (Xm) ]2.

The solution is clear,

E [ yl- M 0 (°) (Xrn) I X ]
4i (xi) =2[y1 mx)~1

E (I1- m (°) (X ))2 1 X1

Call this 441) (xl). Now hold 441), 440), . ..., 4(M) constant and minimize over 02 (x2),

etc. At each step E (y - Hl)2 is decreasing so .convergence to a limit is provable by

standard arguments under weak conditions. At the limit, the stationary equations hold:

Om (xm) EE[YrmI'm Om, (xm) Ixm] (2.3)

E [ (TIm'.m (Pm' (Xm_))2 1 Xm]
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This can be generalized to the problem of minimizing E (y - rLI - n J 2.

Let initial functions for rI, j = 1,..., J be OP() (xm). Hold 4.(°) constant, m . 2,

j = 1.... , J and ask what functions 4j1 (xl), j =1 .. . , J, minimize

E (y - (li (X) m2 (fom) - -*- i (Xi) n 40 (m))2 .
m22

Form the matrix

Wjj, (X1) = E[1( -(0) (xm)) ( LI 4j?) (xm))Ix ]
m..2 jm m.2

and the vector variable

Vi (xi) = E [ y I j(Xm)lXl]

Then

0.1 (Xi) = [W (Xi) ]1 V (x1)
and we can go through the iteration cycle as before. The stationary equations are:

I jym (Xm) E ( II j'm'4)jm'I|Xm) =E (y rl 4jm'Ixm).jI rdm nm '.m

The iterative process for minimizing E (y - I11 - * * *- LIj) can be carried out

simultaneously, as outlined above. An alternative is to minimize E (y - H)2. Let the

minimizing n be n°o). Now minimize E (y - Hf) _ LI)2 over n, and call the minim-

izing product nj°', etc. At the end of the first cycle this stepwise procedure gives

Hi0) + + rIf0). Now, keeping ri), . .. , H0) fixed, minimize over rlI to get

rifi). Then, keep rif1),1) H.P. ., Hf0) fixed and mninirnize over LI2 getting 11)*

The quantity E (y - H1 - - - - 1j) keeps decreasing.
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Assuming convergence to rlj, j = 1, .. . ,J:

Proposition 2.4. The {Ilj) satisfy the stationary equations for the simultaneous

minimization of

E(y - ll - -Flj)2.

Proof. Straightforward verification.

What is difficult is not convergence, but there may be local minima, and that the

algorithm may converge to one of these. We give more attention to this problem in

the bivariate case:

2.2. Bivariate Case for Independent xl, x2.

Suppose that xl, x2 are independent, i.e. P (dxl, dx2) = P1 (dx1) P2 (dx2). For

minimizing E (y - fl)2 the stationary equations (2.3) are

E(y421x1)
4i (Xi) - Y2

E (y41 Ix2)
42 (x2) =-2

These can be combined into the linear equation

X l(xl) = E[yE(yj11x2)1x1] (2.5)

where X = E -? E422. Suppose Pm (dxm) = hm(xm) dxm, then (2.5) has the form

k4l (x1) = K (x1, x1') h1 (x1') 41 (xl') dxl' (2.6)
where
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K(x1,x1') = fE(ylxl,x2)E(ylxl',x2)h2(x2)dx2
Now (2.6) has eigenfunctions {4j, (xl)} orthonormal with respect to h1 and eigenvalues

{X }. The corresponding I4j2 (x2)) are given by

Pj2 (X2) = E (y jl I x2).

Schmidt (1907) showed (essentially) that the sum of the flj = Qjl (xl) j2 (X2),

j = 1, ... , J, is the unique solution to the problem of minimizing

E (y - 11 - -EIj)2

and that for these minimizing products,

E(y - fl - -FIj)2 = j + 2

where c2 = E (y - E (y I x))2. In terms of minimizing E (y - IL)2, the product of the

dominant eigenfunctions gives the minimum, there are no other local minima, and the

products of the other eigenfunctions are saddle points.

