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Where do probability models come from? To judge by
the resounding silence over this question on the part of
most statisticians, it seems highly embarrassing. In gen-
eral, the theoretician is happy to accept that his abstract
probability triple (Q, A,P) was found under a gooseberry
bush, while the applied statistician's model "just
growed".

A.P. Dawid (1982)

Abstract

Since Fisher's formulation in 1922 of a framework for theoretical statistics, statisti-
cal theory has been concerned primarily with the derivation and properties of suitable
statistical procedures on the basis of an assumed statistical model (including sensitivity
to deviations from this model). Until relatively recently, the theory has paid little
attention to the question of how such a model should be chosen. In the present paper,
we consider first what Fisher and Neyman had to say about this problem and in Sec-
tion 2 survey some contributions statistical theory has made to it. In Section 3 we
study a distinction between two types of models (empirical and explanatory) which has
been discussed by Neyman, Box, and others. A concluding section considers some
lines of further work.
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1. The views of Fisher and Neyman
A general framework for theoretical statistics was proposed by Fisher (1922) in his

fundamental paper" On the mathematical foundations of theoretical statistics." In it,
Fisher defines the principal task of statistics to be "the reduction of data," and states
that "this object is accomplished by constructing a hypothetical infinite population, of
which the actual data are regarded as constituting a sample. The law of distribution of
this hypothetical population is specified by relatively few parameters,..." In other
words, Fisher states that the first step is the construction of a low-dimensional
parametric model.

On this basis, Fisher divides the problem of statistics into three types:
(1) Problems of Specification.

(That is, the problem of specifying the parametric model).
(2) Problems of Estimation.

(This terminology for the second stage is explained by the fact that Fisher in
this paper is concerned only with point estimation. More generally, this type of
problem could be described as the derivation of a suitable statistical pro-
cedure.).

(3) Problems of Distribution.
(This refer to the distribution of the estimator derived in (2). A more general
description of this last stage would be assessing the performance of the pro-
cedure obtained in (2).)

The present paper is concerned only with the first of these stages, and it is with
considerable interest that one wonders what Fisher has to say about it. Disappoint-
ingly, his discussion is confined to a single paragraph which is dominated by the first
sentence:

"As regards problems of specification, these are entirely a matter for the practical
statistician,...'

This statement constitutes Fisher's answer to the question raised in the title of the
present paper and the quotation at its beginning. Fisher's statement implies that in his
view there can be no theory of modeling, no general modeling strategies, but that
instead each problem must be considered entirely on its own merits. He does not
appear to have revised this opinion later, the index to the 5-volume collection of his
papers (published by the University of Adelaide) has only one entry under
"Specification, problems of" - the 1922 statement cited in the preceding paragraph.

Actually, following this uncompromisingly negative statement, Fisher unbends
slightly and offers two general suggestions concerning model building:
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(a) "We must confine ourselves to those forms which we know how to han-
dle",

and

(b) "More or less elaborate forms will be suitable according to the volume of
the data".

We shall return to both of these suggestions later.

To Neyman, not only the practice but also the theory of modeling was a central
concern. In 1959 he introduced a course in the subject into the Berkeley curriculum
and taught it with few interruptions until the time of his death in 1981. We shall here
discuss three comments of his on modeling.

1. Models of complex phenomena are constructed by combining simple building
blocks which, "partly through experience and partly through imagination, appear to us
familiar and, therefore, simple."

Although not making exactly the same point, this comment is somewhat reminis-
cent of Fisher's suggestion that we should restrict attention to models we know how to
handle.

2. An important contribution to the theory of modeling is Neyman's distinction
between two types of model: "interpolatory formulae" on the one hand and "explana-
tory models" on the other. The latter try to provide an explanation of the mechanism
underlying the observed phenomena; Mendelian inheritance was Neyman's favorite
example. On the other hand an interpolatory formula is based on a convenient and
flexible family of distributions or models given a priori, for example the Pearson
curves, one of which is selected as providing the best fit to the data. (Neyman 1939).
The same distinction is emphasized in the writings of George Box, who uses the terms
"empirical model" and "theoretical" or "mechanistic" model for the two concepts
(mechanistic since it identifies the underlying mechanism).

