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A Deterministic Algorithm for Global Optimization

LEO BREIMAN, University of California, Berkeley *
ADELE CUTLER, Utah State University

We present an algorithm for finding the global maximum of a multimodal, multivari-
ate function for which derivatives are available. The algorithm assumes a bound on the
second derivatives of the function and uses this to construct an upper bound surface.
Successive function evaluations lower this surface until the value of the global maximum
is known to the required degree of accuracy. The algorithm has been implemented in
RATFOR and execution times for standard test functions are presented at the end of
the paper.

1. Introduction

The problem considered is that of finding f*, the unconstrained maxima of a differentiable
function f: X -+ R1 where X C Rm is a compact polytope.

We develop a space-covering deterministic algorithm similar to the algorithm studied by Shubert
[21] and Mladineo [14], who assume that the objective function satisfies a Lipschitz condition.
Instead we assume that the function satisfies the condition

f(x) < f(y) + Vf(y)'(x-y) +KII x-Y 112 for any x,y E X (1)

where K is a known constant. This condition, in more than one dimension, leads to simpler
geometric properties than the Lipschitz bound.

The idea of the algorithm is that each time the function is evaluated we have more information
about f. In particular, if we evaluate the function at a point xi where f is small, we know that the
global maximum cannot be close to xi. With a large enough number of function evaluations the
value of the global maximum can be determined to any required degree of accuracy.

A conceptual description of the algorithm is given in section 2, illustrated by a 1-dimensional
example. In the 1-dimensional case, the algorithm consists of a simple updating procedure after
each function evaluation. We find that the algorithm concentrates on the global maximum of the
function and pays very little attention to local maxima. The third section extends the 1-dimensional
algorithm to higher dimensions, developing the geometrical results used in implementing the algo-
rithm. A detailed description of the algorithm is given in section 4.

In section 5 we use a simple example to illustrate the dependence of the algorithm on dimension.
Then we present some timing results for the algorithm, along with a comparison of its performance
with published results for other optimization methods tested on functions defined in the appendix.

The results are mixed. However, the present algorithm is guaranteed to find the global optimum.
Many of the published results for other algorithms are vague about the proportion of times their
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algorithm failed to find the global maximum. In addition, we have found that combining the present
algorithm with an occasional local search leads to a drastic reduction in computing time (see Cutler
[6]). This modification will be discussed in a future paper.

2. Background

Piyavskii [15] described a general approach to global optimization requiring continuous functions
hi defined on X such that for any xi E X,

f(x) < hi(x) for all x E X,
f(xi) = hi(xi).

Suppose the function has already been evaluated at xl,.. , x,. The upper envelope at the nth stage
is defined to be

B(n)(x) = min hi(x). (2)
t=1 ,...,n

Now by assumption, f(x) < hi(x), for any i, so

f = maxf(x)XEX
< max (min hi(x))XEX\i1 ..

= max B()n(x) .
XEX

Thus, a lower bound f and an upper bound fn for f* are given by

f = max f(xi) < f* < max B()(x) -fnLn i=1... nXEX
f

Then Piyavskii proposes to determine xn+1, the location of the next function evaluation, by
maximizing B(n), that is

Xn+1 = argmaxB(n)(x).
XEX

It should be noted that the problem of maximizing B(n) and updating B(n) to B(n+l) is poten-
tially as difficult as the original problem of maximizing f. Shubert [20] and Mladineo [13] assume
that for all x, y

f(x) < f(y) +KlIx- yl
for a known constant K leading to the bounding functions

hi(x) = f(xi) + Kjlx - xill.
Mladineo [14] treated the multidimensional case. The analytic difficulties involved forced her to
use approximations of unknown accuracy in evaluating xn+l and updating B(n).

Under assumption (1) we use the bounding functions

hi(x) = f(xi) + Vf(xi)'(x - xi) + KiIx - xi2jl.
Surprisingly, this leads to simple and exact evaluations of xn+l and updates for B(n).
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2.2 One-dimensional Illustration

Let f: Rl - R' be given by
f(x) = cos(cx) -x2

with X = [-.2,1] and c = 5ir. The function has a global maximum at x = 0 and two local maxima,
one at x = .4 and the other at x = .8. For this example K = .-21.

If the function has been evaluated at xl,... , xn we have

hi(x) = f(xi) + f'(xi)(x - xi) + K(x - xi)2
= Kx2 + (f'(xi) - 2Kxi)x + (f(xi) - f'(xi)xi + Kx?)
= Kx 2+3ilx+/3 2.

The upper envelope B(N) consists of n quadratic pieces intersecting at local maxima or cusps.
One intersection occurs between each pair of adjacent function evaluations. The function is then
evaluated at xn+l,i the largest intersection peak, introducing a new quadratic which intersects B(n)
in two places, one on each side of Xn+1.

Suppose we save all the function and gradient values and keep a list of the locations and heights
of the intersections of B(n), recording which function evaluations are directly to the left and right of
each intersection. Then we can locate X2n+l by finding the intersection point with the largest value
of B(n) and removing it from the list, noting which function evaluations points are to either side of
Xn+1. Denote the latter by x; and Xk. Once the function has been evaluated at xn+1 and its value
and that of the gradient have been saved, we must locate the two new intersection points, v, and
v2 and save them. But these can be found by solving hj(vi) = hn+l(vi) and hk(v2) = hn+1(V2)
which is easy since we have saved all function values and derivatives. Finally we note that v, now
has xj on one side and xn+l on the other and similarly, v2 has Xk on one side, xn+L on the other,
so we can record all the information we need about the new intersection points.

For simplicity, we have ignored the endpoints. If the first function evaluation is made at an
endpoint, the second will also, and after that the situation is as described above.

The algorithm's progress in lowering the upper envelope has been plotted in Fig. 1. The dashed
lines denote the upper envelope B(n). We note that in the later stages, the upper bound function
is very close to f near the global max but not very close elsewhere. In particular, unlike almost all
of its competitors, this algorithm pays little attention to the local maxima of f.

3. The General Algorithm

Implementation of the algorithm involves finding xn+1, the global maximum of B(n) evaluating
f(xn+1), and updating B(n). In the 1-dimensional case this was easy because we could keep track
of the intersections of B(n) and update them. In this section the simple geometry of the one-
dimensional case is extended to higher dimensions. The results are simple methods for finding
xn+1 and updating B(n).

Consider the situation after n function evaluations. Each point xi, i = 1,...,n has an upper
bound function hi(x) associated with it. We know that B(n) is equal to hi at the point xi, and by
continuity this equality will hold in a closed set including xi. Call this set Ci(n) the territory of xi.

