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Summary
For nonparametnrc regression estimation, when the unknown function belongs
to a Sobolev smoothness class, sharp risk bounds for integrated mean square
error have been found recently which improve on optimal rates of convergence
results. The key to these has been the fact that under normality of the errors,
the minimax linear estimator is asymptotically minimax in the class of all
estimators. We extend this result to the nonnormal case, when the noise
distribution is unknown. The pertaining lower asymptotic risk bound is
established, based on an analogy with a location model in the independent
identically distributed case. Attainment of the bound and its relation to
adaptive optimal smoothing are discussed.
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1. Introduction and main result. In the area of nonparametric curve
estimation, some attention has recently been devoted to asymptotically min-
imax estimation for integrated mean square error. In a class of problems, it
has been possible to improve the results on best obtainable rates of conver-
gence, by finding the exact asymptotic value of the minimax risk in the class
of all estimators. The constant involved represents the analog of Fisher's
bound for asymptotic variances, for those "ill-posed" curve estimation prob-
lems where fii-consistency does not obtain. The key original result is due
to Pinsker (1980); it concerned a filtering problem over ellipsoids in Hilbert
space. The notion of ellipsoid is important in this context since Sobolev
smoothness classes can be described in this way.

Consider observations

(1.1) Yi'n 9xna Xin E [0, 1] i-= .1 . n

where {gi} are independent random variables with zero expectation, and the
function f is to be estimated. The nonrandom design points Xin are assumed
to be generated by a density g on [0, 1] such that

X:in

(1.2) j 9(t)dt = i/n

where g is assumed to be continuous and positive on [0, 1]. Let L2 = L2(0, 1)
be the Hilbert space of square integrable functions on [0, 1], and let 11 * 11
denote the usual norm therein. Let, for natural m and f E L2, Dmf denote
the derivative of order m in the distributional sense, and let

W2m ={fEL2;DmfEL2}

be the corresponding Sobolev space on the unit interval. The nonparametric
class of functions to which f is assumed to belong is

W2m(P)= f E W2 ;i IDmff12 < P}

for given m and P > 0. We are interested in the limiting minimax risk

(1.3) A= liminf supn2m/(2m+l)Ef1nlt - f 12
nff
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(sup over f E W2 (P), inf over all estimators f). In the paper of Nussbaum
(1985) the case of normal (i with vanrance aT2 and uniform design (g 1)
was studied. The result was

(1.4) A= (m)o2(-r) pr

where

(1.5) ,y(m) = (2m + 1)1/(2m+l)(m/7(m + 1))2m/(2m+1)

is Pinsker's constant. The method of proof was to show that with the help of
some spline smoothing theory, the regression problem can be reduced to the
original filtering problem. Normality of the errors was essential there. For
some closely related results see Speckman (1985).
The present paper addresses the problem of a risk bound for unknown error
distribution. For the heuristics it is helpful to consider an analogy with
mean estimation. The sample mean of independent identically distributed
observations with mean t9

(1.6) Yi =, +di, i=1..,

is an asymptotically efficient estimator of 9 when (A) the errors (i and
N(O, r2), (B) when, loosely speaking, the distribution of the errors is un-
known. The result (B) is due to the fact that the sample mean is a linear
functional of the empirical distribution function, see Levit (1975). It will be
instructive first to formulate the risk bound for the mean in the "semipara-
metric" form, where the distribution of the errors (i appears as an infinite
dimensional nuisance parameter, varying in a shrinking Hellinger neighbor-
hood of some "central" measure Qo. Let for distributions Qo, Q

H(Qo, Q) = (J((dQo)1/2 - (dQ)1/2)2)1/2
be the Hellinger distance. Consider a sequence mn such that

n-+ 0, n1/2 -+ ° as n -+ oo.

Introduce the set of probability measures on the real line

(1.7) 4
H {Q; H(Qo,Q) < rn, EQ =O}.
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The central measure is assumed to have zero expectation, finite second mo-
ment, and to fulfill the following regularity condition: if Qot denotes the
shifted measure Qot(*) = Qo(- + t) then

(1.8) H(Qot, Qo) = 0(t) as t -* 0.

We can now formulate a lower asymptotic risk bound, where the infimum is
taken over all estimators t9 of the mean t9 at sample size n.

PROPOSITION 1. Assume that in model (1.6), the (i are independent
with distribution Q E Q H, where the central measure Qo has zero expecta-
tion, second moment a2 and fulfills (1.8). Then for all 90 we have

limrinf inf sup n E -Qn 9)2 2
n v Itj-t9doj<rn,QEQH

The sample mean Yn will indeed attain this bound when the appropriate
uniform convergence of its variance is ensured, e.g. by a moment condition.
Suppose that both Qo and Q are in the set

(1.9) Q c = {Q; EQ(4 < c}

for some c > 0. Then we have (compare relation (3.1) below)

Et,Q,n(n _ l9)2 _ 2as n-+ o

uniformly over (9, Q): Ii -t9oI < -rn, Q EQ Hn4Q M. This means that the risk
bound of proposition 1 is sharp and that the sample mean is asymptotically
efficient, provided that the lower bound holds also on the narrowed parameter
set.