But for xl, x2 not independent, there seems to have been no work regarding the

solutions of minimizing E (y - IlI - -_Jj)2. For a while, we hoped that in gen-

eral there was only one minimum. But while doing numerical work on minimizing

E (y - Il)2 with dependent xl, x2 we discovered an example with multiple local

minima. Given the existence of local minima, the establishment of good initial starting

functions becomes important, (see Appendix I).

2.3. Two vs Higher Dimensions.
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Suppose that

J M

j=lm=j
with {e} independent noise. If we fit y using the fl-method does it follow that the

fitted {4j,m) are essentially equal to the {0j,m}?

In two dimensions the answer is: usually not. For each i,m, 4t,m will be a linear

combination of the (Oj,m), j = 1,... , J with coefficients such that

J J

£in >j,m I rti oj,m.* (2.7)

In general, there are many such linear combinations. But by writing down the equa-

tions and trying to solve, one can verify that in 3 or more dimensions, there generally

does not exist any linear combinations of the {0jm} such that (2.7) holds.

Thus, we are led to the tentative conclusion that in two dimensions, even if

f (x) = £rIm jm (Xm)
j=1

the fl-method will usually produce an estimate

J J
£m (t)j,m (Xm) im (j,m (Xm)

such that rml,mj(xm) may have little individual resemblance to any of the products

rim Ojm (Xm).

However, in 3 or more dimensions, if

J J
£Im1j,m (Xm) = E In 3j,m (xm)
j=-1 j=1
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then the products of the oijm must usually approximate some permutation of the pro-

ducts of the 0j,m* These heuristic conclusions are supported by a simulation reported

on in Section 4.2.

3.0. Implementation - the PIMPLE Program.

Implementing a data version of the fl-method (PIMPLE = pi-implementation) had

two phases. The first is the general implementation idea outlined in section 3.1. The

second is in the refinement of this implementation so as to give more control over the

degrees of freedom used. Some of the ideas in Breiman (1989) are used and we refer

the reader to this previous paper for details.

3. 1. The General Implementation Idea.

Given a finite data set (yn,xn), n = 1, . . . , N, xn = (xin,... , xmn) the basic

implementation of the fl-method is as follows: let {gm,k}, k = 1.. km be univariate

functions such that for all k, gmk (x) is defined on an interval containing the points

{x.j, n = 1, ... , N. Consider functions Om (x) of the form Pm,kgmk(x) and look
k

at the problem of minimizing

ove (Yn- Om (Xy))2n m

over I Pm,k I

If we hold )2 .... Om constant, then the problem is one of minimizing
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(Yn £ 1s,k91,k(Xln) rl O¢m(Xm,n))2
n k m.

This is a straightforward regression problem and the {[1,k) are easily determined.

Now hold all Om but 42 constant and solve for the {[32,k). Keep iterating this process

until the residual sum-of-squares does not appreciably decrease. Suppose that J - 1

products have been estimated, and denote the residuals y - Il- - - 1711-1 by {rn).

Repeat the iterative process to find the product I1J minimizing , (rn- Flj (n))2. Then

"backfitting" is used. Hold 1n2, . . ., H1 constant and take the functions in rI1 to

minimize

(Yn - FI, (n) - - (n))2;
n

Repeat holding H1,1n3,... , nlj constant, etc. Keep circulating until the residual

sum-of-squares does not appreciably decrease. Call this residual sum-of-squares

RSS(J). If RSS(J) is not sufficiently smaller than RSS(J-1), in a sense made precise

-later, then use only J - 1 products in fitting {yn}.

The basic algorithm, then, is an iterated sequence of ordinary linear regressions of

fairly low dimensionality. Generally 10 or fewer functions are used to fit each vari-

able. The matrix inversions in the regressions are done using double precision Gaus-

sian sweeps, and the major portion of the computing time is in the computation of the

updates of the X'X matrix.