The territories are polytopes which cover X. This is illustrated in Fig. 2, which shows the
function evaluations and the polytopes Ci(n) or n = 20 evaluations of the COS2 function defined
in the appendix. The function evaluations, xl,...,x20 are marked with stars, the vertices with
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Figure 1

Lowering of Upper Envelope, One-dimensional Example

example function
----- upper envelope

n=6

: 1.
1.

t. *,*. 1.1.
a . , I 11I I I

I I 4 I I
I a I I

a . - .

I
0 % 0 t
I

I

II
I

0II

II 11 9 9 I

0

cN

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8

n=8 n=10

0

cN

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8

n=12 n=14

cN

0~~~~~~~~~~~~~~~~~~~~~~~~~~~

-0.2 0.0 0.2 0.4 0.6 0.8

N4

0

CN

1.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

4

n=4

04

0

Nw

1.0

cN

0

N

1.0



Figure 2

Vertex Structure for COS2 Example, n = 20
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dots. The lines drawn are the edges of the sets Cin) We say that two vertices are adjacent if they
have an edge between them.

This structure is particularly useful because it can be shown that a local maximum of B(s) can
only occur at a vertex, so x7+l can be found by searching through a list of vertices to find that vertex
v*~for which B(s) is the largest. The function is then evaluated at xn+ = v* and the list of vertices
is updated. This involves removing from the list any vertices v for which B(n)(v) > hn+1(v), since
these can not be vertices of B(n+1) . Such vertices will be called dead vertices, the rest alive vertices.
Once the dead vertices have been removed the new vertices, those of the polytope cn+1 (n+1), must
be added to the list.

This procedure is illustrated in Figures 3 and 4. The vertex v* has been marked on Fig. 3, and
the edges of the new polytope C21 are drawn with dashed lines. Along the dashed lines we know
that h21 is equal to h,, the upper bound function for some neighboring point x;. The vertices inside
the dashed-line polytope are dead and will be removed, the vertices of the dashed-line polytope
itself will be added, with lines between them as appropriate. This gives the updated vertex network
given in Fig. 4.

To implement this updating procedure we have to be able to store the function and vertex
information in a way that is easy to update. All function values and gradients will be stored since
we don't know in advance when they will be needed. We also need to store the location of the
vertices and the current value of B(n) at each. For every vertex a list of the m + 1 adjacent vertices
will be needed and we will also store a list of which x2's surround each vertex, which we call the
index set of the vertex. In Fig. 4 the index set of each vertex is written beside it.

It will be shown that the dead vertices are connected via adjacencies (in the graph-theoretic
sense), so we do not have to evaluate hn+1 at every vertex to find all the dead vertices. We can
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Figure 3

New Polytope C21
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start at v* and move along the edges until all the dead vertices have been located, stopping each
path once an alive vertex is found. Referring to Fig. 4, this involves starting at vg = v* and finding
the vertices adjacent to v8. These are vl, v6 and V7. The value of hn+i at each of these vertices is
calculated and compared to B(n) to determine that v6 and V7 are dead and v, is alive. Then the
vertices adjacent to V6 and V7 are examined. Since none of these vertices are dead, the algorithm
stops; there can be no more dead vertices. If some of these vertices had been alive, their adjacent
vertices would have been examined, and so on until no new dead vertices could be found adjacent
to those already examined. One thing to note is that we only evaluate hn+1 at the vertices we
encounter. The values are temporarily saved for use in determining the new vertices (see below).

Referring again to Fig. 4, we see that each new vertex occurs on an edge between a dead vertex
and an alive vertex, and every such pair gives rise to one new vertex. This turns out to be true
in general and we refer to the adjacent pair as the parents of the new vertex. All the parents will
have been examined while finding the dead vertices, but the position of the each new vertex still
has to be determined. This can be done using information from the parent vertices and the values
of hn+1 saved above.

The only tasks remaining are those of updating the index sets and adjacencies. The index sets
of a vertex never change, so all that is required here is the creation of an index set for each new
vertex. From Fig. 4, it can be seen that the index set of any new vertex can be obtained by taking
the two indices common to both the dead and alive parent vertices and adding the new index "21"
to the set. For example, the new vertex vg is between the dead vertex v8, with index set {5, 9, 18}
and the alive vertex v1, with index set {1, 9, 18}. The index set of the new vertex is {9, 18, 21}.

For updating the adjacencies, note that the only existing adjacencies that change are those of
the alive parents, each of which is now adjacent to a new vertex instead of a dead one. For example,
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Figure 4

Vertex Structure for n = 21

in Fig. 4 the alive parent v5 is now adjacent to the new vertex v13 instead of the dead vertex v6.
Conversely, each new vertex is adjacent to its alive parent. All that remains is to determine the
adjacencies of the new vertices among themselves. First note that from Fig. 4 it seems that new
vertices with the same dead parent must be adjacent. Take, for example, v12 and V13, both of
which have the dead parent v6. This turns out to be true in general, and we show that there are, in
fact, ways to determine all the new adjacencies without having to inspect every possible adjacent
pair and count the number of elements in the intersection of the index sets.

The terminology of vertices, territories, etc. is used by Bowyer [2] and Watson [25] in the
context of Dirichlet tesselation, which has a structure similar to the polytope tesselation considered
here. In particular, the algorithm by Bowyer for adding a new point to a Dirichlet tessellation is
close to the one we use.

The rest of this section contains more precise formulations of the geometrical results just de-
scribed, culminating in a detailed description of the algorithm.

3.1 Definitions and Notation

Assume X is a compact subset of Rm and can be written X = {x E Rm: Ax < b}, for some
A, b. With hi defined as above, let Ci(n), the territory of xi, be the set of points at which the ith
upper bound function is the smallest;

Ci(n) = {x E X : hi(x) < hj(x), j =1...,n},
and note that any x E X is a member of at least one C If we let

Si= f(xi) - x'Vf(xi) + KH xi 112,
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ti = Vf(xi) - 2Kxi

we have hi(x) = si + t'x + KuI x 112, so hi(x) = hj(x) iff (t' - t^)x = 3- si. Letting A -(n)
(A', ti- t1iti - t2 ... ti - t n)' and bi(n) = (b' Si- - Sii ..., Sn -Si) we have Ci(n) = {x E
Rm: Ai(n)X< bi(n)} which gives the result below.

Proposition 3.1. For i = 1,... , n, Ci(n) is a polytope.

Definition 3.1 (vertex, vertex set, boundary vertex). A vertex of Ci(n) is an element of Ci(n)
which satisfies m linearly independent constraints from the collection Ai(n)x = bi(n). Let v(n) be
the set of all such vertices

v(n) {V: v is a vertex of C,(n)for some i}.

The constraints Ax = b will be called boundary constraints, the others functional constraints since
they have the form hi(x) = hj(x) for some j. A vertex for which the m linearly independent
constraints are all boundary constraints will be called a boundary vertex.

Linear Independence Assumption Assume that for every n, and for i = 1,..., n, any x E Ci(n)
satisfies at most m constraints from the collection Ai(n)x = bi(n). In particular, any vertex satisfies
exactly m constraints.

