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Abstract

Lower bounds for the minimax risk are found for density and regression functions
satisfying a uniform Lipschitz condition. The measure of loss is integrated squared
error or squared Hellinger distance. Ratios of known upper bounds to these lower
bounds are shown to be as small as two in a specific example.
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0. Introduction

Lower bounds for the asymptotic miniax rsk under squared error loss have
recently been found for a variety of nonparametric problems. The pointwise estima-
tion of regression functions or densities has received particular attention. For a large
class of models, ratios of the maximum risk of best linear estimators to the minimax
risk has been shown to be close to one. (See Brown and Farrell (1987), Brown and
Low (1988), Donoho and Liu (1987, 1988).)

When interest has focused on estimating an entire density or regression function
loss functions typically considered are L1 or integrated squared error. The L1 approach
to density estimation has been summarized by Devroye and Gyorfi (1985).

For an integrated squared error loss Stone (1982) has established best asymptotic
rates for nonparametric regression and density estmaion. For certain ellipsoidal
parameter spaces, Efroimovich and Pinsker (1982) and Nussbaum (1985) found first
order asymptotically optimal solutions.

In this paper we consider density or regression functions satisfying a uniform
Lipschitz condition

(0.1) If(x)-f(Y)I < MIX-YI.
1 1We denote by R(M) the set of functions defined on [-- 2 ] which satisfy (0.1).2' 2

The subset of all density functions which belong to R(M) will be written D(M).
These parameter spaces are not ellipsoidal. In Section 1 we derive lower bounds for
the ninimax risk over the classes D(M) and R(M) for density estimation and non-
parametric regression respectively. For density estimation we look at both integrated
squared error loss and squared Hellinger distance losses. For nonparametric regression
we only consider integrated squared error. We have restricted attention to densities
and regression functions satisfying (0.1) so that we can compare these lower bounds to
known upper bounds. This is done in Section 2. We should point out, however, that
the method we use to construct lower bounds can be applied in a variety of other con-
texts eveit if sometimes more ingenuity is needed. Essential to our arguments is a
knowledge of good lower bounds for the corresponding pointwise estimation problem.
The proof of Theorem 1 then shows how to connect the pointwise estimation problem
to the global estimaton problem.

The results in this paper should therefore be understood as part of an ongoing
effort to find general techniques for bounding the minimax risk in nonpametric prob-
lems. See for example Donoho and Johnstone (1989). The contribution of this paper
is to show how to connect local problems to global problems.
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1. Lower Bounds

a) Local

We consider two nonparametric statistical problems. In density estimation we
observe i.i.d. random variables X1, . , Xn each with density f e D (M). In the

regression problem observe Yi-N(r(yi),1), independent, yi - -" i=l,...,n,
where r e R(M). Estimators of f or r will be written fn or r where the subscript n will
indicate that fn and ^ are functions of X1,... ,Xn and Y1,.. Yn.

Before establishing lower bounds for estimating an entire density or regression
function we need corresponding results for the pointwise problem. This local problem
has recently been addressed by Donoho and Liu (1987, 1988). In particular the propo
sition given below is essentially contained in these papers. For this reason we only
give a brief outline of a proof here.

In both the pointwise and global estimation problems the lower bounds are
expressed in terms of the minimax risk for the bounded normal mean problem. Let
p (d, 02) be the minimax risk of estimating 0 from one observation for the family
{N(0,a2),I0l < d).

We write fen and sn' for densities and regression functions on the interval [- -X0 ~~~~~22
defined by

fn(x) = ti + g&(x)J (Cn(0))
Son(X) = gn (X)

where

(1.1) ge (x) = 1+X

(1.2) Cn(0) = (1 +Jg(x)dx) = 1 + OD 1/3.
Let

(1.3) d Nm[21

Proposition

a) If X1,... , Xn are i.i.d. random variables with common density fqn, then

(1.4) lim sup n" inf Ep (0 - O)2 = M 2'3[3 d7]/3p(d,1).
n-->o e.IOeI:MDhnk.2
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b) If Y1,... , Y. are independent N (s; (yi), 1) then

(1.5) limsup n2 inf sup E )2 = M23 3 d23 p (d, 1).

Proof

2 ~~~~~~~~~~~~~~~n
Let i [2= D12 n13 0 and P, be the probability with density rl fon(xj) with

respect to Lebesgue measure on Rn. Straightforward calculations show that the experi-

ments (P,,: I'VI s []3 D3/2) converge to the experiment (N (r, 1):

Iv1 s [}] MD3a2). Similar calculations may be found in Donoho and Liu (1988).

Hence

lrnn2 inf su -113 Ef (0 n9)2

(1.6) [ 2 1/P[33/2] 1]

1/2
Since d = NM3'2

1/3
(1.7) D-1 = L- JM22/3 d-2

(1.6) and (1.7) taken together yield (1.4). (1.5) is established in a similar way.

b) Global
To obtain our global lower bounds we construct perturbations of a fixed density f0

and regression s0. We choose

f0: [,1] -* R, fo(x) 1

and

so: [0,1] - R, s0(x) 3 0.

Let D > 0 and 3n(D) = [n1/3 / 2D where [ ] denotes the greatest integer less than.
Our subfamilies of interest are

fe (x) = [fo (x) + gi; (x - (2i - 1) D n41'3) (C(n) ( fn))1l

0fn = (01 ...I0p) lO 1.sMDn1/3, i= 1,..,4 n



I Cn (01)
i=l

s0 (x) = sO (x) +
On
, gl; (x - (2i - 1) D n-1/3)
1

where gon and C. (O) are defined in (1.1) and (1.2).