3.2. Strategy for Controlling the Degrees of Freedom.
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In fitting multidimensional functions, controlling the degrees of freedom is an

imperative. For example, suppose we used a basis of, say, 7 functions per variable in

fitting a 3-dimensional function. Each product requires the estimation of 19 parame-

ters. With three products 57 parameters are being estimated. If a modest data set of

size 100, say, is being fit, this virtually guarantees high variance and a noisy overfit.

An essential part of the implementation of the fl-method is a strategy for controlling

the degrees of freedom. This consists of two parts:

1) Controlling the number of products used in the fit and the dimensionality of the

initial basis.

2) Deleting basis elements not important to the fit.

These two parts interact with each other. The larger the number of initial basis ele-

ments, the more the choice of which elements are deleted depends on the noise rather

than on the underlying function. But with too few initial basis elements the fit to the

underlying function may not be adequate.

The criterion we use in both phases is the "generalized cross-validation" estimate

of prediction error given by

PEGCV = RSS/(1-NP/N)2
where RSS is the residual sum-of-squares and NP is number of parameters estimated.

Fixing the initial number of basis elements, let PEGCV (J) be the value of PEGCV
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using J products. As J increases, if PEGCV (J) 2 PEGCV (J- 1), then only J - 1 pro-

ducts are used in the fit.

Now suppose K basis elements are used per coordinate, and the number of pro-

ducts is determined as above. Denote the resulting value of PEGCV by PEGCV(K).

Then the strategy is to start with a small value of K and increase until we find the K*

which minimizes PEGCV (K). At this stage, there are J* products, each based on K*

basis elements on every coordinate, and the fit has been optimized by iteration and

backfitting.

The next process is similar to stepwise variable deletion in regression. In each of

the J products Il1, . . . , flI the basis element whose removal would cause the smallest

increase in RSS is located. Among these, the one causing the smallest rise is deleted,

a refitting-backfitting cycle carried out, and the new value of PEGCV computed. At

times, two or more elements in the same or different product may be deleted in the

same pass. This occurs when, in sequence, their deletion causes almost the same rise

in RSS. A logical approach might be to adopt that fit with the minimum PEC;V value.

This has the following difficulty: the sequence of PEGCV values is initially decreasing

but is also noisy. At some stage there is a rapid increase as basis elements important

to the fit are removed. The problem is not to fall into a nonsignificant local minimum,

but also not to allow too much deletion.
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The approach we take is similar to that used in bivariate smoothing with knot dele-

tion (Breiman and Peters (1988)). Set a threshold value th > 0, let 62 be the noise

variance estimated from the fit prior to deletion and let PEGCV be the minimum value

in the PEGCV sequence. Adopt the fit with the fewest number of parameters satisfying

PEGCV ' EGCV + th 62

We take th in the range 0 to 10 and usually examine the output to decide.

The final fit clearly depends on the number of products used, the number of initial

basis elements and the extent of deletion. To assist in the determination of these, we

experimented with 5-fold or 10-fold cross-validation. This has a price in computing

time, with 5-fold cross-validation taking about 3 times as long as the unvalidated pro-

cedure. Still, an improvement in accuracy would be worth the additional cycles.

Unfortunately, cross-validation provided only a small improvement over the PEGCV

selection method. In the additive model construction described in Breiman (1989)

cross-validation is an essential tool. One difference is that in the additive procedure

there is extensive deletion. In the present situation, the deletion is more modest, so

that standard measures based on classical analogies are not so biased.

3.3. The Spline Basis.

The functions used as the basis are the cubic spline functions 1, x, [(x - t)+ ]3,

where the initial knots are distributed by the algorithm described in Breiman (1989)
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and the conditions ¢" (x) = 0 at the endpoints are imposed. Because of the constraint

of linear ends, two initial knots is the minimum for a nonlinear fit. The search

described in Section (3.2) is started with a linear fit on each variable and then uses two

knots per variable three knots, four knots, etc.

