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Section 1. Introduction.

Millar (1979) has illustrated the power of looking at nonparametrc problems from
the viewpoint of Le Cams theory of experiments, with the parameter space indexed by
an infinite dimensional Hilbert space. This highly successful approach led to a simple
(at least conceptually!) unified theory for estimating distribution functions under for
example sup norm loss for a variety of parameter spaces. The power of Hilbert space
parametrizations has not however been exploited in pointwise estimation problems aris-
ing for example from density estimation, nonparametric regression or estimation of a
variable intensity function from a Poisson process. In fact it is only recently that Le
Cams theory of experiments has even been brought to bear on the problem of density
estimation, and then only through a sequence of one dimensional parametrizations.
Donoho and Liu [1988] however did pick these one dimensional parametizations in an
optimal way and showed the power of Le Cams methodology. Romano (1989) has
also applied Le Cams theory to sequences of one dimensional experiments naturally
arising from estimation of the mode. In Section 2 we introduce a new sequence of
experiments with a Hilbert space parametrization, that arises naturally from density
estimation problems. The consideration of this sequence of experiments was inspired
by Donoho and Liu [1988]. However it can also be looked upon as a generalization of
some sequences of experiments given by Millar [1979]. At the end of section 2 we
state a convergence theorem for this new sequence of experiments. The limiting
experiment is a Gaussian shift experiment on a Hilbert space. We leave a proof of
this theorem to Section 4. Applications of the theorem are given in Section 3.

Section 2. A sequence of experiments.
The main theorem in this section is given in terms of the convergence of a

sequence of experiments to a Gaussian shift experiment. In other words the theorem
states that the distributions of the likelihood ratios for the sequence of experiments
converges weakly to the distributions of the likelihood ratios for the limiting experi-
ment. A more detailed and complete description for the reader unfamiliar with this
idea can be found either in Le Cam [1986] or Millar [1979].

We now turn to a description of the limiting Gaussian experiment. Let

H = (h: R-+ R, h2 < oo suplh(x) <oo, fIhI < oo)
x

The limiting experiment in fact is just the standard Gaussian shift experiment on H.
Following Le Cam [1986] the standard Gaussian process on H, where H has inner pro-
duct < , > and norm 11 11, is the process h -+ < Z, h> such that

E<Z,h> = 0, E I< Z,h>12 = llhll2.
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Take Go for the distribution of this process and take Gh to be the measure whose den-

sity with respect to Go is exp{ < Z,h> - 2 1 h 12). It then immediately follows that

under Go the distribution of logdGh is N(.11hj12,Ijhj12). The experiment

G = (Gh: h e H) is then called the standard Gaussian shift experiment on H. We may
give a more concrete representation of this shift experiment as follows. Let W1 (t) and
W2 (t) be independent Brownian motions on [ 0, oo) and let

fW, (t) t > O
W(t) =W2(-t) t <O.

Then the experiment generated by

(0) dXt = h (t)dt + dWt -o< t<oo

h eH

gives a concrete representation of this standard Gaussian shift on H.

We now introduce our sequence of experiments. First fix a probability density fo
on R such that fo is continuous at 0, fo(0) > 0, sup f(x) < c°, JfoI < c* and Jf2 < o.

Corresponding to fo and (IcO)'l1, {l((3n any nondecreasing sequence of positive
numbers satisfying lim cn = oo and

n~~~4O
(1) cxO(3)

f0 (0)n-4

will be the following sequence of experiments. For h e H let

h (On~X)(2) hn = f f (x)
aZn

hn is finite since h and fo are square integrable. Furthermore the conditions we
imposed on h and fo imply that hn =0 (n7l). If

(3) 1 + hjx hn 2 0 for all x

define

(4) fn(h;x) = (1 + - hn)fo(X)

otherwise let

5 f(h; x) = fo (x) .(5)
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Defining fn(h; x) by (5) when (3) is not satisfied is only a technical condition. Its
only purpose is to make the sequence of experiments given below to have parameter
space H for each n. Note that since sup h (x) <0o and a,, increases to infinity, for any

x

given h, fn (h; x) is defined by (4) for all sufficiently large n. Finally, define Phn to be
the probability on Rn having density

n
(6) fn(h;xi).

i1

The collection (Phn: h e H) now defines an experiment for each n.

Theorem: The sequence of experiments {Phn: h E H) constructed above converges
weakly to the standard Gaussian experiment (Ph: h E H).

The importance of this theorem is contained in the following corollary which is
just a statement of Hajek-Le Cam minimax theorem in the present context.