3. The last comment of Neyman's we mention here is that to develop a "genuine
explanatory theory" requires substantial knowledge of the scientific background of the
problem*. This requirement is agreed on by all serious statisticians but it constitutes
of course an obstacle to any general theory of modeling, and is likely a principal rea-
son for Fisher's negative feeling concerning the possibility of such a theory.

* The same general idea is expressed by John Stuart Mill who writes (p.344
of the tenth edition of his System of Logic, Vol. 1 (1879)):

"The guesses which serve to give mental unity and wholeness to a chaos of scat-
tered particulars, are accidents which rarely occur to any minds but those abounding in
knowledge and disciplined in intellectual combinations."
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2. Where do models come from?
Several statisticians with extensive applied experience have objected to this ques-

tion, stating that they know exactly where their models come from. However, it seems
difficult to find explicit statements of how models are obtained, which raises the ques-
tion in a different form: Is applied statistics, and more particularly model building, an
art, with each new case having to be treated from scratch*, completely on its own mer-
its, or does theory have a contribution to make to this process?

(i) A reservoir of models. One crucial (although somewhat indirect) contribution
of theory is indicated by Fisher's and Neyman's references to "those forms which we
know how to handle", and to building blocks which "appear to us familiar and, there-
fore, simple." These references presuppose the existence of a reservoir of models
which are well understood and whose properties we know. Probability theory and
statistics have provided us with a rich collection of such models. One need only think
of the various families of univariate and multivariate distributions, of the different
kinds of stochastic processes, of linear and generalized linear models, and so on. The
list seems inexhaustible and furnishes the modeler with an indispensable tool.

One aspect of models that is of particular importance to realistic modeling is the
way they are described or characterized. (For some references to the literature on
characterization of distributions, see for example Galambos (1982).)

Example 2.1. As an illustration consider the model that is traditionally described
by

(2.1) X1, . . ., Xn are i.i.d. with normal distribution N (0, a2).

If asked to justify the normality assumption, a statistician might refer to the central
limit theorem and for corroboration might cite previous experience with similar data.
There is however an alternative approach which may be more convincing. The model
(2.1) with n > 1 can be characterized by the two conditions

(2.2a) the X's are independent

and

(2.2b) the joint density of the X's is spherically symmetric, i.e. the density is the same
at all points equidistant from the origin.

(For a discussion of the equivalence of (2.2) and (2.1) see for example Feller (1966,
p.77/78) and Letac (1981).)

v Although even artistic endeavors require techniques which can be systema-
tized and learned.
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The meaning of condition (2.2b) is much easier to grasp than that of normality. As
an example suppose that X1 and X2 are the coordinates of the impact of a shot fired at
a circular target, where we shall assume that the expected point of impact is the bull's
eye which is taken to be the origin. If the method of aiming is asymmetric in the hor-
izontal and vertical directions (as is typically the case), the assumption of circular sym-
metry will usually not be justified; on the other hand, one can imagine automated com-
puter methods of aiming for which this symmetry does hold.

Example 2.2. As a second example, consider the assumption that a variable X is
distributed according to an exponential distribution. This family of distributions is
characterized by the property of "no aging" i.e. the distribution of the lifetime remain-
ing at time t (given that life has not terminated prior to t) is the same as the distribu-
tion of the lifetime X at birth. In many situations this property clearly will not hold
and an exponential distribution therefore be unsuitable. Situations in which the
assumption may be reasonable are described for example in Mann, Schafer, and Simg-
purwalla (1974).

Example 2.3. Consider finally the Poisson distribution. In many applications it
arises as the distribution of the number of events occurring in a fixed interval, where
the events are generated by a Poisson process. The latter is characterized by two
assumptions: (a) the numbers of events occurring in non-overlapping intervals are
independent, and (b) the probability of more than one event occurring in a very short
interval is of smaller order than the probability of a single occurrence.