PROPOSITION 2. If, in addition, Qo is in a class PM for some c > 0
then

limrinf sup n Ed Qn(_
I91t9-t9ol<rn,QEfQHnQm

As the bound is attained by Yn, proposition 2 holds relative to the class
of estimators t9 which do not depend on Qo. The shrinking Hellinger ball

4



model is appropriate when investigating the sample mean as an estimator
of the mean functional of a distribution (Levit (1975), see also Ibragimov,
Khasminski (1981), chap. 4.1). Proposition 2 is in fact a reformulation of
these results for the "parameter + noise" model (1.6) (note the condition
EQF = 0 in (1.7)). This is a convenient way of describing the efficiency of
the sample mean when the error distribution is unknown, in analogy to the
case of normal errors. Proposition 2 can be extended to parametric linear
regression, stating efficiency of the Gauss-Markov linear estimator. However
from studies in the context of robustness (e.g. Beran (1982)) one particular
feature has emanated: the model giving meaningful results here is one of
nonidentically distributed errors. The distributions of (i will still vary in
a small neighborhood of some (unknown) central measure Qo, but will in
general be different.
The Sobolev class model can be regarded as an extended or nearly linear
regression model. Define r = 1/(2m + 1); then the normalizing factor of the
risk in (1.3) is nlr. The shrinking rate of the distribution neighborhoods to
define will be tied to this factor. Let 'r, be a sequence such that

(1.10) -i-i, -+ 0, nn(lr)/2 -* o as n -+ oo.

Consider a central measure QO as above and a neighborhood Qff, defined in
terms of the new n (see (1.7)). We will also consider a "moment neighbor-
hood" QM containing Qo. Denote the distribution of (, n,n) in model
(1.1) by II, and define a set of product measures

Q*n= {®TZiQi; Qi E QH n 4Em i 1,...,n}.

The distribution model for the noise in (1.1) will be "II E Q n We study
the asymptotic minimax risk

(1.11) A = liminfinfsupn 'Ef,n,nllf-f112

Here the supremum is taken over (f, II) E W2 (P) x Q *n, while the infimum
is taken over all estimators f at sample size n which may depend on, m, P
and Qo. Our main result is as follows.

THEOREM 1. Suppose that in the model (1.1) the design points are gen-
erated according to (1.2), and the central measure defining the neighborhood
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Q*1 fulfills the conditions of proposition 2. Then

Pi > (m(a'd)IPrpr
where c72 = EQ.92, d = f0' g-(x)dx.
This represents the desired extension of the result (1.4) to the case of un-
known error distribution. We also claim that this risk bound is sharp, and
we will provide evidence on the basis of a first two moments argument for
linear estimators (section 3).

An extension to the case of weighted L2-loss can be given as follows. Let
w be a continuous and positive function on [0, 1], and consider a loss given
by

(1.12) J w(x)(f(x) -f(X))2dx.

Such a loss arises naturally when one considers the "design loss"
n-1 Z-l(f(x) -f(x,))2 which may be viewed as a discrete approximation
to (1.12) for w = g.

THEOREM 2. Let A, be the analog of (1.11) when the loss (1.12) is
substituted for j1f- fj12. Then, under the conditions of theorem 1,

.A" > Y(m)(a2d)lrpr,
where d = fo g-I (x)wl+l/2m(x)dx.
We note the following implications for experimental design and robustness.
REMARK 1. Optimal designs of nonparametric regression experiments have
been studied for a variety for settings and criteria. For the asymptotic L2-risk
we mention Agarwal, Studden (1980), MUller (1984); for a result involving
Sobolev classes see Spruill (1984). As the present bound is sharp for given
design, it is of interest to try to minimize it further. For given w, we obtain
with a = (2m + 1)/4m from Jensen's inequality

d = (g(x)w-'(x))y1wQ(x)dx > (Jw(x)dx)2

so that g = w'/J fwG is optimal. In particular, for L2-loss (w 1) the
uniform design is best. On the other hand, when g and w are tied by w = g
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("design loss") then d = 0 is achieved in the limit by taking all x, equal, which
is in agreement with intuition since the rate of convergence then changes.

REMARK 2. The Hellinger neighborhood model for the noise distribution
adopted here resembles the light contamination neighborhoods occurring in
the robustness study of Beran (1981). The crucial difference is the additional
moment restriction (1.9) which ensures robustness of the sample mean (when
robustness is given the asymptotic minimax definition). The analogy with
the location model exploited here quite naturally suggests an asymptotic
minimax theory for robust smoothing, based on infinitesimal distribution
neighborhoods expressing heavier contamination (cp. Millar (1983)).

The problem of best possible estimation in terms of optimal rates of con-
vergence has been extensively investigated (Ibragimov, Khasminski (1982),
Stone (1982), Birge (1983)). In our study on the level of constants a global
error criterion is adopted (L2-loss); for comparable recent results on func-
tionals (like the value of f at a point) see Ibragimov, Khasminski (1984),
Donoho and Liu (1988).

