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Abstract: We consider a particular class of measure-valued Markov branching
processes that are constructed as "superprocesses" over some underlying Markov pro-
cess. Such a process X dies out almost surely, so we introduce various conditioning
schemes which keep X alive at large times. Under suitable hypotheses, which include
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ity measure v, we show that the conditional distribution of t7l Xt converges to that of
Zv as t -* a*, where Z is some strictly positive, real random variable.
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1. Introduction and Statement of Results

Let E be a locally compact, second countable, Hausdorff topological space.
Denote by M (E) the space of finite measures on E equipped with the topology of
weak convergence. Suppose that 4 = (Q, F,Ft,ot, 4t,P') is a Borel right Markov pro-
cess in E with semigroup (Pt) such that Pt 1 = 1, t 2 0.

From a more general construction in [Fitzsimmons, 1988] (see, also, [Dynkin,
1988]) we have that for each bounded, non-negative Borel function f: E - R the
integral equation

t

vt (x) = Ptf (x) - |P.(x,v2)ds0

has a unique solution vt = Vtf, and there exists a unique Markov semigroup, (Qt), on
M (E) for which

IQt(g, dv)e v(f) = exp (-i (Vtf)) (1.1)
for all such f. Moreover, (Qt) is the semigroup of an M (E)-valued right process
X = (W,GI Gpt.@t.tP9).

The first construction of this type appears in [Watanabe, 1968] for the case when
(P) is a Feller semigroup. We refer the reader to the Introduction of [Fitzsimmons,
1988] for a representative bibliographic selection from the extensive amount of work
that recently has been done in studying vanrous aspects of this and related classes of
measure-valued process.

Observe from (1.1) that

Pg[exp(- Xt(1))= exp(-g (l)X(l + Xt)f) (1.2)

for A . 0 and so

P [X =0] = exp(-g (l)t7l). (1.3)

It is also clear from (1.1) that the null measure is a trap for X. Combining these two
observations, we see that Xt = 0 for all t sufficiently large Pg-a.s.

Our aim in this paper is to study the long-term behaviour of X, on the rare event
that Xt . 0. More precisely, we introduce various conditioning r6gimes that ensure
that Xt . 0 and then obtain distributional limit theorems for atXt as t -e oo, where (at)
is some suitable family of constants. This type of result is familiar from the branching
process literature (see, for example, Theorem 9.2 of [Arthreya and Ney, 1972]).

For 0:. T < c* and ±* 0 define

P4[.] = PV[-IXS * O, O< s c T].
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From (1.3) we see that if 0 s t < T then JP'jG,, the restriction of PT to G,, is given by

PTIGtI = PR I p( (1)(T_t)-,) (1.4)
1- exp(-g (1) 'F)

We also want to construct for ji * 0 a probability Pg which has the intuitive interpre-
tation of P X[ *I 0, < s < ]. From (1.4) we find that if D is bounded and Gt-
measurable then

Iim .P#[ ] - ()-1 [DXt(l)
Now Proposition 2.7 of [Fitzsimmons, 1988] shows that the function v H-4 v (1) is
invariant for (Qt) (this also may be seen directly by differentiating both sides of (1.2)
at x = 0). Applying the observations on p.298 of [Sharpe, 1988] we see that under
suitable conditions on W (which are satisfied by the canonical set-up in [Fitzsimmons,
1988], for example) there does indeed exist a probability measure Pg on W such that

1P!Gt-I =I (1Y'lP9Xt(1)]. (1.5)

Moreover, under these conditions (W, G, Gt,et,Xt,P ) is a conservative right process
on the space (v e M(E): v * 0). In any case, for each t 2 0 we may use the right-
hand side of (1.5) to define a probability measure on Gt. We may unambiguously
refer to this measure as P! because for 0 < s . t the measure constructed in the same
manner but with t replaced by s coincides with the former measure restricted to Gs.
The measure P is constructed and characterised in [Roelly-Coppoletta and Rouault,
1989] for the case when (Pr) is Feller.