This assumption will hold provided each boundary vertex satisfies exactly m linearly indepen-
dent constraints from Ax = b, and for each n, and hn+l(v) $4 B(n)(v) for every v E v(n). This
holds almost invariably in practice.

Definition 3.2 (index set). For x E X define an index set

I(n)(x) = {-j: aj'x = bj} U {j: hj(x) =B-(n)(X)
The negative elements of the index set refer to the boundary constraints satisfied by x. These

constraints will always be satisfied, so the negative elements of I(n) will never change. Each positive
element j refers to a polytope Cj(n) of which x is a member. These will change whenever a new
polytope is created which contains x. The following Lemma gives a useful characterization of a
vertex.

Lemma 3.1. Let x E X. Then x E v(n) iffI(n)(x) contains exactly m + 1 elements.

Proof. If v E v(n) then v E C,(n) for some i, so i E I(n)(v) and v satisfies m linearly independent
constraints from the collection Ai(n)x = b,(n). Each constraint contributes one element to the index
set, giving a total of m + 1 elements. Conversely, x must be in Ci(n) for some i since the polytopes
cover X. There are m other elements of I(n)(x). Each negative element represents a boundary
constraint satisfied by x, each positive one a functional constraint, so by the linear independence
assumption x is a vertex of Ci(n).

Lemma 3.2. If v is a vertex and v E Ci then v is a vertex of Ci
Proof. If v E (n) then i E I(n)(v). The m other elements of I(n)(v) correspond to m constraints
from the collection Ai(n)x = bi(n) that are satisfied by v so by the linear independence assumption
v is a vertex of Ci .

Lemma 3.3. For any v E v(n) and for any i > 0, v is a vertex of Ci(n) iffi E I(n)(v).
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Proof. If v is a vertex of Ci(n) then hi(v) = B(')(v) so i E I(n)(v). Conversely, if i E I(n)(v) then
hi(v) = B(n)(v) so v E C,(n) and by Lemma 3.2, v is a vertex of C,(n). -

Definition 3.3 (adjacent, adjacency list). Let Vj,Vk E v(n). Then vj and Vk are adjacent or
neighbors if they are on the same edge of some polytope Ci(n) that is, iffor some i, there are m - 1
linearly independent constraints from the collection Ai(n)x = b (n) that are satisfied by both vj and
Vk. Let

Adj(n)(vk) = {j: v is adjacent to Vk}.

Lemma 3.4. Two vertices V3, Vk E v(n) are adjacent if I(n) (vj) n I(n)(vk) contains exactly m
elements.
Proof. If v; and Vk are adjacent, there are m - 1 linearly independent constraints from the
collection Ai(n)x = bi(n) that are satisfied by both v; and Vk. These constraints give m indices
that must be in both I(n)(vj) and I(n)(vk). Conversely, note that I(n)(v,) n I(n)(vk) must contain
some i > 0 or the two vertices would satisfy the same m linearly independent boundary constraints,
and hence be identical. Then by definition of the index sets we can find m - 1 constraints from
Ai(n)x = b(n) which are satisfied by both vj and Vk, so they are adjacent. -

Lemma 3.5. If vi, Vk E V(n)are adjacent vertices, and v is a vertex for which I(n)(v3)fnI(n)(vk) C
I(n)(v) then either v = Vj or v = Vk.

Proof. Note that reasoning as in the last proof, I(n)(vj) n I(n)(vk) must contain some i > 0. But
then if the vertices were distinct, Ci(n) would have three vertices on the same edge, which is not
possible since Ci(n) is a polytope. U

Lemma 3.6 Let v E v(n). Then if v is a boundary vertex, it is adjacent to exactly m vertices and
if v is not a boundary vertex it is adjacent to exactly m + 1 vertices.

Proof. First note that there are m + 1 subsets of size m from I(n)(v), so by Lemma 3.5 there
are at most m + 1 adjacent vertices. If v is not a boundary vertex, each of these subsets refers
to m - 1 linearly independent constraints which, by continuity, are satisfied by some elements of
X, and hence by adjacent vertices. If v is a boundary vertex, one of the subsets refers to the m
linearly independent boundary constraints that are satisfied only by v, but by continuity each of
the others are satisfied by some elements of X, and hence by adjacent vertices. U

3.2 Finding Xn+1
Finding xn+1 means finding the global maximizer of B(n). In the one-dimensional case, the

value of B(n) at intersection points could be listed and updated after each iteration. By comparing
the values of B(n) at these points we could easily find the global maximizer. The result below shows
that a similar method can be used in higher dimensions. To be specific, if we have a record of all
the vertices in v(n) and the value of B(n) at each vertex, we can simply search through the list to
find the vertex v, for which B(n) is the largest, and set Xn+1 = v*. In practice it is more efficient
to use a heap and update the heap after each function evaluation. This way v* will simply be the
vertex at the top of the heap.

Theorem 3.1. The global max of B(n) can only occur at a vertex v E v(n).
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Proof. Since the Ci(n)qs partition X and B(n)(x) = hi(x) for x E C,(n), it is sufficient to show that
for any i the maximum of hi over Ci(n) occurs at a vertex of C,(n). This follows immediately from
the fact that hi is convex and Ci(n) is a polytope. U

3.3 Updating the Upper Envelope

In the one-dimensional case the upper envelope was updated by removing the intersection point
at Xn+1 and replacing it by the two new intersection points that were created between the new
function evaluation and each of its closest neighbors. In higher dimensions the procedure is more
complicated because many vertices may need to be removed, and more than two new vertices will
be created. Fortunately, these are all easy to find using the results given below.

Definition 3.4 (dead & alive). A vertex v E v(n) is dead if hn+l(v) < B(n)(v) and alive if
hn+l (v) > B(n)(v).

Theorem 3.2 (updating V(n)). Let the linear independence assumption hold. Then

v(n+l) = {v E (n) v is alive} U {v: v is a vertex of Cn+1(n+l)}.

Proof. If v is an alive vertex of v(n), v E cn), then hj(v) < hn+l(v) by the linear independence
assumption. So I(n+l)(v) = I(n)(v), and v is a vertex by Lemma 3.1. Conversely, let v E V(n+l). If
hn+1(v) < B(n)(v) then B(n+l)(v) = hn+1(v) so n + 1 E I(n+l)(v) and by Lemma 3.3, v is a vertex
of Cn+1(n+l). Otherwise, by the linear independence assumption hn+l(v) > B(n)(v) = B(n+l)(v)
so I(n+l)(v) = I(n)(v) and so v is an alive vertex of v(n). N

So to update v(n) to V(n+l) we need to remove the dead vertices and add the vertices of
Cn+1(n+1). First consider the problem of removing the dead vertices.