In section 2, we review the background of the risk evaluation (1.4) in the
normal case. In section 3 we argue that our new bounds are attainable, and
discuss some recent results indicating that this should be possible adaptively.
Refined bounds are the topic of section 4, and proofs are in section 5. An
appendix contains a short proof of an auxiliary result related to the Hajek-Le
Cam asymptotic minimax theorem.
The following notations are adopted. f f means integral with respect to
Lebesgue measure; a - b means a = b(l + o(l)).
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2. Some background on L2-optimal smoothing. For additional insight,
we try to elucidate why, under normality, the minimax linear estimator is
asymptotically overall minimax (Pinsker (1980)). This task is facilitated by
a related minimax identity due to Pilz (1986). Suppose an n-dimensional
observed random vector r has expectation t9 and covariance matrix E, where
V9 E e, and e is known to be a compact subset of Rn which is symmetric
about the origin. Consider the class of linear estimators of t9: VB =Bq,
where B is a matrix of fixed coefficients. Their risk under squared Eucidean
loss is

(2.1) E IIt9B -112 = tr[(I - B)I9'(I - B')] + tr[BEB1 : R(B, VW').

Along with "minimax" or "Bayesian" we shall employ the terms "mimimax
(or Bayesian) linear", meaning the respective extremal property within this
special class of estimators. Let v be an arbitrary prior distribution on E,
and consider the mixed risk of 1B. It can be expressed as

(2.2) EvR(B,i)9') = R(B,MV), Mu,= EL,9'.

Let M be the set of all second moment matrices M, when v is concentrated
on E). Clearly (2.2) implies

sup R(B, t9t') = sup R(B, M).
t96EE MEM

According to the result of Pilz (1986) there is a saddle point (B*, M*) such
that

R(B*, M*) = sup R(B*, h9') = inf R(B, M*).
9Ee B

Hence VB iS m max hnear, and it is Bayesian hnear for a prior on E
having second moment matrix M* (a least favorable prior). If 3B- were also
Bayesian with respect to such a prior it would be minimax. But if rq is normal
then 19B* is Bayesian with respect to a normal pnor N(On, M*) on R . This
prior is not concentrated on G but if in some asymptotic setting it tends to
concentrate on E) then 9B can be expected to be nearly minimax.

In the ellipsoid framework of Pinsker (1980) e is e.g. a set
n

(2.3a) Om(P) = I{ E IRn; Ej aj1t <P} aj = (lrj)`, j =l,...,n
j=l
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while i7 has a structure

(2.3b) =90 + n-/2 j= 1,...n,

(, being independent normal with variance a2. In the saddle point pair
(B*, M*) both matrices are diagonal with respective diagonal elements

(2.4a) b b(jt), m;= n o2/(jt), j = 1,...,n

where the functions b, /3 are defined on (0, oo) by

(2.4b) b(x) = (1 - (7rx)m)+, /(x) = b(x)(1 - b(x)),
and t > 0 is chosen such that Z=_ ajm* = P. This latter identity implies
that for n - oo, N(On, M*) is asymptotically concentrated on etm(P') for
any P' > P. Then R(B*, M*) is asymptotic to the minimax risk over E)tm(P).
From (2.1) and (2.4) we obtain

n
(2.5) R(B*, M*) = n-o2ZE b.

j=1

The above choice of t implies

(2.6) t - n-r(o72/P)r,, 2m+1 = Jb(1 - b).

We then obtain from (2.5) and (1.5)

(2.7) R(B* M*) - (a2/n)l-rpr,,-l Jb = (o2/n)l rprY(m)

For recent results on more general sets ( and an interesting geometric per-
spective see Donoho, Macgibbon and Liu (1988).

Consider now the Sobolev class regression model (1.1) with g 1 and normal
noise (j with variance a2. In Speckman (1985) and Nussbaum (1985) it was
shown how to use an orthogonal transformation inlRn (a spline analog of the
Fourier transform on [0, 1]) to reduce the model to one of (essentially) the
type (2.3). The risk bound (1.4) is then equivalent to Pinsker's (1980) result.

For the nonnormal errors case, the basic reasoning is that a smooth function
can be well approximated by one which is constant on small intervals. The
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problem would be then to estimate a "local" mean, in the presence of random
noise (j. When the gj are independently distributed with given, possibly non-
normal distribution Qo one can apply maximum likelihood theory to find a
risk bound which involves the Fisher information of Qo in the location prob-
lem. Such a result was obtained in Golubev (1984). However our present goal
is to emulate the efficiency of the sample mean as described by proposition
2. We establish that the same risk bound as in the normal case is valid for a
large class of distributions Qo, when a small Hellinger neighborhood around
QO is taken into account.
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3. Attainability. A complete proof is beyond the scope of this paper,
but we provide theoretical backilg for our claim that the bounds are indeed
attainable.