Recall that we are trying to find constants (at) such that under appropriate condi-
tioning atXt converges in distribution to some random finite measure Y as t - . To
get a feel for the sort of conditions that will be required for this to happen, suppose
that we have (at) such that atXt converges in distribution to some almost surely non-
zero random measure Y under P!. Then, for each bounded, continuous function
f: E -* R, we must have lim P2 [Xt (f) / Xt (1) = m (f), where m is the expectation

t

measure fnt the random probability measure Y()/ Y (1). Proposition 2.7 of [Fitzsim-
mons, 1988] gives that

P![Xt(f)/Xt(l)] = ()-1lPg[Xt(O]
- I(lY1.L P f.

So, at the very least, we will require some form of ergodic behaviour for the semi-
group (P,). With this in mind, we record the following hypotheses.
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HYPOTHESIS (I). There exists a probability measure v on E such that for each
bounded, continuous function f: E -4 R we have that Ptf -* v (f) uniformly on com-
pact subsets of E as t -e c*.

HYPOTHESIS (II). There exists a probability measure v on E such that PE (x, - ) -C v

for all t > 0 and x e E; and for each bounded, continuous function f: E -+ R we have
that P f -+ v (f) pointwise as t -4

We are now ready to state our main result.

THEOREM. Consider ± e M (E) \ (0). Under Hypothesis (I) or Hypothesis (II) the
following hold.

(i) For ,1 e [1,oo [ the distribution of t7l Xt under Ptt converges weakly as t -

to that of the random measure Zo v, where Z is a non-negative random variable
having density

Je-x,1=1,
X f_ j[e7X- e- x/(Vl)] 9> 1,

with respect to Lebesgue measure on [0, oo [.
(ii) The distribution of t-1 X under P! converges weakly as t - to that of the

random measure Z v, where Z.. is a non-negative random variable having den-
sity x t-* x ex with respect to Lebesgue measure on [ 0, oo [.

We give the proof of the theorem in §2 and then give some examples in §3 of
specific classes of processes which satisfy one or the other of the hypotheses.

The conclusion of the theorem should hold more generally. For instance, even if
(P) has more than one invariant probability measure it should be true that the conclu-
sion holds when v is an extremal invariant probability measure and xPt converges to
v. Unfortunately, we are unable to obtain a result of this generality. We do remark,
however, that the only place where Hypotheses I or II are used is in Lemma 2.3 to
ensure that

t

limt_.1t-1JpsP t_(P_ f -v (f))2 ds = 0,
0

and in particular special cases it may be possible to check this condition even when
Hypothesis I or II are not satisfied.

We end this section with some remarks about the connection between our results
and the so-called "cluster representation" of Xt. It is known that we may construct
on some probability space independent, identically distributed, non-zero random
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measures {YtY,Yg-t,...) and an independent Poisson random variable N(g,t) with
expectation ± (1)tCl such that under PR the distribution of Xt is that of F t) tI

(see, for example, Prop. I.L.1 of [El Karoui and Roelly-Coppoletta, 1987] or Lemma
1.4 of [Evans and Perkins, 1989]). Therefore, the distribution of Xt under Pg is just
the conditional distribution of N Y4t)YAt given N (., t) . 0. An easy calculation
shows that conditional on N (p, t) . 0 the distribution of N (p, t) converges weakly to
the point mass at 1 as t -- oo. We may thus conclude from part (i) of the Theorem
with J = 1 that t7l yL t converges in distribution to Z1 v as t -* c*.
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2. Proof of the Theorem

LEMMA 2.1. Consider ± e M (E) \ (0).
(i) For [ e [1, the distribution of t-1 Xt (1) under PAj converges weakly as t - oo

to that of Z.

(ii) The distribution of t7lX t(1) under PR converges weakly as t -- to that of Z...

PROOF. (i) First consider the case [3= 1. From (1.2) and (1.3) we see that for X > 0

P 9 [exp (-t7l Xt(1))] - exp (-p (1) A(1 + X)-1 t7l) - exp (-g (1) t7l)t ~~~~~~~~1- exp (-p (1) t71)
which converges to (1 + X)-1 as t - oo* As k e-+ (1 + X)-1 is the Laplace transform of
Z1 the result follows.