Definition 3.5 (graph-connected). A set of vertices V = .v.....,vp} is graph-connected if for
any Vj1v32 E V, there exist vi1,.. .,vi, E V with v,1 = vi1 and v32 = Vip and such that vi, is
adjacent to Vik+l for all k = 1,..., p - 1.

Theorem 3.3. The set of dead vertices in v(n) is graph-connected.

Proof. Let v1, v2 be dead vertices and consider the line between v1 and v2. Since Cn+1(n+l) is
convex, hn+l(x) < B(n)(x) for every point x on this line. Suppose as we move from v1 to v2 the
line passes through the polytopes Cj, (n),*., Cj,(n) respectively. It is sufficient to show that given
a dead vertex in Cj, (n) we can reach Cjk+l (n) by moving only between adjacent dead vertices.

Now note that any dead vertices of Cj,k(n) are graph-connected because they are in the inter-
section of the polytope Cjk(n) with the halfspace Hik = {x: hn+l(x) < h,k(x)}. Furthermore,
Cjk(n) n Cjk+l (n) n Hjk is non-empty since the line passes through it. But C k(n) n Cj,k+l(n) is a
polytope and the non-empty intersection of a polytope with a halfspace contains a vertex of that
polytope, so there must be a dead vertex v E Cjk (n) n Cj,+ (n) which can be reached by moving
along the adjacencies of the dead vertices of Cjk(n). N

Theorem 3.3 allows us to find all the dead vertices without having to compute hn+1 (v) for each
vertex. Specifically, starting from the dead vertex v*. = xn+1, we examine all the adjacent vertices.
Any that are dead are noted. Then we examine all the neighbors of these vertices, noting any dead
ones that have not been found before. We continue in this way until no new dead vertices can be
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found adjacent to those we already know. By Theorem 3.3 we have found all the dead vertices.
Using this method, the only points at which hn+i(v) is evaluated are the dead vertices and their
alive neighbors. The value of h.+, at these points will be saved for later use. (See the corollary to
Theorem 3.3 below.)

Now consider the vertices of Cn+1(n+l). Theorem 3.4 and its corollary provide an easy way to
compute the location of each of these vertices.

Theorem 3.4 (finding the vertices of Cn+1(n+l)). Let v E X. Then v is a vertez of Cn+1(n+l) if
either

(i) v E v(n) is a dead boundary vertex

(ii) there exist adjacent vertices vj, Vk E V(n), where vj is dead, vk is alive, and a E [0, 1) such
that

v = avj + (1a-)Vk
hn+l(v) = B(n)(v).

Proof. Suppose v is a vertex of Cn+1(n+l) If v is a boundary vertex, it has always satisfied
the same m + 1 linearly independent boundary constraints, so it is a vertex of v(n), and since
hn+1(v) = B(n+l) (v) it is dead. If v is not a boundary vertex, note that v must be on an edge of
some polytope C,(n), and therefore there exist vertices vj and vk on the same edge of Ci(n) such
that

v = avj + (1- a)Vk for some a: 0< a <1.

Now note that {x hn+1(x) < hi(x)} is a halfspace and the edge between v; and Vk is a line
segment. These intersect at v, so one endpoint of the line segment is in the halfspace, the other is
not, and hence one of the adjacent pair is dead, the other alive.

Conversely, suppose (i) holds. Since v is a boundary vertex in v(n), it satisfies m linearly
independent boundary constraints, so it is still a vertex. Since v is dead, hn+1(v) = B(n+l)(v) so v
must be a vertex of Cn+1 (n+l). Now suppose (ii) holds. Since v; and Vk are adjacent, they are on the
same edge of some polytope Ci(n). But hi(vj) > hn+1(vi) since v; is dead, and hi(vk) < hn+1(vk)
since vk is alive, so by continuity of hn+1 and hi, there is a point v on the line between vj and Vk
for which hn+l(v) = hi(v). This point is a vertex since it satisfies the m - 1 constraints satisfied
by vj and Vk as well as this additional constraint, which must be linearly independent of the others
or vj and vk would either both be alive or both dead. U

Corollary. Let v, vj and Vk be as in Theorem 3.4 (ii). Then

hn+l(Vk) - B(n) (vk)
(hn+l(Vk) - B()(Vk))- (hn+l(v) -B(n)(v.))

Proof. Since vj, Vk, and v are on the same edge of some polytope Ci(n), hi(vj) = B(n)(Vj),
hi(Vk) = B(n)(Vk) and hi(v) = B(n)(v). But by the theorem, hn+l(v) = B(n)(v) so we have
hi(v) = hn+l(v). Substituting for v in terms of vj and vk and simplifying gives the result. m

Theorem 3.4 and its corollary allow us to find the vertices of Cn+1 (n+1) easily because each dead
boundary vertex and each adjacent dead and alive pair were located when finding the dead vertices.
The values of hn+1 at all these vertices were saved, so all the quantities required for calculating a
are readily available.
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We also need to find the values of B(n+l)(v) for each v E V(n+l). For those that are alive
vertices from v(n) this will be just B(n)(v). For those that are dead boundary vertices, we already
have B(n+l)(v) = hn+l(v) since it was saved from before. So the only computations are for the
new vertices of Cn+(n+l).

Next consider the task of updating the index sets. The index sets of the alive vertices will not
change. The index sets of the vertices of Cn+1(n+l) are easy to work out.

Proposition 3.2. (updating index sets) Let v E V(n+l).

(i) If v E v(n) and v is alive then I(n+1)(v) = I(n)(v).
(ii) Ifv is a new vertex formed between vj and Vk (see Theorem 3.4) then I(n+l)(v) = (I(n)(v3) n

I(n)(vk)) U {n + 1}.

(iii) Ifv is a boundary vertex of Cn+1(n+l) then I(n+l)(v) can be obtained from I(n)(v) by replacing
the only positive index by the value n + 1.

Proof.

(i) If v is an alive vertex of v(n), hn+l(v) > B(n)(v) so I(n)(v) c I(n+i)(v), and by Lemma 3.1
they are identical.

(ii) Since v is between v; and vk and the constraints are linear, any element of I(n)(v,) n I(n)(vk)
will be in I(n+l)(v). Since B(n+l)(v) = hn+1(v), n + 1 will also be in I(n+i)(v). This gives a
total of m + 1 elements so the result holds by Lemma 3.1.

(iii) Let v be a boundary vertex of Cn+1(n+l). The m negative elements of I(n)(v) never change,
so they will be in I(n+i)(v). Now B(n+1)(v) = hn+1(v) so n + 1 E I(n+l)(v) which gives the
required m + 1 elements. m

We finally turn to the problem of determining adjacencies.

Proposition 3.3 (updating adjacencies). Let v E V(n+l).

(i) If v is an alive vertex from v(n) then Adj(n+l)(v) can be obtained from Adj(n)(v) by replacing
any index referring to a dead vertex by the index for the resulting new vertex (Theorem 3.4).