The knot deletion process poses some algorithmic complexity as the constraint of

linear ends is kept imposed throughout the deletion process. That is, the spline fit is

constrained to be linear to the right of the last undeleted knot on the right and simi-

larly on the left, and continuity of the 2nd derivative is kept enforced.

The advantage of the spline basis combined with deletion for fitting univariate

functions has been documented in Breiman and Peters (1988). The basic idea is that

in most sets of basis functions, i.e. polynomials, deleting one basis function has a glo-

bal effect on the fit. However, if a knot is deleted, i.e. one of [ (x - t)+ ]3, then the

effect is localized to the vicinity of the knot. Thus, knots will be deleted in regions

where the function is smooth, and retained in intervals of rapid change.

4.0. Examples.

The first two examples used to illustrate the fI-method and PIMPLE are data sets

discussed by Cleveland and Devlin (1988). No matter how many simulated data sets

are run on a methodology, actual data continues to be surprising and complex. After,

these two examples, we illustrate some aspects of PIMPLE on simulated data.
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4. 1. NOX Data.

These data are from an experiment in which a single-cylinder engine was run with

ethanol, and comprise 88 measurements of NOX (Nitrous Oxides) in the exhaust, the

equivalence ratio (E), and the compression ratio (C). The purpose of the analysis was

to examine how the NOX depended on the two ratios E and C. In their analysis,

Cleveland and Devlin used (NOX)1f3 as the response variable. We follow this except

that we also subtract from the response its median value. The main reason is to get

univariate graphs in the products that are easier to interpret.

The original experiment was reported in Brinkman (1981). The data was analyzed

by Rodriguez (1985) who fit an additive model using ACE. Cleveland and Devlin

(1988) pointed out that a graphical analysis indicated an ExC interaction.

Figure 4 is a scatter plot of E vs C. The compression ratio has only 5 distinct

values. With five distinct values, the basis for C consisted only of 2 knots in addition

to a constant and linear term. The data in E could support a higher dimensional basis.

Starting from 2 knots on up for E, we got the following results:

No. knots 2 3 4 5 6 7
No. products 2 2 2 2 2 2

PEGCV 14.6 16.7 3.5 3.2 3.5 3.5

Using 5 initial knots, the results of the deletion process were
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df. 18 17 16 15 14 13 11 10
PEGCV 3.21 3.11 3.07 2.98 2.89 2.90 3.03 3.05

With &2 = .029, the best candidate is the fit with 13 df, and R2 = .981.

Figure 5 gives the graphs of the univariate functions in the two products. All are

on the same scale but with no location adjustment. The x-axis is labelled so that zero

is at the minimum of the corresponding data values for that x and one is at the max-

imum. The first product is almost completely a main effect due to the E-ratio. It is

large and positive in the midrange of the E values and negative for low and high E.

The functions in the 2nd product are not as large as in the first. In fact, if we

define

Imp (i, j) = (Ili (n) - li) (Ilj (n) - 1j) /RSS
n

then the Imp matrix is

53.6 -2.4
-2.4 3.4

The 112 factor is a correction for the lower E values. The correction is positive for

low values of the compression ratio, negative for high values.

Figure 6 is a surface plot of the fit. The dominant feature is the E main effect, but

the corrections can also be perceived. These results support the assertion by Cleveland

and Devlin that there is a nonremovable interaction in these data.
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4.2. Ozone Data.

This is a data set consisting of 111 measurements of four variables: ozone, solar

radiation, temperature, and wind speed on 111 days between May 1 and September 30

of 1973 in New York City (Bruntz et al. (1974)). The purpose is to look at the depen-

dence of ozone on the other variables. Following Cleveland and Devlin again, the

one-third power of ozone is used as the dependent variables but with the median sub-

tracted. Varying the number of initial knots from 2 on up gives

No. Knots 2 3 4 5 6
No. Products 2 2 2 2 2

PEGCV 26.1 24.3 23.3 24.1 26.0

After some exploration (see the next section) we decided to subtract the 25th percentile

instead of the median. Using 4 knots, the summary of the deletion process is

df 26 20 19 16 15 13 12

PEGCV 22.4 19.3 19.1 19.6 19.8 19.1 19.1

Noting that &2 = .15, the candidate of choice is the fit with 11

plots of the functions in the two products are given in figure 7.