Lower bounds for the global problem will be written in terms of sup d-'3 p (d, 1).

This is facilitated -by a recent study of m (q) = sup d2q-2 p (d, 1) by Donoho and Liu

(1987). They found m 2= sup d-23 p (d,1) = 0.450

Theorem 1 Let Xl,... , Xn be i.i.d. random variables with density f e D (M). Then

a)

(1.6) limsupn2/3inf sup Ef
n--~cm in f D(M) f(f(x)-fn(x))2dx] 2 sup d-"3p (d, 1)

, 1/3
- 12 M2-3 0.45

b)

(1.7) lim sup n2r3 inf su Ef J [ -
n--),ao in fED(M) l

Proof

a) Let Ri (1,f =
2iDn-3

j| (fen(x) - f (X))2 and
(2i-2)D n-13

i (on) = (O, . . . 9 09 oil,0 . . . ,0 ). Then

1

(x) - 2 inf sup Ef F. Ri (fon fA)
?. en i=-1

2 inf su Ri (0,fn)

- [fd)
iinfnsup E [1) -X)-X3 21ce

since C(n (0On) - ii -+ 0 as n -*oo, uniformly for all 0" s.t. OI0< MDn-13. Hence

dn) ((n) =

" 1/3
>

1 1 M213 sup d-213 p (d, 1) .

4 L 12 i d
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inf U&Ef[J(f(X) -fn(x))2dx] 2 inf S E (%X)91)fn(x))2]
in ASD A)0 0nfsu el (g(x-d

= i()Inf sup lxi 2 (01 - 0 (x))2dx0(x)01 I Dif1/3 (I1(9n)0(X)01L Dn7 ) +

n 232Dn1/3M2 [3 j f213p(d,1)(1 + o(1)).
2D 3 2

where d is defined in (1.3). Now (1.6) follows on taking sup.
dp

(1.7) Follows from the observation 41+ O = 1 + -0 + 0(02) and the analysis
2

given in a).
Theorem 2 Let Yi = r (yi) + ei where ei are i.i.d. N (0, 1) random variables, r e R (M)
and yi are equally spaced in the interval [ 0, 1. Then

lim n2/3 inf s uEr (rn(x) - r(x))2 1 l d
n--*. ?rER&) 12x M1 ud p(,1

Proof

Replace f by r and D by R in the proof of Theorem 1.

2. Upper Bounds

Throughout this section minimax risk refers to an integrated squared error loss. An
obvious but crude upper bound for the minimax risk can be given in terms of the
asymptotic linear mininax risk for the pointwise estimation problem under squared
error loss. Let D (M, 1) be the class of densities such that f e D (M) and f(xo) S 1.
Then clealy the asymptotic minimax risk of the best linear estimator for estimating
f (xo) when f is assumed to belong to D ((M, 1) is an upper bound for the minimax risk
under integrated squared loss over the class D (M). Similarly in the regression context
the asymptotic linear minmax risk over the class R (M) for the pointwise problem is
an upper bound for the minimax risk of the global problem.

For the classes D (M, 1) and R (M) the asymptotic best linear estimators for the
pointwise estimation of density and regression functions can be found in Sacks and
Ylvisaker (1978, 1981). Alternatively the hardest linear subfamily methodology of
Donoho and Liu (1987, 1988) also yields these best linear estimators.
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The asymptotic minimax nsk for these best linear estmators over the classes
D (M, 1) and R (M) for the density and regression problems respectively is the same
and is given by

(2.1) BL (M) n-13

where

The

B = 1/3
BL(M) = M213 L1

The ratio of these upper bounds to the lower bounds given in Theorem 1 and
M23(!)1/3

,orem 2 is given bv 3 -= 3.
M213 (12l)1/3045

12
04

The upper bounds given in (2.1) are quite conservative. For the class of densities

(2.3) EP(B) = (f: [0,1] -÷ R, f > ff= 1, f'25 B2).
Efroimovich and Pinsker (1982) found the asymptotic minimax risk. Nussbaum (1985)
did likewise for the regression problem with

N(M) = {f: [0,1] - R, ff2 B2).

Since D(M, 1) C. EP(M) and R(M, 1) c N(M), these numbers are also upper
bounds for the classes D (M) and R (M). The ratios of these upper bounds to our
lower bounds are the same and equal to

[ 3 2 1/3
L4
11 2.2.

-0.45
12

Moreover, we believe the upper bounds derived from Efroimovich and Pinsker are
an overestimate of the minimax risk.

Conjecture

Let ci = (-1)iDnf/3, Nn = 2 4D

f^(x) nDIfl'31n I-x -__

i--1Dn 1

fn(x) = f(Dn) < x

fn(x) = fn(l - Dn) 1 - Dn

Dn1/3 -< x < 1 - Dn-1/3

Dn-1/3
-1/3 -< x 1

q- _--- -.CoI A&. -- v
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and
Nu

fn(x) = 1 + 4(x1-(2i-3)Dnf1').
Then we conjecture

(2.4) limnm sun EfFJ(fn = -lfx3n- f,fn(x)fn dx|n- feD(Li) LO()-f() nxli Ef[0X f()2

Calculation of the right hand side of (2.4) is straightforward and yields
D2 + 2(2.5) 63 3D

(2.5) takes its minimum value of 1 , when D = (21)1"3. This gives a ratio
(21)1/3

= 1.84.
(1 )1/3.0.45
12
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