Now consider [3 e 1,oo[. From (1.4) and (1.2) we see that

P~t [exp(At7lXt(1))

= Pl [exp (-X lXt(l)){ 1 - exp (-Xt (1) [3-i1) }]
1 - exp(-g(1)J3''t7) J

-exp(-J.()X 1+ Xf)-exp(-g(1){Xkt-1 + ([3- 1-1 t-1) ( 1 +?+([-1li)
1 - exp(-g (1)3-1t7l)

-4 [3([3 - 1)-(1 + XF' {1 + . + ([ 1)- )-1

as t -* co, and this last expression is readily verified to be the Laplace transform of Zp.
(ii) From the above we find that

PE [ exp (-'t-1 Xt (1))] = limp, PIt [ exp (- t-1 Xt (1))]

= (1 + X)-2 exp (-,u (1) X t-1 (1 + X)-')
(1 + X)-2

as t -+ c, and this last expression is of course the Laplace transform of Z.-. O

LEMMA 2.2. Consider p - M (E) \ {0). For [3e ] 1, oo [ and any measurable function
G: [0,oo[ x M(E) -4 [0,=[ one has that

limsupt_ PKt [G (t, X)] < (1 - -1)-i limsupt,.. P#[G (t, Xe)]

PROOF. This is clear from (1.4), (1.5) and the inequality 1 - e-x < x, x > 0. 0
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LEMMA 2.3. Consider p e M (E) \ (0). Suppose that either Hypothesis (I) or
Hypothesis (II) holds. Then for each bounded, continuous function f: E - 1R,

limsupAt4.t7 PR I[ t (f) - v(0X(1))2] = 0.

PROOF. Observe from Proposition 2.7 of [Fitzsimmons, 1988] that

PR[(Xt(f - V(fXt(1))2 = (gP f-f (1)V(f))2
t

+ 2f PS (P_s f - v (f))2 ds = (t),
0

say.

Assume firstly that Hypothesis (I) holds. Since p P, converges weakly to p (1)v as
s -+ cc, for each e > 0 there exists M > 0 and a compact set K such that
pPs(K) > (1)(1 - e) for all s > M. Thus

t

limsupt ,.. - t17y(t) . limsupt_wp (1)( - e) t7l supXeK (Pt f (x) - v (f))2 ds
2 M

t

+ limsupt. . (1) e tjl ( supXE If (x) 1)2 ds 4ep (1) supXE If (x) 12,
M

and so limsupt Of1 y (t) = 0.

Assume now that Hypothesis (II) holds. As v Ps = v for all s > 0 we see that
t 1

limsupt..o O fv PS (Pt_- f-v (f))2 ds = limsupt_.. Jv ([Pt1_s) f-v (f)]2)ds (2.3.1)
0 0

-0,

by a change of variables and bounded convergence. Hence for each rn > 0
t

limt_4cw tfl PS_15 (Pt_s f - V (f))2 ( ) ds = 0 (2.3.2)

in v P.-measure (which is to say, in v-measure). If limsupt . tl y (t) > 0 then we can
find 8> 0, Ti > 0 and a sequence (tn) with tn -4 cc for which

p1n | PS t_s f - v (f))2 ds > 8, Vn. (2.3.3)

Now from (2.3.2) there exists a subsequence (un) c(tn) such that
un

li-,, un 1 Ps_n pt__s f-_v (f))2 )ds = 0
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v-a.e., and thus ± P.-a.e. also. Applying bounded convergence we obtain a contradic-
tion to (2.3.3). C

We can now complete the proof of the Theorem. From arguments almost identical
to those in Theorem 4.2 of [Kallenberg, 1983], it suffices to show that for each
bounded, continuous function f: E -e R we have that the distribution of t-1 Xt (f)
under P't (respectively, Pc) converges weakly as t -+ o to that of Zpv (f) (respec-
tively, Z,v (f)). Given Lemma 2.1, this will be accomplished if we can prove that the
distribution of X, (f) / Xt(1) under P¢t (respectively, P ) converges weakly as t -4 o

to the unit point mass at v (f).

Consider first of all part (i) with 3 = 1. Given £, 8 > 0 we have

lPg(lXt(f)/Xt(l) -V(fBl > ) < P9(lxt(f) - VMfXtMl) > Ste)
+ P (Xt(l) < 8t).