two products is:

11 10 8
18.6 20.2 21.8

df and R2 = .83. The

The Imp matrix of the

2.5 .7
.7 .9

In interpreting figure 7, recall that the response variable (the one-third power of
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ozone) is centered at its 25th percentile. The positivity or negativity of the products

predict responses relative to the 25th percentile level. The two products are actually

bivariate interactions. The first between temperature and wind speed, and the second

between temperature and radiation.

The temperature-windspeed interaction, on first inspection, seems to consist of a

large positive component for low wind speeds. A look at the temperature-windspeed

scatterplot (Figure 8a) corrects this impression. At low wind speeds the temperature is

always in its upper range - precisely where the temperature curve in the first product

is close to zero. The dominant contribution of the first product is a negative correction

for wind speeds exceeding a certain level.

Looking at the 2nd product, the increase in the temperature function for low values

of the temperature seems strange until the temperature-radiation scatterplot (Figure 8b)

is examined. Since low temperatures and low radiation generally occur together, we

conclude that the lower parts of the temperature and radiation curves work together to

produce negative product values in this part of the data.

For radiation above a certain threshold the contribution becomes positive, increas-

ingly so as temperature increases. There is an interesting decrease in the radiation

curve at the highest radiation levels. That this odd phenomenon is not an artifact in

PIMPLE can be verified by looking at the cube-root ozone vs radiation scatterplot
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(Figure 8c). Note that past a radiation level of about 250, the cube-root ozone values

tend to decrease as radiation increases.

For this data set one would be tempted to construct an additive model. Certainly

the author was. Using the methods of Breiman (1989), an additive model for the data

was found. Eight df. were used. The plots of the main effect functions are given in

Figure 9. The PEGCv for this fit is 23.8, considerably higher than that of the lldf

interaction fit. Efforts were also made to fit interaction models to the residuals from

the additive fit. These decreased the PEGCV slightly but, not to the level of the 11 df.

fit while adding 6-11 more df. Our conclusion is that the two bivariate interaction fit

provides a simple and accurate picture of the data.

4.3. Some Simulated Examples.

In section 2.4, we noted that if y = :Ll. + c, then the fit ni o' could have different

characteristics in two versus higher dimensions. In two dimensions, while

FIIj'-1:lj, the individual products {lIj') do not necessarily resemble the (Ilj}. In
j J

higher dimensions the situation seems to be that the individual products are similar.

To illustrate this, define

4(x) = x+x2

0 (x) =X2

and form the functions
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M M
f(x)= I (Xm) + n 0 (Xm)

m=l m=l

for M = 2,3. The data (xn) consists of 100 points uniformly distrbuted on the square

or cube with sides [-1, 1 ], and y = f (x) + e, where the noise variance is adjusted so

that the signal to noise ratio is around 4.0.

Figure 10 gives the plots of the functions in the two products for three dimensions.

The original product functions have been accurately duplicated. Figure 11 gives the

plots in the two dimensional case. The functions in the fitted products are consider-

ably altered from the functions in the original products. As one referee remarks, the

linear combinations of 4 and 0 that include a linear function of x and match the sum

of products are

¢(x) = x/ I-

0 (x) = (x/'l) + x2XIF.

The functions graphed in figure 11 are close to 4*, 0*. It is odd and interesting that

the two dimensional situation should differ qualitatively from that in higher dimen-

sions.

Another question is how much detail can PIMPLE resolve. Of course, this

depends on the signal/noise ratio. But even with high signal/noise ratios, the density

of {x1j points in the region is critical. For instance, consider data

Yn= f(xn) + En, n= 1,..., 100

with f (x) = exp [ xl sin (x2)], using 100 (xl, x2) points uniformly distributed on the
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square with sides [-1, +1 ], and s/n - 4.