Simple characterizations such as those of Examples 2.1-2.3 not only provide rela-
tively clear criteria for the applicability of a model in a given situation but they may
also suggest, when the assumptions are not satisfied, in what way the assumptions are
violated and on this basis lead to ideas as to how the model should be modified. For
example, a Poisson model may not be suitable because of the presence of "multiple
births", and this possibility can be incorporated into the model by specifying the dis-
tribution of the "litter size". (For a discussion of this idea from a modeling point of
view see for example Neyman and Scott (1959) and Cox and Isham (1980); some
related ideas are considered by Feller (1943)).

An assumption that makes an appearance in both Examples 2.1 and 2.3 and which
generally enjoys great popularity is the assumption of independence. As has recently
been emphasized by Kruskal (1988), this assumption is often made rather casually. It
is for example frequently taken for granted that successive observations by the same
observer are independent. That this in fact tends not to be the case was noted by Karl
Pearson (1902) who carried out some experiments for this purpose. The issue is dis-
cussed by Student (1927) and Cochran (1968). Further references can be found in
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Kruskal's paper. Unfortunately, the independence assumption is not only very seduc-
tive but the resulting inferences are liable to serious error when the assumption is not
justified.

Classes of models for dependent observations taken in series are treated in the
theory of time series. Observations which, while not independent, retain the complete
symmetry of the iid assumption are called exchangeable. The theory of exchangeable
events was initiated by de Finetti; for references and recent developments see, for
example, Kingman (1978), Koch and Spizzichino (1981), Galambos (1982), and
Diaconis and Freedman (1984).

(ii) Model selection. Procedures for choosing a model not from the vast store-
house mentioned in (i) but from a much more narrowly defined class of models are
discussed in the theory of model selection. A typical example is the choice of a
regression model, for example of the best dimension in a nested class of such models.
The best fitting model is of course always the one that includes the largest number of
variables. However, this difficulty can be overcome in a number of ways, for example
by selecting the dimension k which minimizes the expected squared prediction error,
i.e. the expected squared difference between the next observation and its best predic-
tion from the model.

This measure has two components
(2.3) E(squared prediction error) = (squared bias) + (variance).
As the dimension k of the model increases, the bias will decrease. At the same time
the variance will tend to increase since the need to estimate a larger number of param-
eters will increase the variability of the estimator. Typically there will exist a minim-
izing value ko which then provides the desired solution. The value of ko will tend to
increase as the number of observations increases and its determination thus constitutes
an implementation of Fisher's, suggestion that "more or less elaborate forms will be
suitable according to the volume of the data." [In practice one minimizes not the
expected squared prediction error which depends on unknown parameters but a suitable
estimator of this expected value].

Areas in which model selection has been successfully employed include, besides
regression, the choice of an appropriate ARMA model, choosing the order of a Markov
chain, or the maximal order of the interactions to be included in factorial and loglinear
models. See for example Breiman and Freedman (1983: regression), Poskitt (1987:
ARMA models), Katz (1981: Markov chains), Linhart and Zuchini (1986), and
Edwards and Havranek (1987).

As described above, this approach appears to make the choice of model automati-
cally, solely on the basis of the data. However, this view of model selection ignores a
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preliminary step: the specification of the class of models from which the selection is to
be made. This specification often will also be quite routine along the line: we are
modeling a smooth surface - so let's approximate it by a polynomial regression equa-
tion including all terms up to a given degree. In choosing the variables to include in
the list of possibilities we may be quite liberal and let the procedure make the choice
from this list (as well as the degree of the polynomial) from the data. However, in
other cases, the choice of class of models may be strongly informed by subject matter
considerations.

(iii) Modeling a sequence of dichotomous trials. The great difficulty of model
specification is well illustrated by the history of models for sequences of dichotomous
trials such as tosses with a coin, births classified by sex, defective and nondefective
items on an assembly line, clinical trials, or free throws in basket ball.