Observe that

PtW ( I Xt(f)-V (f) Xt(l) I> 8te) < a-2 C2 t-2 [ exp (-g (1) t7l) ]-1 pl ([Xt(f) -V (f)Xt(1) ]2);
and so, from Lemmas 2.3 and 2.1,

limsupt, PP(I Xt(f)/Xt(1) - v(f)I > e) ' Je-xdx.
0

As 8 is arbitrary, the result follows in this case.

Now consider part (ii). Given e, 8 > 0 we have

P. (I Xt(f)/Xt(l)-VM(fI > £) < P (lXt(0 /Xt(1)-V (f)iXt(1)"2> 81/2tl/2e)
+ Pg(Xt(1) < 8t).

Observe that

P A( IXt(f) / Xt(l)-v(f)lIXt(1)1/2 > 1/2 tl/2e£) < 571 C72 t7l (j) 1~lPg Xt (f) -v (f) Xt (l)]2);
and so, from Lemmas 2.3 and 2.1,

limsupt_..Pg(I Xt(0/Xt(1) - v(f) > E) < Jxexdx.
0

The desired result again follows.

Finally, consider part (i) with f e ] 1, c [. Given what we have shown in the pre-
vious paragraph, the result is immediate from Lemma 2.2.
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3. Some Examples

EXAMPLE 3.1. Suppose that E is discrete (and hence countable). If there exists a
probability measure v on E such that limt ...Pt (x, fy)) = v ({y)) for all x, y e E then
Hypothesis (I) holds.

EXAMPLE 3.2. Suppose that E is, in fact, compact and is also a topological Abelian
group. Suppose further that 4 is a Levy process on E, so that the measures
(Pt(O, ))uo form a continuous convolution semigroup. If we let E denote the dual of
E and write <, > for the canonical pairing between E and E, then it is well-known
that there exists a function 4: E -4 C such that P1 (0, dy) < y, %> = exp (-t (x)) for
all t > 0 and X e E (see, for example, Ch IV of [Parthasarathy, 1967]).

Assume that Re4)(x)> 0 when X .O. Then lim1.4.fPt(x,dy)< y,X> = 0 for

X * Og and so Pt (x, * ) converges weakly to v as t .-+ oo, where v is normalised Haar
measure. It is possible to metrise E with a translation invariant metric (for instance,
we can take any metric and then average over Haar measure). Let d(*,*) be such a
metric. Note that if f: E -+ R is continuous then

IPtf(x)-Ptf(y)I = IfPt(O,dz)[f(z-x)-f(z-y)]l
< sup{If(v)-f(w)I:d(v,w) = d(x,y))

and so the family of functions (Ptf}ItO is equicontinuous. Applying the Arzela-Ascoli
Theorem, we see that Pt f -+ v (f) uniformly as t -4 cc and hence Hypothesis (I) holds.

EXAMPLE 3.3. Suppose that E = R and 4 is a regular diffusion in natural scale. If 4
has finite speed measure m, then from Theorems V.50.11 and V.54.5 of [Rogers and
Williams, 1987] we see that Hypothesis (II) holds with v = m (- ) /m (1).

EXAMPLE 3.4. Suppose that E = Rd. Suppose that aii: Rd -4 R, 1 < i,j . d, and
b : Rd -* R, 1 < j . d are in C" (Rd) with bounded derivatives of all positive orders
and that the matrix (a1j (x)) is invertible and positive definite for all x. Then there is a
unique Feller semigroup (P1) with infinitesimal generator extending the differential

operator jajai1aj + ;jb aj. Moreover, for all x e Rd and t > 0 we have that

Pt (x, - ) is absolutely continuous with respect to Lebesgue measure.

Assume that there exists a smooth function p such that p > 0, p (x)dx = 1 and

0 = 2 ,aiaj (aij (x) p (x)) - . (bj (x) p (x)). Then the argument given in the proof

of Theorem 1.6 in [Herbst and Pitt, 1989] shows that Hypothesis (II) holds with
v (dx) = p (x) dx.
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