Figure 12a is the plot of f (x) on the given square and 12b is the PIMPLE fit. Now

enlarge the square to have sides [-2,2]. Figure 12c is the plot of f (x) on this larger

square, giving a more complex function. Figure 12d is the PIMPLE fit, again using

100 data points on the square. The fit is not good. Then data using 300 points uni-

formly distributed on the square was generated. The fit to this data used 3 products

and 37 df, and is shown in figure 12e.

4.4. Some Benchmarks.

Since a few methods for estimating multivariate functions are in the existing litera-

ture and more are liable to appear, some benchmarks for performance are useful.

Unfortunately, many papers on smoothing techniques show a few pictures and let it go

at that. Others state results for one set of simulated data, which makes comparison

impossible unless the same random number generator and same seed is used.

We give some benchmarks below for 100 repetitions of runs on a number of func-

tions in two and three dimensions. Our figure of merit is average root-mean-squared

error. That is, in each run with underlying function f (x), data points {x3),

n = 1 , . . . , N and fitted function f (x), the RMSE error is defined as

[ - (f(x) -f (n)
This is then averaged over the 100 runs. The standard error of the RMSE is also



12b

12d

12e

Figure 12

12a

12c



- 25 -

reported. All of the x-regions are squares or cubes with sides as specified, the (xD)

are taken to be 100 uniformly distributed points on the region specified, and the noise

is iid N (0, 0Y2). The list is:

No. Dimension Function Figure
1 2 exp [ x1sin (tx2)] 12(a)
2 2 3 sin(xlX2) l(b)
3 2 GBCW* 2(c)
4 3 exp [x1x2sin (7EX3) ] --
5 3 X1X2X3 --

*see Appendix II for definition.

The procedure used was that specified in Section 3, and

deletion threshold set to zero.

Side
[-1,1]
[-2,2]
[0,1]
[-1,1]
[-2,2]

S/N
.9
1.9
3.1
1.2
1.5

a

.5
1.0
1.0
.2
1.0

all runs were made with the

The RMSE results are:

No. 1 2 3 4 5
Av. RMSE .192 .388 .565 .115 .219

SE .005 .009 .008 .003 .009

Other parameters were also computed in these runs:

av product: the average number of products used in the fit.

av knots: the average number of knots used in fitting.

av df: the average number of degrees of freedom used in the fit.

The "true" prediction error in a fit is defined as PE = a2 + (RMSE)2. The final value

of PEGCV (after deletion) is an estimate of PE. In each set of 100 repetitions, the fol-

lowing were also computed: av true pe; av est pe; rms pe diff. These values are tabled
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below:

No. 1 2 3 4 5
av product 1.1 2.0 3.0 1.9 1.2
av knots 3.5 3.3 3.4 3.4 2.3
av df 6.5 13.1 17.4 16.4 5.0

av true pe .29 1.16 1.33 .054 1.06
av est pe .27 1.13 1.33 .041 1.05

rms pe diff. .05 .22 .23 .020 .17

The fifth example is used as a control. Only one product is necessary to approximate

xlx2x3. If it is known that the interaction is linear, and if it is fitted by

rI (ocx + 13m), then only 4 degrees of freedom are used and the RMSE from 100

runs is .20.

5.0. Fitting y-c.

The value of E (y - c - 01 (xl) 42 (x2))2 minimized over 41, 02 depends on c, say

R (c). Look at the two dimensional example with

f (x) = 3.7 exp (11 x + e 112) + 2.7 exp (11 x - e 112), e = (1, 1)

with s/n 1, and the {xn) 100 points uniformly distributed on the square with sides

[-2.5,2.5]. Denoting PEGCV (c) as the result of fitting {yn - c}, Figure 13 is a graph

of PEGCV (c) v.s. c using 5 knots and no deletion.

