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Abstract: We explicitly identify the possible probability entrance laws for a class of
measure-valued processes that are constructed by taking a particular measure-valued
Markov branching process and conditioning it to stay away from the zero measure
trap. The set of extreme points of the entrance space is larger than the state space of
the conditioned process, and contains elements which correspond to "starting" the
conditioned process at the zero measure.
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The continuous state branching process was discussed in [Feller, 195 1] as a
diffusion approximation to a suitably scaled critical Galton-Watson branching process
when the initial number of individuals becomes large. This process, known also as the
BES2(0) process, is a diffusion on [0,oo[ with generator that extends 2xd2/dx2. The
state 0 is a trap.

Suppose we start a BES2 (0) process away from 0 and "condition on never hitting
0". That is, we consider the limit as T e- oo for the process conditioned to have not
hit 0 up to time T. It is a part of the folk lore that this limit exists, that the resulting
process correspond to performing to a Doob h-transform on the BES2 (0) process using
the function h (x) =x, and that the resulting process is a BES2 (4) process, i.e. a
diffusion on ] 0,oo with generator that extends 2xd2 / dx2 + 4d / dx (see, for example,
Example 3.5 of [Pitman and Yor, 1982]). The state 0 now becomes an entrance but
not an exit boundary.

Our aim is to investigate the analogue of this result for a class of measure-valued
branching Markov processes that generalise the continuous state branching process.
The class of processes is a particular case of a construction given in [Watanabe, 1968]
which we now review.

Suppose that E is a locally compact, separable space. If E is non-compact, let A
denote the point at infinity and put EA = E u {A). For uniformity of notation, set
EA = E when E is compact. Write C (E) for the Banach space of continuous functions
on E with continuous extension to EA (equipped, of course, with the supremum norm).
Let (Pt)t20 be the semigroup of a conservative Markov process on E. Assume that
(Pt)t1o is Feller; that is (Pt)t.o maps C (E) to C (E) and is strongly continuous on C (E).
We can extend (Pt)t,o to a Feller semigroup for EA by setting Ptf (A) = f (A).

Let M (E) (respectively, M (EA)) denote the space of finite Borel measures on E
(respectively, EA) with the topology of weak convergence, so that M (EA) is a locally
compact, separable space.

In [Watanabe, 1968] it is shown that for each f e C (EA) with f > 0 the integral
equation

t

(1) ut (x) = Ptf (x) - PS (x, u 2 ) ds
0

has a unique solution ut = Utf; and there exists a unique Feller semigroup, (Qt)t2o on
M (EA) for which

(2) JQt (g, dv) e7v(O = exp (-p Ut f)

for all such f. Let X = (W, G, Gt, et) Xt,P') be a Feller process with the semigroup
(Qd)to. It is shown in [El Karoui and Roelly-Coppoletta, 1987] and [Fitzsimmons,
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1988] that if XO belongs to M (E) almost surely then X almost surely has continuous,
M (E)-valued paths. We refer the reader to the Introduction of [Fitzsimmons, 1988]
for an up-to-date selection of the considerable amount of work that has been done on
this and related classes of measure-valued processes. Chapter 9 of [Ethier and Kurtz,
1986] provides a discussion of how such processes arise as high density approxima-
tions for the configuration of a branching Markov process.

It is easy to show that the total mass process (Xt(l): t 2 0) is a BES2 (0) process
(one can use the Laplace transform calculations on p.100 of [Knight, 1981], for
instance). The zero measure is a trap. As above, we can start the process X off at

e M(E) \ {0}, condition the process to be "alive" at time T (that is, to be away
from 0) and then let T -+ oo. It is shown in [Evans and Perkins, 1990] and [Roelly-
Coppoletta and Rouault, 1989] that the result of this procedure is a right Markov pro-
cess (W, G, Gt',) ,Xtg P) with state space M (E) \{O) and semigroup (Qt)t,0, that is
the Doob h-transform of X using the function h (v) = v (1). That is,

(3) QtF (p) = P F (X)

= p(1)- P [F(X)Xt(1)]
Moreover, it is shown in [Roelly-Coppoletta and Rouault, 1989] that if f E C(E) with
f > 0 then

(4) fQt(g.)dv)ev(f) - [ (1)]exp(-Utf)

where Ut is as above and Vtf = vt is the solution of
t

(5) vt = 1 + 2JPs (vt-s (Ut-s f)) ds
0

(the results in [Roelly-Coppoletta and Rouault, 1989] are for the case E - Rd, but they
carry over to this setting).

From the introductory remarks above, it is clear that the total mass process
{Xt(l): t . 0) is a BES2 (4) process (this can also be seen, of course, from an explicit
computation of Laplace transforms). By analogy, we might hope that we can, in some
sense, "start X off" at the zero measure and treat the zero measure as some kind of
"entrance boundary". This turns out to be the case, but now there will be many ways
to start from 0 - one for each "direction" in which X can make its initial
infinitesimal move away from 0. To make this claim precise, we recall the following
concept.
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DEFINITION. A family (Nt)to of probability measures on M (E) \ {O} is a probabil-
ity entrance law for the semigroup (Qt)t2o if for all s, t > 0 we have N, Qt = NS+t-

We can now state our result classifying the possible probability entrance laws for

(Q)tX0. We let Ml (E) to denote the space of probability measures on E. Part of our

proof is along the lines set out in [Dynkin, 1988b] and [Fitzsimmons, 1988] for deter-
mining the entrance space of a class of measure-valued Markov branching processes.