In his 1710 paper, "An Argument for Divine Providence, Taken from the Constant
Regularity Observ'd in the Births of Both Sexes," Arbuthnot assumed a binomial dis-
tribution, and on this basis tested (and rejected) the hypothesis that p = 1/2. The bino-
mial model of course is the result of two assumptions: (i) the constancy of the success
probability p; (ii) the independence of the trials. Heyde and Seneta (1977) and Stigler
(1986) discuss the history of the struggle with these assumptions which went on
throughout the 19th century, and which led to the development of more general alter-
native models and of tests of the binomial hypothesis.

A curious debate sprang up in the early 20th century in publications by Marbe
(1899, 1916, 1919), Sterzinger (1911), and Kammerer (1919), in which these authors
claimed that the results of probability theory contradict the workings of the real world
and are therefore not applicable to reality. These beliefs were based on their theories
of the "bunching" of events (Kn'auelungstheorie) of Sterzinger, the "uniformity"
(Gleichf6rmigkeit) of the world (Marbe), or Kammerer's principle of seriality, bol-
stered by inconsistencies which the authors thought they had discovered between the
observed numbers of runs in various dichotomous sequences such as coin tosses or
births and the probabilities of such runs calculated on a binomial model. The argu-
ments show that what is really being put in question is the assumption of indepen-
dence. The flaws in some of this work are analyzed by Bortkiewicz (1917) and
Czuber (1923). (For a recent study of related issues, see Gilovich, Vallone, and Tver-
sky (1985), and Tversky and Gilovich (1989)).

In addition to the belief in positive dependence of events that are close together in
time and space, which would result in an excess of long runs, there is also a common
belief in negative dependence according to which each success decreases the probabil-
ity of success for the next trial. It is interesting that this misconception concerning
dependence was already noted by Laplace (1814, 1917). One particularly lively
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paragraph in Chapter 16 of his Philosophical Essay on Probability begins:

"I have seen men, ardently desirous of having a son, who could leam only with
anxiety of the birth of boys in the month when they expected to become fathers. Ima-
gining that the ratio of these births to those of girls ought to be the same at the end of
each month, they judged that the boys already born would render more probable the
births next of girls."

3. Two types of models.

The distinction between the two types of models mentioned in Section 2: Empiri-
cal (or interpolatory) on the one hand, and Explanatory (or mechanistic) on the other,
has been noted in one form or another by many writers and tends to make an appear-
ance in most general discussions of modeling. Models of these two types differ in
many respects and the distinction throws light on some aspects of the modeling pro-
cess.

(i) Purpose. As pointed out by Box (for example in Box and Hunter (1965) and
Box and Draper (1987)) and others, the two kinds of models differ in their
basic purpose. Empirical models are used as a guide to action, often based on
forecasts of what to expect from future observations (eg. the number of college
applications, demand for goods, or stock market performance). In contrast,
explanatory models embody the search for the basic mechanism underlying the
process being studied; they constitute an effort to achieve understanding.

The following description of the distinction is from a paper dealing with the role of
models in ecology (Goldstein, 1977).

"Within a given ecological research program, modeling can be a valuable pro-
cedure in helping to address a number of frequently occurring research objectives. A
basic research objective is increased fundamental understanding of the system being
studied. This need not be an objective of all research programs. Oftentimes, there is a
desire to produce a specific output from a given system. In many circumstances, this
goal can be achieved through a well-designed manipulation of the system's inputs,
without any attempt to derive a basic understanding as to how the system functions.
This type of approach is frequently referred to as an "input-output" analysis and the
system is described as a "black box". Mathematical modeling techniques can be very
helpful in this type of analysis as well."

(ii) Environment. The two kinds of aims and attitudes described in (i) tend to
arise in somewhat different environments. This distinction is discussed for
example in a paper by Healy (1978) who contrasts technology with science, or
applied with theoretical science, as follows:



- 10 -

"I merely want to propose that much of what is commonly described as science
comes more appropriately under the heading of technology. I could soften the blow...
if I substituted for "technology" the term "applied science." " Asking what distin-
guishes the two, Healy goes on to state that: "I hold that, in contrast to the scientist,
the technologist is not concerned with truth at all... The mark of the technologist is
that he must act; everything that he does has some sort of deadline. He has to manage
therefore, with as much truth as is available to him with the scientific theories current
in his time."