The odd change in figure 13 has a rational explanation. Consider the situation

where xl, x2 are independent
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y = fl(X1) 1(X2)+f2(X1)92(X2)+ £

and we are trying to fit y - c with 41 (x1) 012 (X2) + 021 (X1) 022 (x2). Assume, to sim-

plify matters, that Ef2 = Eg2 = 1, Efm = Egm = g, and Ef1f2 = Eg1g2=P Without

going into details, the integral equation (2.5) then gives a cubic equation for X, with

three real roots, denoted X, (c), X2 (C), X3 (C). Recall that for the minimizing Jll, I12

R(c) = E(y - c - Ill - 1I2)2 = min (kj (c)) + Cy2.
J

What happens is that as c increases, the two smallest eigenvalues cross each other,

causing a sharp change in the R (c) curve. Figure 14 is a graph of R (c) vs. c for

A = .3, p = .2, and ay taken to give s/n = 1.

This odd dependence on c is due to the fact that the simulated data is the sum of

two products. The behavior with real data is more stable. In the NOX data the values

of both the undeleted and deleted PEGCV were virtually constant over the range of c

from min (y) to max (y).

The ozone data shows almost the same constancy over the range min (y) to max (y)

with the following exception: the minimum deleted values of PEGCV occur at a smaller

number of df in the upper mid part of the range of c. Figure 15 shows a graph of the

undeleted PEGCV value over the range of y (1.0 to 5.5). This is the solid line. The

dotted line is the minimum PEGCV value for fits between 11 and 13 df. The lowest

point occurs at c = 4 which is about the 25th percentile of the y-values. Given our
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desire for simplicity, this was the centering chosen.

We have generally resolved the question of what c to use by trying a few values

between min (y) and max (y). However, in an important special case this search may

not be necessary.

Suppose that lower order interaction affects have already been subtracted. For

instance, in the bivariate case, let 01 (xl), 02 (x2) minimize

E [ y - 01 (x1) - 02 (X2) ]

and what is desired is the bivariate fit to

Y = Y-01-02-
The reduced y has the property that

E(yIxl) = E(yIx2) 0.

Consider the minimization of

E(y - c - 41(xl) 2(x2))2 (5.1)

assuming (xl, x2) independent and the minimizing 01, 02 not constant. The minimizing

value of c = E41 - E42 and for this value of c, (5.1) becomes

Ey2 - 2Ey4142 + EE1 -2 (EQ1 E42)2.

Minimizing over 02 gives the equation

- E (y41 I X2) + (E?) 02 - (E41)2E02 = 0.

Taking expectation with respect to x2 leads to E42 = 0, hence to c = 0.
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While this argument requires the independence of xl, x2, it does provide reason to

believe that when lower order interactions have been subtracted out, fitting the reduced

y as is will give good results.

6.0. Conclusions.

The fl-method as embodied in the PIMPLE program gives an effective method of

fitting multidimensional surfaces using sparse noisy data. Tight control is kept on the

degrees of freedom used in the fit by adding additional products only if they

significantly improve the fit, and by the process of knot deletion. The results are accu-

rate fits and illuminating pictures.

We hope that this will not be the final word on the Il-method. Interesting ques-

tions remain, such as the difference between two and higher dimensions. The FOR-

TRAN code for PIMPLE will be available from the author.
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Appendix I

Starting Values

It is important to have good starting values for the iterative process used in PIM-
PLE.
We use two methods, one in two dimensions and the other in higher dimensions.

In two dimensions we want to minimize

(Yyn - 4i (n) 42 (n))2n

where (changing notation a bit)

4i(n) = k£ kfk(xin)

42 (n) = £j gj (x2n)

Taking partials w.r. to the (ak} gives

nYn 02 (n) fk (xln) = X p2 (n) fk (Xln) fk' (Xln) ak'-
n nXk

Put

Hkkt = £fk(Xln)fk'(Xln).n

Akj = Yn fk (Xln) gj (X2n)-
n

Using the approximation

£1:0 (n)fk(Xln)fk(X2n) _ 1 Fn

gives

At =s 2Fla

Taking partials w.r. to (pij gives the similar equation

A'a =2 Go
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where GA,= £ gj (x2n) gj, (x2.). Solving gives
n

AG-'A'a = XFa kX=>2-2
The solution {a) required is that corresponding to the highest eigenvalue of this equa-

tion. PIMPLE solves this equation and uses the resulting 01, 02 as initial values.