(ii) If v is a new vertex formed between vj and Vk (see Theorem 3.4) then v is adjacent only to
Vk and to other vertices of Cn+1(n+l)1

(iii) If v is a boundary vertex of Cn+1 (n+l) then v is adjacent only to other vertices of Cn+1(n+l)
Proof.

(i) I(n+l)(v) = I(n)(v) by Proposition 3.2. The index set of any alive adjacent vertex will also
have stayed the same, so the vertex will still be adjacent. Any dead adjacent vertex will
have given rise to some new vertex, which by Proposition 3.2 shares m of the indices of
I(n)(v) = I(n+1)(v), so is adjacent to v.

(ii) By (i), the vertex must be adjacent to the alive vertex from which it was created. Now
n + 1 E I(n+l)(v) by Proposition 3.2, so the only m-element subset of I(n+1)(v) that does not
contain n + 1 is the subset shared by the alive vertex. All other subsets contain n + 1, so all
other adjacent vertices are vertices of Cn+1(n+1)*

12



(iii) Suppose v is adjacent to vi, so they are on the same edge of some polytope. By Proposition
3.2, n + 1 is the only positive element of I(n+l)(v), so they must both be vertices of Cn+i(n+l).

Proposition 3.4. (adjacencies of vertices of Cn+1(n+l)). Let v1, V2 be distinct vertices of
Cn+(l(n+l). If v1 is a boundary vertex, set v;l = vi. Otherwise, let vjl be the dead vertex which
gave rise to v1 (see Theorem 3.4). Let d, be the index which is in I(n)(vjl) but not in I(n+l)(v1).
Similarly define vj2 and d2. Then the following hold.

(i) Ifvjl = vj2 then v1 and v2 are adjacent.

(ii) If vil and vj2 are adjacent, v1 and v2 are adjacent iffd = d2.

(iii) If I(n)(vjl) n I(n)(vj2) contains m - 1 elements, v1 and v2 are adjacent iff di ¢ I(n)(v 2) and
d2 f I(n)(Vjl)

(iv) If I(n)(vj3) n I(n)(v2) contains fewer than m - 1 elements, v1 and v2 are not adjacent.

Proof.

(i) Let v-1 = vj2 = v;. Since I(n+1)(v1) contains every element of I(n)(vj) except d1 and
I(n+l)(v2) contains every element but d2, each must contain the same m - 1 element subset.
But they also contain the element n + 1, giving m indices in common, so v1 and v2 are
adjacent.

(ii) Since vjl and vj2 are adjacent, we can write I(n)(v31) = {b1,al,a2,. ..,am} and I(n)(v_j) -
{b2, a1, a2, ..., am} with b, $ b2. First note that no new vertex can occur on the edge between
vjl and vj2 since both of these vertices are dead, and clearly no boundary vertex can occur
on an edge. So b1 $& d1 and b2 $6 d2. Say d1 = a1. Then if d2 = d2, I(n+l)(v1) n I(n+1)(v2) =
{n + 1,a2, ... , am} so v1 and v2 are adjacent, and if d2 $ d1, the intersection contains one
less element, so v1 and v2 are not adjacent.

(iii) Let I(n)(vV1 ) = {ci,bi,ai,a2, ... am-,} andI(n)(v2) = {c2,ab2,a,a2, ..., am-,} with {cl, bi}
{c2, b2} = 0. Now if d1 is one of the ai's, I(n+l)(v1) n I(n+l)(v2) will contain at most m - 1
elements, namely the other ai's and n+ 1. Similarly for d2. So v1 and v2 can only be adjacent
if neither d1 nor d2 are in {a1,a2,..., am,1}. Conversely, if d1 E {c1,b1} and d2 E {c2, b2},
I(n+l)(vl ) n I(n+l)(V,2) = {n + 1, a,, a2, .. ., am-..}, which has m elements, so vil and vi2 are
adjacent.

(iv) If I(n)(vjl )n I(n) (vj2) contains fewer than m - 1 elements, then I(n+l) (vl) nI(n+l) (v2) contains
at most one more element, namely n + 1, so v1 and v2 cannot be adjacent. U

This result allows us to update the index sets easily provided we save the appropriate index di for
each new vertex vi. To make the task easier, the elements of each index set are stored in increasing
order.

4. Detailed Description of The Algorithm

The algorithm developed in section 3 is now presented in more detail. Programming details
(e.g. organization of the heap, management of arrays to allow new vertices to occupy the places of
dead vertices, etc.) are suppressed in the following description.
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The parameters m, maxit, K, El, E2, x1, and aj, b3 for j = 1,.. ., nc (where nc is the number
of boundary constraints) must be specified. The user must also supply the vertices of the domain
X, and the index sets of these vertices, with each index set in increasing order, the last element
equal to 1. Let nv be the number of boundary vertices.

It is necessary to store x* (the current estimated position of the global maximum), L f and
fmin, and for each vertex, the values of v;, B(n)(vj), I(n)(vj) and Adj(v3).

1. Initialize

(i) Calculate f(xl), Vf(XI)
(ii) For every k = 1, . . ., nv let

B(l)(vk) = hl(Vk) = f(X1) + Vf(xl)'(Vk -X1) + Kit Vk - X1 112.

(iii) For every k = 1,. ..,nv, put k in Adj(Vk). For every k,j = 1,. ..,nv with k < j, if
I(')(v3) n I(l)(vk) has m elements, put j in Adj(Vk) and k in Adj(v3).

(iv) Create a heap of the vertices.

(v) Let x, = xl, f = fi andfmin =fl
(vi) Let x2 = v*, the vertex from the top of the heap and f =B(l)(v*).
(vii) Let n = 1.

2. Evaluate the function
Compute f(xn+l)xVf(Xn+li).
If f(xn+l) > L then x* = Xn+lf = f(xn+l)
fmin= min(f(xn+l), fmin)
If f(xn+l)> f stop (K too small).

3. Update the upper envelope

(i) (Find dead vertices). Classify v* = xn+1 as dead and put it in a list of dead vertices
to be considered. Calculate hn+l(v*) and save.
(A) If the list is empty, go to (ii). Otherwise, take a vertex v off the list.
(B) Find a vertex vj adjacent to v. If vj is already classified, go to (C). If vj is not yet

classified, calculate hn+l(vj) and save. If h,+1(vj) < B(n)(vj), classify v; as dead
and add it to the list, otherwise, classify vj as alive.

(C) If all vertices adjacent to v have been looked at, return to (A), otherwise return to
(B).