It is interesting to contrast this with the following passage from Box and Hill
(1967).

"It should be noted that the objective we are presently considering is that of
finding out 'how a system works'. The reason for this may be no more than scientific
curiosity. However, if we know how the system works and can describe it by a
mathematical model, then we can use this knowledge for practical aims such as
predicting the behavior of the process under various experimental conditions and, in
particular, in finding optimum operating conditions. This fact leads to some confusion
because if all one need to do is either to estimate the behavior of the process under
various experimental conditions or to find optimum operating conditions, we do not
necessarily need a mechanistic model. In some circumstances, an attempt to discover
a mechanism merely to develop an operable system would be needlessly time consum-
ing."

Both passages are somewhat defensive, but they defend against attacks from oppo-
site directions. In the expectation that his audience will feel insulted by having their
work described as technological rather than scientific, Healy says that he "could soften
the blow" of calling what much of statistics is concerned with technology rather than
science by using a less offensive terminology. Box and Hill, on the other hand, apolo-
gize for being needlessly scientific in a situation which calls for a solution to a practi-
cal problem. They point out that developing an explanatory model rather than being
satisfied with an empirical one might be justified by more than mere "scientific curios-
ity": the knowledge gained in this way might actually be utilized "for practical
aims."

(iii) Ad hoc nature vs broad applicability. The difference in attitudes just
described leads quite naturally to different positions concerning the appropriate
level of generality of the models and the conclusions derived from them. A
scientific model describing the structure of the underlying mechanism and the

A heated debate conceming the status of the logistic curve as a general law
of population growth is discussed in Kingsland (1985).
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laws governing it will strive for the most general formulation possible.* This
typically requires abstraction and idealization in order to eliminate the specific
circumstances of particular situations. General physical laws explaining the
motion of bodies or biological laws describing the genetic mechanisms of
inheritance apply without regard to the nature of particular bodies and to very
general classes of biological organisms.

On the other hand, a technological model intended to provide guidance in a partic-
ular situation at hand will want to make full use of all the special circumstances of that
situation. In particular, it needs to provide a good approximation only over the range
of values of interest. Thus a linear regression may be perfectly adequate for the prob-
lem under consideration even when it is clear that a linear approximation can provide a
reasonable fit only over a very lited range.

(iv) The role of subject matter. An explanatory model, as is clear from the very
nature of such models, requires detailed knowledge and understanding of the
substantive situation that the model is to represent. On the other hand, an
empirical model may be obtained from a family of models selected largely for
convenience, on the basis solely of the data without much input from the
underlying situation. (Examples of both situations can be found in the writings
of Box and his coworkers, for example in Box and Hunter (1965), Box and Hill
(1967), Box, Hunter and Hunter (1978), and Box and Draper (1987)).

It is interesting to examine Kepler's elliptical orbits and Mendel's laws of inheri-
tance from this point of view. A first look at Kepler's work may lead to the conclu-
sion that he just tried to fit a simple curve to the available data and found that an
ellipse was both mathematically simple and provided an excellent fit. However, closer
study reveals that his discovery came about as the result of a great deal of previous
thinking and theorizing about the subject matter. For a detailed discussion of this
point, see for example Aiton (1975) and Wilson (1975).

Similarly it is tempting to believe that Mendel, often depicted as working in
monastic isolation, came to his startling innovative laws solely by contemplating the
results of his experiments with peas. Again it emerges from a more detailed study that
his conclusions and explanations were by no means based only on his data. (See for
example, Orel (1984) and Olby (1985).)