First, we need to establish some notation which we shall use throughout the rest of
this paper. Write Sn= 8n(XI,... , Xn) to be any decision procedure based on n
independent observations from a density fn(h) where h E H. Also by Eh I (h, 8n) we
mean the risk of the estimator (in estimating h) when the density is fn (h). We write 8
(no subscript) to be any decision procedure based on one observation from the Gaus-
sian shift problem given in (0) and Eh l (h, 8) for the associated risk in estimating h.

Cor: Let K c H. If 1 is any loss function 1: K x R -+ R, lower semicontinuous in
the second argument, then

(7) lim infshU Eh I (h,8n) 2 infsup E I (h 8).

If K is compact then the inequality in (6) can be replaced by an equality.

Section 3. Applications.
In this section we give two simple applications of Theorem 1. Our main purpose

is to illustrate by an example how an, o3n and K can be appropriately chosen. In our
second example we improve on some lower bounds given by Wahba (1975) for
estimating a density function at a point under Sobolev constraints. We should also
mention that Millar (1979) has exploited Theorem 1, with °cn = (f0 (0))l2 n1/2, fin =
to obtain lower bounds for estimatng distribution functions.

Example 1: Suppose we observe XI, . . . , Xn i.i.d. with density f e F and we want to
estirate f either at 0 or in a neighborhood of 0.
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We consider two classes of loss functions

1) lplossgivenbylp:FxR-R
lp (f, a) = (f (O) - a)P

2) lnp loss given by lnp:F x R - R
F ~~~~~14
ny

l,p(f,a) = 2d J f(x)dx - a

In 2) we have suppressed in the notation the dependence on d and 'y.

To the best of our knowledge noone has considered sequences of loss functions
given in 2). The motivation behind them is that if we are interested in the local
behaviour of f at 0 it might make at least as much sense to look at a shrinking neigh-
borhood of zero rather than just at the point zero.

There are two major obstacles to applying Theorem 1 in this context.

1) The loss functions l and 7 are defined on the functions fn(h; ) whereas the
loss function in the corollary is defined on h.

2) As mentioned above we need to be able to choose %c, [n and K appropriately.
To answer these questions we consider particular classes of F. Write fk (x) for the

kt derivative of f.

Let F(a,k,M) = (f: R - R+; f(O) . a, Jf= 1, supJfk(x)I . M).
x

First fix some fo e F (a, k,M) such that

1) fo(0) = b<a

2) Ifk (x) < M for all x

3) For some e> 0 fo(x) = fo(O) for Ixl <I.
Conditions 1 and 2 make sure that fo is an interior point of the set F (a, k, M).

Condition 3 facilitates the construction of the perturbations given below.
Let

K(c) = (h: Ih(x)l < 1, h(x) = if IxI 2 c).

We impose the condition that h (x) = 0 for I x 1 > c primarily to make K (c) compact
and hence insure strong convergence.

1 k+1 k 2 -1 1
Now let an = M 2k+1 (f0 (0)) 2+ n2k+, fin = M 2k+1 (f0(0)) +1 n2k+1. A few

simple calculations which we leave to the reader (partly made easy by requiring
h (x) = 0 for lx I 2 0), show that for some N, fn (h; x) e F (a, k, M) for all h when
n 2 N. Note also that c2 f_n = fo (0) - n. These same calculations should also give the
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reader a good idea of why we imposed 1) and 2) on fo.
Now lp and l,p are all defined on fn(h; x). To apply Corollary 1 we need to have

a loss function on h. Of course lp is also defined on h e K (c) by

lp (h, a) = (h (O) - a)P.

We may also define ? on h e K (c) by

l(h, a) h(x) -a

Cor 1 then yields

(8) lim inf Sup Eh l (h,8n) = inf supElG1(h,)
n-)a 8., hIEKC) 8 hektoch

for l being l or l.