(ii) (New vertices). For each dead vertex v; and adjacent alive vertex vk do the following.
(A) Let nv = nv + 1. Let vn, = avj + (1 - a)Vk, where

hn+l(vk) - B(n)(vk)
(hn+l(Vk) - B(n)(vk)) - (hn+l(vj) -B(n)(vj))

(B) Let

I(n+l)(nvn)= (I(n)(vj) n I(n)(vk)) U {n + 1},
B(n+l)(vnv) = hn+l(Vnv).
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(C) Replace j by nv in Adj(Vk). Let Adj(vnv) = {k}.
(D) Update the heap.
(E) Let d(vnv) be the element of I(n)(v,) that was replaced by n + 1 in step (B). Save

to use in part (iv).
(iii) (Boundary vertices). For each dead bou. lary vertex vj do the following.

(A) Let nv = nv + 1. Let vnv = v;.
(B) Obtain I(n+1)(vnv) from I(n)(vi) by replacing the positive element by n + 1.

Let B(n+l)(Vnv) = hn+l(vj).
(C) Let Adj(vnv) = {nv}.
(D) Update the heap.
(E) Let d(vnv) be the element of I(n)(v3) that was replaced by n + 1 in step (B). Save

to use in part (iv).
(iv) (Update adjacencies).

(A) For every dead vertex v;, record that all new vertices obtained from v; in part (ii)
or (iii) above are adjacent to each other.

(B) For every adjacent pair of dead vertices vj and vj2, look at every pair of new
vertices created from these in part (ii) or (iii). Suppose v1 was created from vj1 and
v2 was created from vj2. If d(vi) = d(v2), then record v1i and Vi2 as adjacent.

(C) For every adjacent pair of dead vertices vj, and vj2, determine whether I(n)(vJ1)
and I(n) (vj2) differ by two elements. If so, look at every pair of new vertices created
from vj, and vj2 in part (ii) or (iii). Suppose v, was created from vj1 and v2 was
created from vh2. Then record v, and v2 as adjacent if neither d(vi) nor d(v2) is
in the set I(n)(vjl) n I(n)(vj2).

4. Find next point
Find xn+2 = the vertex from the top of the heap, and let f = B(n+l)(xn+2).

5. Test for convergence
If n = maxit or

f - f <. l and f-f < E2

then stop; x* is the estimate of the position of the global maximum and f is the function
value at this point. Otherwise, set n = n + 1 and return to step 2.

5. Computational Behavior

In this section we investigate the storage and cpu time requirements of the algorithm and the
dependence of these on the dimensionality of the problem and the number of function evaluations.
The example we consider is the cosine example given in the appendix;

m m

f(x) = a COS(CX) - Xi2,
i=l i=l

with a = 0.1, c = Sir and Kf = 11.34 .

15



In Dixon & Szeg6 [9] the authors present the results of several global optimization algorithms
for a set of test functions for global optimization. They report the number of function evaluations
required by each algorithm and the cpu time in terms of standard time. Standard time is defined
as the time it takes to evaluate the Shekel(5) function 1000 times. This method of assessing the
performance of an algorithm, while not without problems, is widely used as a means of comparing
algorithms and it seems reasonable that we present results along similar lines.

For this reason, all timing results will be presented in units of standard time as defined above.
However, we note here that the definition of standard time, while an attempt to provide an objective
means of comparing results from different machines, is highly dependent on the use of a floating
point accelerator. This is because the floating point accelerator speeds up the evaluation of the
Shekel(5) function considerably, but programs which are less floating-point intensive are not speeded
up as much. Most of the timing results presented in what follows will be given in fpa standard time.

5.1 Dependence of Time on Dimensionality and Number of Function Evaluations

The program has been run for the COS function in 1, 2, 3, 4, 5 and 6 dimensions, and for n =
100, 200, 300 and 400 iterations (=function evaluations). It was also run for 1 iteration to give an
idea of the setup time. Note that for these examples E2 = 10-6 and K = 10000 were used since
otherwise the algorithm converged in less than 400 iterations for m = 1. Table 1 gives the time in
fpa standard time, and the number of vertices for each of these situations.

For any dimension, the time taken goes up roughly in proportion to n, as does the number of
vertices, so the time per vertex does not increase significantly as the number of function evaluations
increases. However, for 6 dimensions the amount of memory required was so great that page faults
were encountered, which probably accounts in part for the rather sharp increase in the time per
vertex. The fact that the time per vertex does not appreciably increase with the number of function
evaluations (equivalently with the number of vertices) is an indication that the efforts to get efficient
updates of B(W) have largely succeeded.

On the other hand, comparing across dimensions, the increase in both the number of vertices
and the cpu time is roughly exponential. Since it is necessary to store the vertices and various facts
pertaining to each vertex, the storage required for the algorithm increases rapidly with dimension.
In a 32 megabyte machine, virtual memory was required for 400 function evaluations in 6 dimen-
sions. But 400 function evaluations in 6 dimensions is not usually enough to get close to the global
maximum for complicated functions.
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Table 1

Cpu-time and Number of Vertices for COS function, different dimensions
n is the number of iterations
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Time (fpa standard time)
dimension (m)

1 2 3 4 5 6
1 .32 .32 .32 .32 .48 .52

100 .77 2.13 6.61 26.77 140.65 658.06
n 200 1.45 3.61 13.87 64.84 380.32 1900.00

300 2.00 5.48 21.29 107.42 635.16 4360.32
400 2.58 7.31 29.40 150.00 894.84 15590.52

Number of vertices
dimension (m)

1 2 3 4 5 6
1 2 4 8 16 32 64

100 101 202 522 1576 4787 14796
n 200 201 402 1103 3454 11121 39766

300 301 602 1675 5388 17691 67304
400 401 802 2265 7446 25773 97766



5.2 Rate of Convergence

The rate of convergence of the algorithm was investigated for the COS function in 1, 2, 3 and
4 dimensions. Table 2 gives the results of running the algorithm to convergence for each of these
cases with cl = 10-2, and C2 = 10-4. The number of function evaluations and the time increases
rapidly with the dimensionality of the function, but the number of local maxima are also increasing.
Again, the different co-processors give very different results.

Table 2
Results of running the algorithm to convergence, COS function

5.3 Performance on Test Functions

In this section we look at the performance of the algorithm for a number of simple examples
and where possible compare it to published results.

The appendix contains definitions of the example functions. In Table A6 we list various facts
about the functions, including the upper bound constant K, the number of local maxima, the
number of these that are global, and the location and value of the global maximum. The ex-

amples we consider here are the one-dimensional functions WingoA, WingoB and WingoC, the
two-dimensional functions EXP2, COS2, S&H, GW, G&P, RCOS and C6, the three-dimensional
functions F&N and H3, and the four-dimensional EXP4 and COS4. The four-dimensional exam-

ples S5, S7 and S10 and the six-dimensional H6 given in Dixon & Szego [9] were not considered
here because for these functions the algorithm converged slowly and required a large amount of
workspace.

In Table 3 we present the results of running the upper bound algorithm. For each example,
,E = 10-2 and 62 = 10-4. The time has been given in units of fpa standard time. Approximate
values for soft standard time have been obtained for most functions by dividing the fpa standard
time by 4. As with all optimization routines, this algorithm works better for some functions than
others.