THEOREM. There is a one-to-one correspondence between the class of probability
entrance laws for (Qt)t,o and the class of probability measures on M1 (E) x [ 0, oo [. A
probability entrance law (N)t>0 corresponds to a probability measure F on
M1 (E) x [ 0, oo [ by the relationship

(6) JNt (dg) exp (-g (f)) = IF (dv, dx) (vVtf) exp (-xvUtf)

for all f E C(E) with f 2 0. Moreover, if we set p(g) = g (-)/,u (l) and m((g) = 1)
for g E M(E) \ O0} then IF is the weak limit as t t 0 of Nto(p,m)-l.

PROOF. Suppose firstly that (Ndt)p is a probability entrance law for (Q)t2O. Let W+
denote the space of continuous paths from ] 0,oo [ to M (E) and write (X >)t0o for the
coordinate process on W+. There is a unique probability measure P on W+ under
which (X+) is Markovian with semigroup (Q0) and 1-dimensional distributions (Ne) (cf
§40 of [Sharpe, 1988]). Let (G+)tzo denote the P-augmentation of the natural filtration
of (Xc) made right-continuous.

Recalling remarks made above, we see that (m (X+))tXo is Markovian under P with
the BES2 (4) semigroup and that (Ntoml)t>o is a probability entrance law for the
BES2 (4) semigroup. From the theory of 1-dimensional diffusions we conclude that
there is a Go -measurable, [0, oo [-valued random variable xD+ such that

limt ,om(X ) = x0+ P-a.s. and Ntom71 = (lPox +!)St, where we write St for the semi-
group of BES2 (4) considered as a diffusion on [ 0, oo [.

Suppose that f C- !(E) with f . 0. For az> 0 set Uaf f e~tPtfdt. From the first
0

moment calculations in Proposition 2.7 of [Fitzsimmons, 1988] or Theorem 1.1 of
[Dynkin, 1988a] and (3) we see that the process exp(-at)X+ (U f)/X+ (1) is a

bounded supermartingale, and so limtj4oXft+(Uaf)/X +(1) exists P-a.s. As the set of
functions {Uaf: f E C(E), f 2 0) is dense in C(E) n {f: f 2 0), we can conclude that
there exists a G&-measurable, M1 (E)-valued random variable YO+ such that

limtioXt+()/X0(1) = Yo+.
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Set F = Po(yo+, xo+)-l. Then, by part (ii) of the following lemma and (4) we have
for each f E C (E) with f 2 0 that

Nt (dg) exp (-g(f)) = P [ exp (-X (f)) ]

= li P [ exp (-X+ (f)) ]

- limP[ JQt (X+, dg) exp (-p.(f))]

= limP[ s (-XsUtf)s4o L X (l) Jep-8~)

= P [ (Yo+Vtf) exp (-xoYoUtf)]

= Jr (dv, dx) (vVtf) exp (-xvUtf).

To show the reverse correspondence, it suffices to consider the case when F is the
unit point mass at some pair (v, x). When x . 0 the family of measures (Qt (xv, * ))t>
is clearly an entrance probability law for (Qt)to which satisfies (6). Suppose that
x = 0. From (4) we see that

lirm JQt (£V, dp.) exp (-IL(f)) = vVtf

for all f E C (E) with f . 0. As vVtO = 1, it follows that for each t > 0 there exists a

probability measure Nt on M(E) \ (0) such that lim8 IOQt(ev,.) => Nt and

Nt (dg) exp (-g(f)) = vVtf (cf. Lemma 5.1 of [Kallenberg, 1983]). In order to show
that (Nt)t, is a probability entrance law for (Qt)t2o and hence complete the proof, it
will suffice to show that NSQtF = Ns+tF for all s,t > 0 and all bounded,, continuous

functions F on M(E) \ (0). This, however, is clear from the above, part (i) of the fol-
lowing lemma and the fact that Qs (QtF) (ev) = Qs+tF(rv).

We required the following lemma in the course of the preceeding proof.

LEMMA (i). For each t 2 0 the map g t-* Qt (p, -), p. e M (E) \ (0) is continuous.

(ii). For each t > 0 and each f E C(E) with f 2 0 the maps x H-* Utf(x) and
x f- Vt f(x) are continuous.

PROOF (i). By the Feller property, p F-* Qt(, - ) is continuous. From Theorem 1.1
of [Dynkin, 1988a] or Proposition 2.7 of [Fitzsimmons, 1988] we know that
,u i_ Pg[Xt (1)2] is locally bounded. The result now follows from (3) and a standard
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uniform integrability argument.

(ii). The claim regarding Utf is a consequence of (2) and the Feller property of (Qt)t,o.
The claim regarding Vtf, now follows from (4) and part (i).

REMARK. In [Roelly-Coppoletta and Rouault, 1989] the process X is identified as
the solution to a martingale problem that resembles the martingale problem for X
except for the addition of an extra drift term, which the authors describe as represent-
ing an interactive immigration effect. For probability entrance laws that correspond to
pairs of the forn (v, 0) E M1 (E) x [0, co [, the measure v can be thought of in these
terms as giving the disposition of an initial immigration that puts mass into the system
and pushes the process away from the zero measure.
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