We shall now connect equation (8) to the problem of estimating f. (h; ) instead
of h. We will examine our two loss functions, one at a time.

a) lp loss:

Note that lp(fo(x)(1 + - ), fo(O)(1 + -))

n f0(O) 8,heK1c)Ehl (f0(x)(1 + h(fx))

L anhe

- infhspEh l(h,a) -

Furthermore since hn = 0 (n1l) it follows that

Hene lfo(0)a 8hEKn)EEhh (f0 (x) (1 +
h

)

X
)

- inf sup E1G (h, 8) .
8 he K(c)

1 k+l
Now let ch m o and note that an - M 2+1s (f0 (O)) + n and we get

P-Pk Pk

lim lim M in (f(O))2sEh n( 1 inf sup Eh1 (fn (h) SO)
c-boo n-boo 8t he(c)
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liminf sup Eh?l (h, ).
c )0o 6 hEKtc)

Note that since for h e K (c), fn (h) E F (a, k, M) this last equation immediately
yields on taking suW f (0)

-P -Pk Pk

(9)~ ~ ~ lmM 2k+1 a 2k+1 n 2k+1 inf supn Ef I (fl, 8n)
n X~~~~~~~fEF(a,XM)

2 liminf sup EGlI(h,).
c-+m 6 he K(c)

b) In,p

For the class F (a, k, M) we shall take yin the loss Inp to be such that y 2 2k+ . The

reader can explore the case y < 2k+1 ' We then note that

(10) 2nd ) = n fo(x)h+(fo(x) ) -fo(x)hhndx

where a1n and On were defined earlier. Note that since fo (x) = fo (0) for I x . e we
may replace the R.H.S. of (10) for sufficiently large n by

fo(0) [ a 2d
n h(f3nx)dx-hhn].an1 2d-n-

2 -1 1
Now O3n = M 2k+'1 (f0 (0)) 2k+1 n 2k+1 . Let y = On3x. Then

dn7 dni 2k+1

2d |h(Onx)dx =2nd
I

h(y) nl2k2

n
2k+l d

(11) n | h(y)dy.2d I

Notethatify 2k 1 as n o (11) haslimit h(0). Hence if y> (10) equalsNotethat 2k+12k+1
fo (0) (1 + h(O) + o (a1)) as n co and asymptotically the problem is equivalent toan1
the case of l loss. If ' = 1 a similar analysis yields (11) equal top ~~~2k+l

f(0( h(yd
fo(O) (1 + 1 2 h (y) dy) (1 + o(l)).
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Hence as in a) we have when y =
1

2k+1

(12)
rn

inf sup Ehnp(fn(h)8n) inf s EG (h)6n hEK(c) S he (c

and
P Pk Pk

(13) imM 2k+1 a 2k+1 n2k+l inf su3:, Ef1np (fg n)
fl-4oo~ ~ ~ 8n&Ffe(nM

. liminf sup E¶Gl (h,8)
c-w 8 heK(c)

Example 2: Let F = {f: R - R, f . 0, ff = 1, f absolutely continuous, Jf2 . 1)
Wahba (1975) found a variety of sequences of estimators, say (8n), satisfying

(14) 0 < lim nl/2supEf(f(O) _fn)2 < 00*

Furthermore Wahba (1975) showed that for any C> 0
1

(15) lim n2 infsupfO - S)2 > 0.

We will now use theorem 1 to show that the best asymptotic rate of convergence for a
sequence of estimators is n112. In other words

(16) n112infsu Ef(f(O)-_S)2 > 0.

First take

17/8+x -17/8 c x < -15/8
1/4 -15/8 . x . 15/8

fo(x) = 17/8 - x 15/8 < x < 17/8
0 lx2 17/8

Then |fo(x)dx =1 and f2(x)dx = 2

1[8-xl, IxI <8
Let g (x) = { 1

O ,|xl > 8

Then Jg2(x)dx= T Let K= f0g: 0. 0 . 1) and an=14, i= inl/2. Then
4Cn2,lin=f(O) n and for large n4

OnR = fo (0) n and for large n
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fn(0g;x) e F

where f (h; x) is defined by (4). Moreover fn(0g; 0) = fo(0) (1 + )(1 + o(1)).
a~n

Hence

(17) Lf0) j infsuEf(f(0) - 5)
2 inf sup EG(0g(0)_8)2 > 0

8 O: ~ O1

Section 4. Proof of Theorem.

Proof.

Let X1, i = n be i.i.d. each with density fo. Let

(18) Q hn

(19) Rn~ (f~~ - h2
L an hJ

Simple calculations show that

(20) im EQn = 0

(21) limvarQn = jh2(y)dy

(22) 1imERn = 4Jh2(y)dy

(23) limvarR = 0.

Finally note that since hn = 0(n7l)

(24) El h IX hnPi = Op( ) = o(n7) for j 2 3 and so

f 1hX) - - =O()
(25) logHII-_Q n=O 1

1 fo (Xi)

It then follows immediately from the asymptotic expansion given in (25) and the
results in (20)-(23) that the experiments (Ph: h e HI converge weakly to the standard
Gaussian experiment (Ph: h e H).
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