Wingo [27] used a derivative-free algorithm due to Brent [5] to find the global maximum for
the three Wingo functions. Brent's method took 71, 107 and 1048 function evaluations for the
three functions. The upper bound algorithm took 16, 21 and 391 function evaluations for the same
functions, but these should be multiplied by two since with each function evaluation there is a

derivative evaluation. We also note that Wingo used a different stopping criterion than we used.
Even taking these things into consideration, the upper bound algorithm does seem to compare

favorably with Brent's algorithm for these 1-dimensional functions.
Table 4 gives results from the literature in terms of the number of function evaluations and

the units of standard time. It must be noted that it is difficult to compare algorithms in this way

because the algorithms employ different stopping rules. If, for example, we had selected different
values of El and E2, we could have increased or decreased the number of function evaluations and
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number of
dimensions function number of soft 68881 fpa

m evaluations local max std time std time std time
ii _19_.05 .38 .82
2 77 25 .53 1.06 1.83
3 327 125 7.04 13.75 23.66
4 1 1392 1 6251 179.88 1441.75 1660.97



standard time considerably. Also, for a fair comparison, the number of function evaluations for the
upper bound algorithm must be multiplied by m + 1 since for each function we perform a gradient
evaluation.

In terms of function evaluations, the upper bound algorithm seems to compare reasonably well
with the other algorithms for the functions GW, C6 and RCOS. It does not work as well for G&P,
for which the algorithm does not converge in 10000 iterations. It is also not particularly good for
H3. In terms of time, the upper bound algorithm compares favorably with the other algorithms for
the RCOS function but not for any of the other functions.

One problem is in the analytic computation of a good upper bound constant. A more difficult
problem is that the upper bound constant may differ drastically over different subregions of X and
its maximum value on X is very high, but occurs only in a small subregion not containing the global
optimum. This seems to be the problem with the (G & P) function. On the other hand, the upper
bound constant for RCOS is "uniformly fairly good" over the entire region.

At this stage, the upper bound algorithm seems rather more expensive than the methods avail-
able from the literature. However, all of the algorithms taken from the literature are stochastic
and may fail to locate the global maximum a significant proportion of the time, whereas the upper
bound algorithm locates it with certainty when the upper bound constant is known. Moreover, not
all the researchers have published results on how often the algorithm finds the global maximum, so
it is difficult to know how reliable some of these methods are. Another point in favor of the upper
bound algorithm is that although the overhead is high, leading to high values for standard time,
the number of function evaluations is often competitive with the existing algorithms. If a function
is expensive to evaluate the overhead is less significant. Then the upper bound algorithm may do
better than many of its competitors.

We have also found (Cutler [6]) that combining the upper bound algorithm with an occasional
local search usually results in a much faster convergence and a subsequent reduction in cpu-time.
In fact, this combination is competitive with the best timing results for published algorithms. This
modified algorithm will be the subject of a forthcoming report.

A RATFOR or FORTRAN listing of the upper bound algorithm is available by writing to A.
Cutler, Dept. of Mathematics & Statistics, Lund Hall, Utah State University, Logan, Utah 84322-
3900 or is available via e-mail (address: adele@sunfs.math.usu.edu)
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Table 3
Results of Upper Bound Algorithm for Example Functions.

Function definitions are given in the appendix. K is the upper bound constant, n is the number
of function evaluations, x* is
evaluations.

the location of fma, the largest function value obtained in the n

Table 4
Comparison with Other Methods.

t Results taken from Dixon & Szego [9]
L: the algorithm found a local maximum.

N: The algorithm did not converge in 10000 iterations.

20

fpa std soft std
function I K| n | _:* fmax time time (est.)
WingoA .5 16 7.068 -15.282 .72 .18
WingoB 1.25 21 7.724 -44.957 .77 .19
WingoC 3.125 391 118.487 -261.787 4.49 1.12
EXP2 .223 24 (-7.3e-4,-3.0e-3) 1.000 .95 .24
EXP4 .223 117 (-4.2e-3,1.6e-3, 1.000 33.48 8.37

9.4e-4,1.4e-3)
COS2 11.34 77 (-1.5e-3,-3.5e-4) 0.200 1.83 .53
COS4 11.34 1392 (9-7e-4,7.5e-4, 0.400 660.97 179.88

1.2e-3,1. le-3)
S&H 45.35 667 (12.579,1.751) 95.283 19.16 4.79
GW .495 939 (-3.Oe-2,5.Oe-2) 1.000 17.65 4.41
G&P 1.7e6 1000ON (2.7e-3,-1.001) -3.002 187.81 46.95
RCOS 8.56 269 (9.421,2.489) -.398 4.92 1.23
C6 4.5 112 (-9.2e-2,.715) 1.032 2.42 .60
F&N 13.11 8657 (110.33,6.88,.89) -74.196 869.10 217.27
H3 197.1 2575 (.117,.555,.852) 3.863 213.42 53.35

Number of function evaluations Units of standard time
Method Function I Function

GW C6 G&P RCOS H3 1GW C6 G&P RCOS H3
T6rn [24] - - 2499 1558 2584 - - 4 4 8
de Biase & Frontini [1] - - 378 597 732 - - 15 14 17
& Frontini [1]
Price [16] - - 2500 1600 2400 - - 3 4 8
Bremermann [4] t - - 300 160 420L - - 0.7 0.5 2L
Rinnooy Kan - - 148 206 197 - - 0.15 0.25 0.5
& Timmer [19&20]
Snyman & Fatti [23] 1496 178 474 - 365 1.4 0.1 0.2 - 0.6
Vanderbilt - - 1186 557 1224 - - 2 1 4
& Louie [25]
New Method 939 112 N 269 2575 4.41 .6 N 1.23 53.35



Appendix: Example Functions

Most of the following examples were taken from Dixon & Szeg6 [9]. We also included a number of
statistical examples.

The dimensionality and the location of the global maxima for these functions are summarized
in Table A6.

Cauchy Likelihood: WingoA, WingoB, WingoC (Wingo [27]).

* Dimensions: 1.

* Definition: For a given set of data Yi < Y2 < ... < y, we wish to maximize the log likelihood
for the one-parameter Cauchy distribution. This entails maximizing

f(X)=g[og(r) + log(l + (y, - x)2)]
i=l

with respect to x. The values of yi given by Wingo [27] are in Table Al.

* Region of interest: Yi < x < yn.

* Starting point: 9.5 for WingoA, 13.0 for WingoB, 242.5 for WingoC.

Exponential: EXP

* Dimensions: variable.

* Definition:
f(x) = e 2E .

* Region of interest: -I < xi < 1 for i = m.

* Starting point: xi = 0.2 for i =,...,m.