3.1. Consider first the regression model (1.1) with g _ 1 and normal noise (i
with variance a2. From the previous section it is clear that the risk bound
(1.4) is attained by the minimax linear estimator, given in the frequency
domain by coefficients b* (see (2.4a)). In the "time domain" (1.1) this corre-
sponds to a certain linear spline smoothing procedure. In (2.4), the function
b can be interpreted as a filter shape, while t serves as a smoothing parame-
ter. The relation (2.6) gives the appropriate choice of t, in dependence on P
and a2

3.2. In the nonnormal case, when the noise in (1.1) is uncorrelated with
zero expectation and variance a2, the risk behaviour of the minimax linear
smoothing spline estimator of 3.1 remains unchanged. Indeed, the risk of
linear estimators under quadratic loss depends only on the first two moments
of the observations, cp. (2.1). Now, the actual noise distribution model in
theorem 1 ensures that var . oa2. Indeed for Q E [H n Q M we have

(3.1) IEQx2 - 212 _ 2d(Q - Qo)12

< (I x4((dQ) /2 + (dQo)112))2)H2(Qo0 Q) < 4cH2(Qo, Q) = o(l).
Thus it is obvious that the bound of theorem 1 is attainable, for g 1 and
known P, o2r

3.3. Speckman (1985) established that the case of general design density g
in (1.2) can be treated as in 3.2, if the aj defining the ellipsoid are properly
adjusted. As a result, we obtain attainability in theorem 2 for w = g, still
on the basis of the minimax linear smoothing spline. The general case of
theorem 2, with w, P, CT2 known, can also be covered by linear estimators,
but we invoke here the nonlinear (adaptive) smoother of point 3.6 below.
3.4. Up to now a2, i.e. the variance of the "central measure" Qo, has been
assumed known. But the basic motivation of the present paper is to give a
risk bound for unknown noise distribution. As (2.6) shows, a2 enters in the
smoothing (or bandwidth) parameter of the optimal procedure, along with
P. Thus an unknwon C2 leads to a similar problem as an unknown P, namely
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adaptive (or automatic) selection of the smoothing parameter based on the
sample. However, when P is known, the plug-in type procedure based on an
estimate of a2 is relatively easy to treat theoretically. In the present model
a2can be estimated with parametric convergence rate, see Rice (1984), Li
(1985).

3.5. In the problem of adaptive smoothing parameter selection there has
been much progress recently; for a survey see Marron (1988). In the present
context one could ask for estimators which attain the bound of theorem 1
without depending on P and a2. In fact any combination of the filter shape b
(see (2.4)) with a known optimal bandwidth selector such as cross-validation,
empirical risk minimization or plug-in (estimating a2 and IIDmf 112) could be
considered. Note that the decision-theoretic risk and the minimax aspect are
not at the center of many of the recent investigations (Rice (1984), Hardle
and Marron (1985), Li (1986), Marron (1987)). Earlier results on risk perfor-
mance of the plug-in method are due to Woodrofe (1970), Nadaraya (1974)
(for density estimation, without the minimax aspect). Speckman (1985)
came close to proving minimax risk optimality of the appropriate smoothing
spline estimator with bandwidth chosen by generalized cross-validation (in
the setting of 3.1).

3.6. For our attainment question, on the adaptive level, the most relevant re-
sult is in Golubev (1987). For a Gaussian model similar to (2.3), with known
a2 and m but unknown P, it is proved that the bound (2.7) is attainable by
an adaptive smoother with plug-in type bandwidth selection. Actually the
estimator is a refinement based on the following idea. Return to the "time
domain", i.e. to the regression model (1.1) on [0,1]. Let {A} = A be a
partition of [0, 1] into intervals A of equal length. When f E W2m(P) then
the restriction of f to any A E A is in a Sobolev class on that interval, i.e.

(3.2) JA(Dmf)2 < PA, A E A, Z PA = P.

Here the PA are unknown even when P is known. Now, on each A use
an adaptive estimator rescaled to that interval. The resulting estimator on
[0,1] will then be adaptive also with respect to P. Furthermore, when the
length of the A's tends to zero sufficiently slowly this estimator wull also be
risk optimal with respect to weighted L2-loss (1.12), even though it does not
depend on w. As this result holds under normality, the above arguments 3.2,
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3.3 suggest that the bound of theorem 2 is attained by adaptive estimators,
where at most an additional moment assumption for the noise would come
into play.

The "locally adaptive" procedure described is optimal in an even stronger
sense, see section 4.2 below. The idea of a locally varying adaptive bandwidth
choice is also developed by MUller and Stadtmiiller (1987).

3.7. The question of adaptivity with respect to the degree of smoothness m
is also of interest. For minimax rate optimality, the problem was raised by
Stone (1982) and solved by Hairdle and Marron (1985). Simultaneous choice
of kernel order and bandwidth by cross-validation was treated by Hall and
Marron (1988). We briefly review here the method of adaptive estimation
which has been developed by Efroimovich and Pinsker (1985) and indepen-
dently by Rudzkis (1985). In the ellipsoid model (2.3) one could ask for
the linear estimator }B which at a particular V E E)m(P) minimizes the risk
R(B, tO'); call its coefficient matrix B(t9). In what folows it suffices to con-
sider only matrices B of diagonal kind, i.e. given by a set of coefficients bj,
j 1, ... n. Then B(t) is given by

(3.3) b3(9) = t92/(n-1o2 + 2), j = 1, ... , n.