(v) Validating the model. The difference in the aims and nature of the two types
of models implies very different attitudes toward checking their validity. Tech-
niques such as goodness of fit tests or cross validation serve the needs of
checking an empirical model by determining whether the model provides an
adequate fit for the data. Many different models could pass such a test, which
reflects the fact that there is not a unique correct empirical model. On the
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other hand, ideally there is only one model which at the given level of abstrac-
tion and generality describes the mechanism or process in question. To check
its accuracy requires identification of the details of the model and their func-
tions and interrelations with the corresponding details of the real situation. And
the explanation must provide a detailed fit not only for the particular
phenomenon at hand but must also fit appropriately into the existing scientific
fabric of related phenomena in which it is to become embedded.

It is interesting to note that the distinction discussed in this section was realized,
and considered important, long before the modem scientific age. Following are three
quotes, one each from the 16th, 17th, and 18th centuries, as given in Popper (1965).

The first is from Osiander; 'Preface to Copernicus' "De Revolutionibus" (1943),
putting a "spin" on this work of which Copernicus would hardly have approved had
he lived to see it:*

"There is no need for these hypotheses to be true, or even to be at all like the
truth**; rather one thing is sufficient for them - that they should yield calculations
which agree with the observations".

Osiander was a Protestant Theologian. The issue became more heated in the fol-
lowing century in the dispute between Galileo and the Catholic Church. The position
of the latter as stated by Cardinal Bellarimino in 1615 was that the church would raise
no objections if Galileo stated his theory as a mathematical hypothesis, "invented and
assumed in order to abbreviate and ease the calculations", provided he did not claim it
to be a true description of the world.

As a last expression of this thought, here is a quote from Bishop Berkeley (1734).
"A mathematical hypothesis may be described as a procedure for calculating cer-

tain results. It is a mere formalism... judged by its efficiency... The question of truth
of a mathematical hypothesis does not arise - only that of its use as a calculating
tool."

Although these passages of course refer to deterministic rather than stochastic
models, the idea of empirical modeling could hardly be expressed more clearly today.

* For additional discussion of Osiander's Preface see Toulmin (1961) and
particularly Blumenberg (1987).

** Throughout this paper it is tacitly assumed that there exists an underlying
"true" situation which one is attempting to model. This is an attitude much
discussed by philosophers of science. Some recent references are Cartwright
(1983), Hacking (1983), Jardine (1986), and Giere (1988).
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4. A spectrum of possibilities.

The discussion in the preceding secton of empirical and explanatory models
ignores the fact that many, perhaps most, actual modeling situations have an intermedi-
ate character, exhibiting some features of each of the two types. This was clearly
recognized by Kruskal and Neyman (1956) who wrote:

"Although the distribution between true theory and interpolation is sometimes
quite sharp in specific cases, the two models of analysis really represent somewhat
extreme points of a continuous spectrum... The continuum is by no means precise, nor
is it meant to be so..."

(The authors then proceed, as an amusing pastime, to place various kinds of models on
a "fanciful scale" meant to represent this imprecise continuum. To factor analysis,
for example on a scale from 0 (pure interpolation) to 10 (fully explanatory) they assign
a score of 4).

The corresponding remark applies to the discussion of science vs technology. In
this connection it is helpful to recall the distinction made by Kuhn (1970) between
normal and revolutionary science. As suggested by Nelder (1986), normal science
occupies a position somewhere between technology and revolutionary science, and
again these exists a whole spectrum of intermediate shadings. Concerning the role of
statistics in these differents environments Nelder writes:

"I doubt if statistics has much to offer to revolutionary science... The position is
very different, however, with both normal science and technology, though some
justification may be needed for grouping them together here. I would argue that there
are major differences between normal science and technology, for example in the
relevance of cost-benefit assessments to their progress, their long-term objectives, and
their attitudes to theory (Healy, personal communication), it is nonetheless true that, on
the scale of day to day activity, the procedures of (normal) scientist and technologist
will be found to be very much alike. They will both be working within a given
theoretical framework and be concerned, for instance, with estimating quantities
defined within that framework, with confirming the estimates of others, and with relat-
ing their estimates to those predicted by theory."