Cosine Mixture: COS

* Dimensions: variable.

* Definition:
m m

f(x) = a cos(cxi)- Xi2 a > 0,c > 0.
i=l i=l

* For our example, let a = 0.1 and c = 57r.

* Region of interest: -1 < xi < 1 for i =1,...,m.

* Starting point: xi =0.5 for i = 1,...,m.

Poissonian Pulse-train Likelihood: S&H (Slump & Hoenders [22]).

* Dimensions: 2.
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* Definition:
p

f(X) = Z (-Ai(x) + ftilog(Ai(x)) - log(fi!))I
i=l

where

Ai(x) = a [1 + 3 exp{ 2 (i X o)}]

and a = 2.0, ,3 = 2.5, A0 = 3.0, p = 21 and the values of 'ni, i = 1, . . ., p are given in Table A2.

* Region of interest: 1 < xi . 21,1< X2 < 8.

* Starting point: xl = 11.0,x2 = 4.5.

Griewank: GW (Griewank [13]).

* Dimensions: 2.

* Definition:

f(x) d- + cos ( ).

We consider only m = 2 and d = 200.

* Region of interest: -100 < xi < 100 for i = 1, ..., m.

* Starting point: x1 < 25.0, x2 < 25.0.

Goldstein & Price: G&P (Dixon & Szego [9]).

* Dimensions: 2.

* Definition:

f(x) = -[i + (X1 + X2 + 1)2(3x12 + 3X22 + 6xjX2- 14x1- 14X2 + 19)] *

[30 + (2x1 - 3x2)2(12x12 + 27X22- 36xlx2- 32x1 + 48X2 + 18)]

* Region of interest: -2 < x1 < 2 and -2 < x2 < 2.

* Starting point: xl = -1.0,x2 = 1.0.

Branin: RCOS (Dixon & Szego [9]).

* Dimensions: 2.

* Definition:
f(x) = - [a(x2- bx12 + cx1 - d)2 + e(l-f)cosxl + e]

where a = 1, b = ;,c= -,d= 6,e= 10,f = 1.

* Region of interest: -5 < xl < 10, 0 < x2 < 15.

* Starting point: xI < 0.0, x2 < 5.0.

Six-Hump Camel Back Function: C6
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* Dimensions: 2.

* Definition:
f(x) = -(42- 2.1x + x + X1x2- 4x2 + 4x4).

* Region of interest: -5 < x1 < 5,-5 . x2 < 5

* Starting point: xl = 0.0, x2 = 0.0.

Binomial Likelihood: F&N (Freedman & Navidi [11]).

* Dimensions: 3.

* Definition:
n

f(x) = , [vi log(l - efi) - fi(Pi - vi)]

where
fi(X) = Xlt?(1 + x2di)(1 + x3di),

and ti, di, pi, and vi are given in Table A3.

* Region of interest: 100 < x1 < 140, 0.1 < 2 < 8, 0.1 < X3 < 8, with X3 < X2.

* Starting point: xi = 120.0, x2 = 4.0, X3 = 2.0.

Hartman: H3 (Dixon & Szego [9]).

* Dimensions: 3.

* Definition:

f(X) = E cie- z=1 a,,(x,-)2
i=l

where the ai3, pij and ci are given in Table A4.

* Region of interest: 0 < xi < 1 for i = 1, . .., 3.

* Starting point: x1 = 0.6, x2 = 0.7, X3 = 0.8.

Shekel: S5 (Dixon & Szego [9]).

* Dimensions: 4.

* Definition:
n

f(X) = E I

j=1 (x - ai)'(x - ai) + ci

where the ai , c2 are given in Table A5.

* Region of interest: 0 < xi < 10 for 1,. . ., m.

* Starting point: x1 = 6.0, x2 = 7.0, X3 = 8.0, X4 = 9.0.
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Table Al
Data for Wingo functions.

Table A2
Data for S&H function.

i 1 2 3 4 5 6 78 9 112 3 14 15161718 19 20 21
i 5 2 4 2 7 2 4 5 4 4 15 10 8 15 5 6 3 4 5 2 6

Table A3
Data for F&N function.

Table A4
Data for H3 functions.
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Function Data
Wingo A 3 7 12 17
WingoB 2 5 7 8 11 15 17 21 23 26
Wingo C 4.1 7.7 17.5 31.4 32.7 92.4 115.3 118.3 119.0 129.6

198.6 200.7 242.5 255.0 274.7 274.7 303.8 334.1 430.0 489.1
l 1 703.4 978.0 1656.0 1697.8 2745.6 l

i ti di Pi vi ll ti di Pi Vi
1 .18 .00 401 3 16 .33 .60 11 7
2 .24 .00 383 5 17 .17 .75 134 7
3 .33 .00 23 4 18 .18 .75 267 12
4 .18 .30 1573 25 19 .24 .75 311 69
5 .24 .30 900 83 20 .33 .75 12 9
6 .33 .30 92 35 21 .17 1.00 67 3
7 .17 .35 389 9 22 .18 1.00 131 5
8 .18 .35 792 19 23 .24 1.00 160 44
9 .24 .35 639 52 24 .33 1.00 10 10

10 .33 .35 45 21 25 .15 1.50 90 5
11 .18 .45 383 3 26 .16 1.50 86 6
12 .24 .45 445 39 27 .17 1.50 65 4
13 .33 .45 12 5 28 .18 1.50 121 12
14 .18 .60 268 6 29 .24 1.50 130 50
15 .24 .60 415 60 I.I

i aij I ci I Pij I
1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.8828



Table A5
Data for S5 function.

Table A6
Example Functions.
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[ i I aij I ci I
1 4. 4. 4. 4. .1
2 1. 1. 1. 1. .2
3 8. 8. 8. 8. .2
4 6. 6. 6. 6. .4
5 3. 7. 3. 7. .4

function m #local(global) x* f* K
(dims) max

WingoA 1 4(1) 7.062 -15.282 .5
WingoB 1 10(1) 7.729 -44.957 1.25
WingoC 1 25(1) 118.497 -261.786 3.125
EXP2 2 1(1) (0,0) 1 .223
EXP4 4 1(1) (0,0,0,0) 1 .223
COS2 2 25(1) (0,0) .2 11.34
COS4 4 625(1) (0,0,0,0) .4 11.34
S&H 2 1(1) (12.578,1.751) 95.283 45.35
GW 2 713(1) (0,0) 1 .495
G&P 2 4(1) (0,-1) -3 1.7e6
RCOS 2 3(3) (-3.142,12.275) -.398 8.56

(9.425,2.475) -.398
(3.142,2.275) -.398

C6 2 6(2) (8.984e-2,-.713) 1.032 4.5
(-8.984e-2,.713) 1.032

F&N 3 1(1) (109.784,6.989,.874) -74.194 13.11
H3 3 3(1) (.115,.556,.853) 3.863 197.1
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