If the unknown b3(9) could be determined from the data, the resulting esti-
mator might asymptotically dominate any linear estimator, and hence attain
the minimax bound. Plugging in the 71- for t9 in (3.3) does not yield the
desired result. Consider now a restriction on the set of coefficients and the
corresponding minimizer B(9) of R(B, W9'), such that (A) the set is wide
enough so that R(B(V),VW') -. R(B(d),t9t') as n -* o, (B) it is narrow
enough to ensure that B(t9) is estimable. A solution is to require that bj
as a function of j is constant between indices k2, k = 1,2, ... The resulting
estimator of i9 is shown to be asymptotically minimax over any ellipsoid E)
from a large class; in particular in the Sobolev class model it is adaptive with
respect to m and P. For further results on this type of smoothers in density
estimation see Efroimovich (1985), Kazbaras (1986). Clearly the method is
applicable in principle also in the present regression model.
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4. Localized bounds. In theorems 1 and 2 the supremum with respect
to the regression function f is taken with respect to the whole Sobolev class
W2 (P). It is compelling to consider some shrinking neighborhood setting
also here, in analogy to the noise distribution model adopted. A localization
can be achieved in two ways.

4.1. Let fo be some function serving as a "center of localization" . The bound
of theorem 2 remains valid when the supremum with respect to f is taken or

(4.1) {f; f - fo E W2?(P), lf - foll . rTn}
where rn fulfills (1.10). As usual fo may be assumed known for the lower risk
bound. The proof is continued in section 5.4. Attainment over a set (4.1),
with fo unknown, can be shown if fo is of higher smoothness than f, e.g.
if fo E W2r+1. To see this, consider the analogous problem in the ellipsoid
model (2.3). Suppose that instead of (2.3b) we have

n

=7j= oj+ 9j + nlt2, = 71,... ,n Z j2(m+l),02. < 00.
j=l

In the optimal filter (2.4a), replace the first [nr/ log n] coefficients bX by 1. In
this way the influence of the ¶9oj in the worst case asymptotic risk is made
negligible.

4.2. Another possibility consists in narrowing the class W2m(P) as follows.
Observe that the prior distribution on f constructed in section 5.3 is not
only asymptotically concentrated on W2m(P) but, more specifically, on the
ellipsoidal shell {f; P < jjDmf 12 < P}, for some 6 < 1. One might now pass
to subintervals A of [0, 1] and ellipsoidal shells on each of them, possibly with
different radii PA (compare relation (3.2)). Refinement of the partition leads
to a priori sets for f which prescribe a given appromxmate mass distribution of
the squared m-th derivative on [0, 1]. Let v be a continuous positive function,
and rn* be a sequence: rn -+ 0, Trn*nr/2 00. Consider a class

Bn(V) = {f E W2; sup ((Dmf)2 _ v)l < r*}.
xE10,1] °

Let A, be the analog of A,,, when W2m(P) is substituted by Bn(v); then

(4.2) W,V > lY(m)O2(1-r) J Vrr-1l.

14



The proof of sketched in section 5.4. For Gaussian noise and continuous
observations, this bound and its attainability for unknown w and v have
been established by Golubev (1987). The estimator employed is described in
section 3.6.
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5. Proofs.

5. 1. Analytic preliminaries. For establishing the lower risk bound it is conve-
nient to restrict the parameter space by boundary conditions on the unknown
f. Consider the Sobolev space W2m with boundary conditions on [0, 1]:

W2m_= {f E W2; (D f)(0) = (D f)() =0 k= 0,.. .,m -1;
it is a Hilbert subspace of W2m with respect to the norm (lf 112 + IlDmf 112)1/2.
We will make use of the results on the spectral theory of differential operators,
see e.g. Agmon (1968). There exists a basis pj, j = 1, 2, ... in W2m such that,
if (.,.) denotes the inner product in L2(0, 1),

(9ij) = 6,,, (Dmfi,Dmp) = Aj,i,j=j 1,2,.

where
O < A1 <A2 <

and the asymptotics of the eigenvalues A. is given by

(5.1) A, , (,Xj)22m j-

The boundary conditions ensure that, when the functions y , are continued
by zero outside [0, 1], these functions belong to the Sobolev space of order
m on any interval containing [0,1]. Furthermore, this property allows the

0

construction of another orthogonal system in W2I which is obtained by a
change of scale. Fix a natural number q; later we will let q tend to infinity
with n. Define functions

(5.2) (Pkq(x) = q/2pj(qx- k+ 1), k =1, ..., q, j = 1,2.

Each function (yjkq is in W2m, has support [(k - 1)q'1, kq-1], and

(5.3) (Pikq, 'jkq) =-ij, (DmCikq, DmCpjkq) = q2mAj,ij.

Furthermore, fix a natural s, and define W(q, s, P) as the intersection of the
linear span of Yjkq, j-1 ... , s k=1,..., q with W2m(P). From (5.3) we
obtain that for f E W(q, s,P)

J q

(5.4) IlDm fi12 = E q2mA((Pjk f)2
j=1 k=1
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and obviously W(q, s,P) is nonempty. Restricting f to this set, we reduce
the problem to the one of estimating the "local" Fourier coefficients fjkq =
(,Ojkq, f). The indices q and n wil frequently be dropped from notation in
the sequel.
The functions Pjk are orthonormal in L2(0, 1); we have to take into account
that our observation model is discrete. Observe that, under the assumptions
made on the regression design {x }, the Kolmogorov distance between the
distribution function G having density g and its "empirical" counterpart Gn
(assigning mass n1I to xj) is O(n'1). The following statement then can be
proved in the same manner as lemma 4.2. (i) of Cox (1984).