The construction of a satisfactory "revolutionary" model is essentially the problem
of scientific discovery. Where the ideas for such discoveries come from is one of the
central problems in the philosophy of science which has been discussed by many
scientists and philosophers. Most scientists agree with Nelder's implication that there
can be no systematic aid to discovery, that it is a matter of imagination and inspiration.
One of the most influential philosophers of science, Karl Popper, sums this up by say-
ing (Popper 1965, p. 192) that scientific hypotheses are "the free creations of our own
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minds, the result of an almost poetic intuition."
Yet even in this extreme case the situation is not as clearcut as it seems at first.

Examination of some of the classical examples of revolutionary science shows that the
eventual explanatory model is often reached in stages, and that in the earlier efforts
one may find models that are descriptive* rather than fully explanatory. This is for
example true of Kepler whose descriptive model (laws) of planetary motion precede
Newton's explanatory model. To some extent, this remark also applies to Mendel's
revolutionary model for inhenrtance. His theory does offer an explanation for his laws
of segregation and independent assortment in terms of factors responsible for the
transmission of genetic material. However, he was not in a position to identify these
factors and so obtain the required identification between his model and biological real-
ity.

5. Conclusions.

This paper has been concerned with the question of what contribution statistical
theory has to make to model specification or construction. Three areas of such contri-
butions turned out to be:

(a) A reservoir of models, with particular emphasis on transparent charactenrza-
tions or descriptions of the models that would facilitate the understanding of
when a given model is appropriate. (A special problem in this area which to
requires additional work is a study of the circumstances under which
independence is or is not a suitable assumption.)

(b) Model selection. This is a body of techniques for selecting a particular
model (or parametric subfamily of models) from a rather narrowly specified
family of models. It seems likely that this approach will be developed much
further particularly with the help of techniques from artificial intelligence.
The use of expert systems will make it easier to inject subject matter infor-
mation into this process. On the other hand, it is difficult to see how this
approach can break out of a current paradigm and thus lead to revolutionary
scientific discoveries. (An interesting and thoughtful "progress report" on
the possible role of artificial intelligence in scientific discovery is provided
by Langley et al (1987).

Such descriptive models should perhaps be considered as a distinct third
type intermediate between empirical and explanatory models. A division of
models into these three types by Berkeley is discussed by Popper (1965, p.
169).
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(c) Classification of models. The distinction between explanatory and empirical
models provides only one of the many ways in which models can be
classified. A better understanding of the modeling process can perhaps be
obtained by distinguishing various other types of situations which require
different kinds of models. Fundamental differences between the needs and
possibilities in the social and physical sciences, for example, are discussed by
Lieberson (1985) and in the debates initiated by Freedman (1985, 1987).
The corresponding issues regarding biology and physics (with extensive
references to the literature) are considered for example in Rosenberg (1985).

Another important distinction is that between deterministic and stochastic models.
Of course any statistical model has a stochastic component. This may however enter
either only through the errors in the measurements of an essentially deterministic situa-
tion (as in Kepler's astronomical data) or also through the basic stochastic nature of
the underlying phenomenon (for example, in Mendel's theory).

As a last example we mention the distinction between models which do or do not
employ what psychologists have called "hypothetical constructs" (see for example
MacCorquodale and Meehl, 1948). These are entities whose existence is required by
the theory but has not actually been established although it is hoped that observation
will eventually change their status. Mendel's genes or some of the elementary parti-
cles are cases in which eventual verification did occur, structures required for certain
mental abilities, for example color vision, provide another illustration. On the other
hand, the postulated existence of ether and phlogiston in the end had to be abandoned.

In addition to these different types of models, it is useful to distinguish between
two aspects, both of which are typically present in the same model: the subject matter
part of the model and the part played by "error". Here the latter term is meant to
include not only measurement error but impurities in the material, changes in tempera-
ture or time of day, in fact all the contributions to the observations of the various
environmental and observer effects that are extraneous to the subject matter.
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