The above approach is specific to two dimensions. In higher dimensions a cruder

approximation is used. Assuming independence the stationary equations for a single

minimizing product are

Om (xm) = cE (y II Om. (xmr) Ixm)
m.m

or

m (xm) = cE (yrI4 m, (xm,) I xm) .
m

If II4tm has a significant component in the y-direction, then a reasonable approximation

is

4m2(Xm) - cE (y2lxm).
l ~

This suggests that IE(y2 Ixm) be used as initial values for Om. This is not really satis-

factory, since then all initial 4m are non-negative.

A variant of this idea is used in the data implementation: Denote by { gk} the basis

functions for xm. Take Qm() = I Pk gk 11/2 where the 'Pk minimize
kk

k k



- 34 -

Think of the {x=}, n = 1,... , N, as being sorted so that xn < xm,n+1. Let

1)(Xrr,) = min m (xmn). Along with ml), consider the alternative function
n

0(ml)()9U), Xmn > Xmn.(2)(Xmn)~~~~~~~~{)(m)~x

m (x) = (ml)(Xmn), Xmn < Xmno

Find a, il,... iM to minimize

z (Yn ,(-i4mm (X ))2
m

and denote the minimizing ¢m) by Om. Find constants a, dl, ... , dM to minimize

X (Yn-Xa II (Om (Xmn) -dm))2
n m

and take the Om - dm as the initial functions in 3 or more dimensions. This algorithm

allows for one sign change in the initial functions. An extension to two or more sign

changes would not be difficult. We will do this when we get more experience m

PIMPLE's behavior. It seems that generally the global minimum of : (y - 11)2 is in a

fairly large valley, so that the initial values for the iteration are not critical as long as

they are not drastically distant from the global minimum. Using the above initial

values in hundreds of simulated data sets has not given a single detected failure to

converge to the global minimum. In three and higher dimensions, we experimented

with different methods for computing initial values. The major difference was that

PIMPLE converged more rapidly with better initial values.



- 35 -

Appendix II

The functions graphed in figure 1 a)-f) Section 10, and their domains are

1(a). f(x) = 3.7exp(IIx + e112) + 2.7(1Ix - e112), e= (1,1)
Square side: [-2.5,2.5]

l(b). f(x) = 3sin(x1x2)

Square side: [-2,2]

1(c). f(x) = exp[-x2 - 3x2 - 4xlx2]

Square side: [-1, 1]

1 (d).

2 = (Xl- 1)2 + (X2_1)2

r22 = (xl - 1)2 + (x2- 3)2

r32 = (xl - 3)2 + (xl - 1)2

r42 = (xl - 3)2 + (x2- 3)2

f (x) = 4 exp (-5r, ) + 2 (-3r24) + 2 exp (-2r3) + 2 exp (-4r4)

Square side: [ 0, 4]

1(e). f (x) = exp (x1 sin (7x2))

Square side: [-1.5, 1.5]

1(f).

r2 = (Xl- 1)2 + (X2-1)2

r22 = (X1- 1)2 + (X2- 1)2

f(x) = 1.7 cos (1.75r#) exp [-.4r2] + 3.7 cos (1.75r?) exp (-.8r?)

Square side: [-2, 2].
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The starred function GBCW in the benchmarks (Section 4.4) is the function given in

Chu et. al [1988] and graphed in figure 2. Its equation is: let

a = 40 exp [ 8 ((xi - .5)2 + (x2 - .5)2)]

b = exp [ 8 ((xi - .2)2 + (x2 - .7)2)]

c = exp [ 8 ((xl - .7)2 + (x2 - .2)2)
then

f(x) = a/(b+c)