LEMMA 1. Let fi, f2 be functions from W2m. Then

if f1f2d(G, - G)j < Cn-1(IIfiI + IIDmf1ll) (11f211 + tIDmf2jI)
where C does not depend on fi, f2, n.

Define gk= g(kq-1), k = 1, ... ,q. In the following result concerning the
functions pjk, j < s, k < q, the number s wil remain fixed until the last
step in the proof of theorem 1.

LEMMA 2. Suppose that q -+ oo, q2m/n 0. Then

gk J kPiWjkdGn = 6ij + o(l)

uniformly over i, j < s, k < q.

PROOF. From (5.3) it follows that

IlPjkll + lIDmWjkll = 1 + qmAl/2
Furthermore, the assumptions on g imply that

i1(J 7ikc%kg) = (Pik, Pjk) + o(l)

uniformly over k < q and all i, j. The result follows now from lemma 1.
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5.2. Local regression models. By restricting f to the subset W(q, s, P) of the
Sobolev class W2m(P), we achieve that the observations yi have a structure

J

(5.5) Yi= Z pk(Xi)fjk + gi, = 1,... , n
j1l

where k above is uniquely defined by i E Q.(k) {i; xi E q1'(k-1, k]}. This
may be construed as a collection of q linear regression models, each account-
ing for observations in the interval q-'(k - 1, k] and having s parameters.
The parameters fjk satisfy (cp. (5.4))

q

E q2mAjf2k < P
j=1 k=1

while the risk can now be bounded by
q s

(5.6) Ef - fit12 > E ZE -f,k)2-
k=1 j=1

At this point, let us specify q by

q = [KnrI,
where K, assumed fixed as well as s, will be selected later. Let us rescale
the parameter vector in each local model by the propert normalizing factor
which in view of lemma 2 is (ngk)1/2. Define vectors

hk = (ngk)"(f2k),=1.
i= (ngk "2(pk(x)),=1.,, i E

Then (5.5) transforms to

(5.7) yi 'h+ti E W

for k 1,... , q. Here the disturbance distributions are assumed to be in
n fl Q and are as yet unspecified. We wil now select them in accor-

dance with the method of least favorable parametric subfamilies. Consider a
bounded function ,onR such that, if u is the identity map in R,

J idQo=O, JuDQO =1.
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For h E R, let Qj(h) be the measure defined by

dQj(h) = (1 + h't.j/)dQo.
For the vector e3- we find the bound

(5.8) =| O(n-'q sup sup jp1(x)12) = (nrl)
j7-<k x

Thus, when -,, satisfies (1.10), we infer that for IIh112 < r12fnl-r and sufficiently
large n all Qi(h) are probability measures. Let Q,(h) be the shifted measure

Qt(h)(-) = Qj(h)(. + y-h).

LEMMA 3. Let r, be the sequence occurring in the definition of 4 *, and
tn be such that tn -- x, tn = o(rnn(-r)/2) as n o-+ o. Then for sufficiently
large n, the set of measures {Q,(h); lihhl < tn, i E {1,. .. ,n} is contained in
Qn n Qc

PROOF. For the expectation we have

JudQ*(h) = JudQj(h) - h= 0.
Let Q!*(h) be the shifted measure Qo(.+s'h). Then for the Hellinger distance
we have

(5.9) H(Q*(h), Qo) < H(Q*(h), Q**(h)) + H(Q*(h), Qo).
Here the first term on the right hand side equals H(Qj(h), Qo) and can be
bounded by

(5.10) O(31h) =O(tn(r-l)/2) =(mn)

in view of (5.8). The second term on the right hand side of (5.9) can be
bounded similarly in view of condition (1.8). Hence all Q, (h) are in Qff , for
n sufficiently large, hihil < tn. For the fourth moment we find

Ju4dQ, (h) = J(u-y5h)4(1 + s3h/)dQo

= J u4dQo + O(y3h)
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so that all Q (h) are in Q M for sufficiently large n. 0

Now, in (5.7), assume that IIhkII < t,, and that distr(&,) = Q!(hk). Lemma 3
guarantees that this is compatible with the initial errors distribution model
'II E Q4" . It is equivalent to the model

(5.11) distr(y,) = Qi(hk), i E 9I(k)

for k = 1, . . . , q, where the parameters hk = (hjk)1. are now restricted
by

(5.12)
J q

sup Iihklt < tn, E E < P.
k5q 3j=l k=l

Our next goal is to establish that each of the k distributional models (5.11)
converges to a normal shift model (local asymptotic normality). To achieve
uniformity, we let k(n) be an arbitrary sequence 1 < k(n) < q and consider
the logarithmic likelihood ratio in the k(n)-th model of (5.11) (for hypothesis
h = 0)

A(h) = E log(1 +9h4'(&)),
iEZ^(k(n))

where (i are independent with distribution Qo. In the same
O' and an R2-valued random variable L by

= (Eb2(Q1))-1, L = SI)
iE!(k(n))

LEMMA 4. The random vector L converges in distribution
ate normal N(OJ, Ca2rI8), and for each h E R" we have

A(h) - h'L = -IlhI12a 2/2 + op(l).

PROOF. First note that lemma 2 and (5.10) imply

5 ( h)2 __+ lh112,
iEQF(k(n))

setting, define

to a multivari-

sup (o'h)2 = o(1).
iEQf(k(n))

The proof is concluded via the expansion

log(1 + t) = t- t2/2 + o(t2)
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and the Lindeberg-Feller theorem. 0

Note that the function 4'(x) can be selected to approximate x/ao2 in the
norm of L2(Qo); then g2 approximates a2. The above lemma means that
each model (5.11) converges to {N(h,oc!I8), h E R"} through an arbitrary
sequence k = k(n).

5.9. Main argument of proof. We shall introduce a prior distribution on the
parameter in the collection of "local" models (5.11). The hk will be inde-
pendent identically distributed random variables such that the prior measure
tends to concentrate on the space gi+ven by the restrictions (5.12). Since the
models (5.11) are asymptotically normal and independent, we can evaluate
the posterior risk by the general result proved in the appendix.
Let 1? be the set in Rq" defined by the inequalities (5.12).

LEMMA 5. Let v be a measure on JR5 with bounded support fulfilling

(5.13) A Xij2dv(x) < P/K'Ird.3.8

Let Vq = v ® ... 0 v (q-fold). Then

vq(7Z) __ 1, n -4 oo.

PROOF. The first inequality of (5.12) is ensured by t,n-00o and the bounded
support of v. For the second, note that

q
q2mn- - q_l,Kl/r qZ1 I =g d.

k=1

Hence the right hand side has expectation bounded by &P, 6 < 1 for n large
enough, while its variance tends to zero as n -- oo. 0

In the collection of models (5.11) the parameter is (h1, ..., hq); call it now h.
Consider a loss for an estimate h

q
h- A] Z IIhk- hk k2gj

k=1
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The arguments connected with (5.6) and (5.7) imply for the asymptotic min-
imax risk

(5.14) A > lim inf inf sup n-TEhlh-hl2.
'~h LEIZ

LEMMA 6. Let v be a measure as in lemma 5. Then

n-r sup J -_j2dv(h) -+O, n- oo
9EZ RC

PROOF. For g E R we have

Ig-LJ2<.2jgI2+ 21Aj2,
19-hi2<'112 r-i

n-rjg12< (q2mnr lAl)-lp 0(1), n oo.

Hence it suffices to prove

J(R +q-ql i2)dv'(L) 0, n oo.

This however follows immediately from g9k1 = 0(1) and lemma 5.

PROOF OF THEOREM 1. Let f> ju be some number, where p is from
(2.6), and specify now K as

KI-1 = (a2d/P)rsA.
We select the prior measure v as a distribution on RW finite support, zero
mean and diagonal covariance matrix M with diagonal elements oa23(j/s),
= 1,... ,s, where the function ,3 is from (2.4b). Let us demonstrate that

the condition of lemma 5 is fulfilled if s is large enough. Indeed we have for
s -+ oo, in view of the eigenvalue asymptotics (5.1)

AjCa2#(j/S) _,a2S2,,+l |(X)2,0(xd
a=1

- a,.2,s/r J b(l-b) = (s)/
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where (2.6) has been used. On the other hand

PIKl/rd = a2(S )I/r

so that (5.13) is fulfilled.
Note that the right hand side of (5.14) is not changed if the infimum is taken
only over estimators h with values in 1?, since IZ is closed and convex. We
then obtain from lemma 6

, > infn Ehih-h d -o(l), n -4 oo.

The product structure of the model implies that the above Bayes nsk is a
sum of Bayes risks in the q submodels (5.11). We obtain

A > (n E g-4) min inf Eh,k I h -hhI2dv(h) + o(l)
k1 k<q hJ

where Eh,k denotes expectation in the k-th model (5.11), for h E R. Take a
sequence k(n) where mink<q is attained; invoke lemma 4 and theorem Al in
the appendix for obtaining

A >IVd72, 00/s)( + OWjSW)-
j=l

> (r2d)l-rPrvl 8~E1 b(jls).

The proof of theorem 1 is now completed by letting s -* oo, p- , -2) 2

and recalling y(m) =- -1 f b (cp. (2.7)).

PROOF OF THEOREM 2. Let a E (0,1), and consider the problem of esti-
mating f from n observations (1.1) for a loss f0 (j- f)2 and prior information
foa(Dmf)2 < P. Let Aa be the appropriate analog of (1.11). By a change
of sclae, a bound for .a may be obtained from theorem 1 as follows. Define
F(x) = f(ax), x E (0, 1); then

(Dmf)2 = a2m+lIDmFII2, j(f - f)2 = aIF - Fl!2
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The proof of theorem 1 shows that, for estimating F, observations outside
[0, 1] may be disregarded; hence the relevant observation number is i ^

n fo g. Note that for theorem 1 to be valid, the regression design need not
satisfy (1.2) exactly but only the condition mentioned before lemma 1. Then
the design density for estimating F is

9(x) = ag(ax)/ J 9, x E [0, 1].

Now theorem 1 implies

(5.15) Aa > lim(n/h)1-ray(m)(of2j 4-l)l-r(a2m-lP)r

ra
= y(m)(a2 Jg-)-rPr.

Let now a-' be natural, {A} = A be a partition of [0,1] into intervals A of
length a, WA = infEA w(x) and PA be posit'ive numbers with Z PA= P. We
have

j w(f f)2 > EWA A(f -f)
Furthermore, to estimate A, from below, we restrict f to the set of functions
fulfiliing fA(Dmf)2 < PA, all A E A. Analogously to (5.15) it can be shown
that

/\w >! 7(m) E: WA(a2 g|91)1 A

For PA = PdA E dA, dA 1+1/2m A -1 we obtain

A.w >.(m)(O2Z dA)l-rpr.

For a -O 0 we have FI dA -+ d.

5.4. The localized lower bounds. For the result 4.1, note that the set
W(q, s, P) defined in section 5.1 is contained in an L2-ball of radius Q(nrmr).
Indeed for fixed s and f E W(q, s, P) we have in view of (5.4)

a q

lif 112 = ((Pjkqi f)2 < Ajlq -2mIjDmf 112 = O(n-2mr)
j=1 k=1
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For the bound (4.2), suppose first that the design density g is smooth, w 1
and use the prior of section 5.3, but with (5.13) valid as an equality. This.
prior in fact asymptotically concentrates on I3n(v) for v = g-1P/d. (To deal
with the supremum involved, use the methods for stochastic processes on
[0, 1].) The case of general v and g however requires a nonuniform scaling of
the local basis functions Vjkq in (5.2). Let g* be the density proportional to
(gv)r, and Jkq, k 1,... , q be intervals such that

gJg* q-l k = 11 q

Each sjk in (5.2) is now scaled so that it has support Jkq. This alows a
proof of the bound (4.2) with essentially the previous argument.
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6. Appendix: A decision theoretic result. The Hajek-Le Cam bound
which refers to the minimax risk in a weakly convergent sequence of exper-
iments, cannot be utilized here. The reason is that one has to evaluate a
proper Bayes risk rather than a minimax nsk, in an asymptotically normal
model (5.11). An appropriate argument has been given first by Efroimovich
and Pinsker (1981). We propose a concise proof using abstract notions,
within the framework of Le Cam's (1986) asymptotic decision theory. The
facts we need are found in a particularly convenient form in Millar (1983),
abbreviated (M) hereafter.
Suppose that for each v from some index set K(, a sequence of experiments
{En,hz,, h E Rs, llhl < t,} is given, where t,, -* oo. Assume that, for some
a2 > 0, all c > 0 and all zJ E K the experiments {EnTh,villhil < c} converge
weakly as n -+ oo to a limit {Eo,h, thuj < c}, where Eo,h = N(h,2IJ.) is a
normal measure on R-.

THEOREM Al. Let M be a symmetric positive definite s x s-matrix, and
K be the set of all probability measures on 1R with finite support, zero mean
and second moment matrix M. Then

(6.1) sup limrinf infJ En,h,lh - hlt2dv(h)
MEA(l

> tr[o2M(72I8 + M)1]

(infimum over all measurable maps h: R1 --+ f).
PROOF. Define truncated loss functions, for c > 0

Lc,h(x) = min(llx - hit2,c), x, h E R8.

We shall consider generalized procedures h as bilinear forms according to
(M), (II.1.4). Then the risk of h for the (bounded continuous) loss function
Lc,h and for distribution En,h,v is written h(En,h,v Lc,h). For v E K( define
the mixed risk

n(h , c) h(En=AJ Lc,h)dv(h)j n = 0, 1, 2,...

Now observe that relation (III.1.7) of (M), obtained in the course of proving
the asymptotic minimax theorem, implies that for any v E K(, c > 0

liminf inf en(h, v, c) > inf eo(h, v, c).
'~h h
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The map h -+ Eo,h is continuous in total variation norm, while h -- L,,h
is continuous in the sup norm over 1R. Since h is a continuous bilinear
form with norm 1, it follows that the family of functions h -- h(EO,h, Lc,h)
is equicontinuous (and bounded by c) when h runs through the procedures.
Now select a sequence {l/k} C K such that 1k - o = N(O., M) weakly,
e.g. on the basis of the central limit theorem. By the uniform Helly-Bray
theorem (see Parzen (1954))

po(h, Vk, C) -* eo(h 'ol, c), k -+ :z

uniformly in h. Here the right hand side is continuous in h for the weak
topology, since all eo(h, Uk, c) are. It follows that if z is the left hand side of
(6.1) then

z > infeo(h, vo, c).
h

To evaluate this infimum, one may restrict oneself to procedures of Markov
kernel type, since these are dense in the set of procedures. Standard reasoning
involving Anderson's lemma (section VI.2 of (M)) shows that the infimum
is attained for an estimator h which does not depend on c (the posterior
expectation of h), since Lc,h is a subconvex loss function. Letting c - oo, we
obtain as a lower bound for z the Bayes risk in {N(h, CT2I8), h E R'} for a
normal prior N(O., M-f) and squared error loss, which is tr[o2M(cr2Ij+M)-11.
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