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Introduction.

Finite dimensional Gaussian shift experiments often arise as limiting experiments in
many classical parametric statistical problems. Infinite dimensional Gaussian shift
experiments have been exploited as limit experiments in a variety of nonparametric
problems. See Millar [1979] for examples arising from estimating distribution func-
tions.

Certain pointwise estimation problems arising in density estimation and non-
parametric regression have also been shown to have an infinite dimensional Gaussian
shift experiment as a natural limiting experiment. The two most important cases are
given by

1) dXt = f(t)dt + dWt O < t < oo

f E F c L2[0,oo]

and where Wt is Brownian motion

2) dXt = f(t)dt + dW t <t <oo

f E F ' L2( °

[Wt, t > O
and Wt = {W2 t where WJ1 and W 2 are independent Brownian motion. In both

cases the estimation problem is to estimate f (0). This estimation problem is also of
course of interest in its own right. Related problems arising in other nonparametric
situation can be found in work of Brown and Farrell [1987], Donoho and Liu [1988]
and Romano [1989].

This paper takes a new look at the signal estimation problem given by 1). 2) can
be handles entirely analogously. In particular we show how to reduce the problem of
estimating f(0) from n observations to the problem of estimating f(0) from one obser-
vation. As a trivial consequence asymptotic minimax rates for a large class of F's and
many loss functions can be found. Estimators achieving these rates can be given.
Examples are given in Section 3. They can be compared to Farrell's rates for density
estimation problems Farrell [1972]. This paper is however not primarily concerned
with rate questions. In fact it is the exact relationship between n observations and one
observation that is important. In Section 2 Theorem 1 gives a precise statement of the
invariance hinted at above. Since the assumptions made on the parameter spaces in
Theorem 1 are somewhat unusual we give some concrete applications in Section 3.
Included in this section we show how Theorem 1 can also yield the functional depen-
dence of the minimax risk over a whole class of parameter spaces F (M). We leave a
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proof of Theorem 1 to Section 4.

Section 2.

Our main interest is to compare the problems of one and n observations from the
model given in (1). However if X1, X,2... , X n are independent then

Xil+ **+ Xn
(1) Y xt t

t ~~n
is a stochastic process satisfying

(3) dYt = f(t)dt + -=dWt [O < t < oo).

Hence we may instead just compare the problems of observing one observation
from 3) for different values of n. (3) induces a statistical experiment (for each n)
when we let f E F C L2[0,oo).

It will also be convenient to introduce a second sequence of statistical experiments
given by

(4) dYn f( dt + dWt, 0 < t < oo

where an2 f3 = n and f e F. We shall sometimes write Yn (t) for yn when the result-
ing expression is easier to read.

Remark: If we take a, = .l = 1 then (3) and (4) are the same for n = 1, but we do
not only restrict to that case.

The importance of this second sequence of experiments will be clear from the
lemma given below and the remarks following it. Its proof is clear and so is left to
the reader.

Lemma: Suppose yn (t) has a distribution given by (4). Then

(5) Z (t) = cn On Yn (t / n)
follows a distribution given by

(6) dZ (t) = f (t) dt + dWt
Similar if Z (t) has distribution given by (6) then Yn (t) defined by (5) has distribution
given by (4).

Remark:

The lemma establishes a precise equivalence between every pair of experiments in
the sequence of experiments given in (4). This equivalence can be thought of in terms
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of Le Cam's theory of experiments or in terms of Blackwells sufficiency of two exper-
iments. Although these points of view put the lemma into context the reader does not
have to be familiar with these ideas to follow this paper.

To connect the lemma with the more interesting sequence of experiments given by
(3) we need to take a more decision theoretic viewpoint and introduce loss functions.
In fact we will allow the loss function to depend on n subject to the following condi-
tion.

Assumption A: We restrict attention to a sequence of loss functions In and a fixed
loss function I such that

i) In: L2[0,oo] x R - R+
1: L2[0,oo] x R -e R

ii) There is a function g: R -e R such that if ai On = n then

f(nnt) a
1n 9 I = g(an)1I(f,a).

Now let o be an estimator, 5: 12[0, co) -e R. Egm Ln(f, 8 (X (t)) is then to be inter-
preted as taking the expectation, under the model

(7) dXt= g(t)dt + dWt

of the random function In (f, 8). When g = f and m = n this is the risk of the estimator
8 with loss function In under model (3).

Theorem: Let (Tn f) (t) = (n where Ox.13n = n and for each estimator 8n let °n be
a~n

defined by an(Z(t) n [Z(On0 ]. Then

(8) ET,f In (Tn f,Sn) = g (an) E I (f, 8n)

f(9SU)Ffn In(fn °n) = g(an)supE I (f 8n)
(10) inffS?PEnfnin(fni,n) = g(cn)infsu Ef1l (f,8)

Cor 1: If TnF=FandTlf=fforallfe Fthen

(11) infsu EVnln(f,8n) = g(can)infsu1 Et'i(f,8)

Cor 2:

(12) inf sup E '11(f,8;1) = g (aI)insfsupEf l(f,8).
61 fET1F & fF
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Section 3. Applications.

Example 1. Write fk (x) for the kth derivative of f. Let F (k, M) = {f E L2 (0, o°):
fk(x) ' M Vx) and let

in I satisfying I (f, a) = (f (0) - a)q .

Furthermore take an = nk/2k+1, n = n+l/2k+l. Then cr. j3n = n, TnF = F and
f(,t) a

The assumptions of Cor 1 then clearly hold and yields

inf sup En(f (0) - Bn)q = _

1 inf sup Ef (f(0) _- )q.
ftRF(kM) fn*k'2+1 8 ftF(k,M)f
-1

Also let al = M 2k+1 J3, = M22k+1. Then T1F (k, 1) = F (k, M) and cor 2 yields

inf sup Ef1 (f (0) -_ )q = Ml/2k+1 inf su E1 (f (0) - 8)q
& feF(k,M) 8 fEF( l)

Example 2. As a simple case of an application with a varying ln take the parameter
space to be

F (1, M), 1 (f, a) = (f (1) - a)2, cn = n1/3, f n = n1'3
and In(f,a) = (f(n-1/3) - a)2. Then Cor 1 gives

inf sup Ef (f(n-1n3)-)" = -inf sup E (f(1) - 8)2
8n feF(1,M) n213 8 fEF(1,M)

Example 3. Let G(M) = fe L2[,oo):f2 M. Take ln I such that
1 (f, a) = (f (0) - a)q. Let on = n14, 3 n = n1/2. Then TnG (M) = G (M) and Cor 1
yields

inf su En (f (O)-a)q = -inf sup Efl (f (0)-a)q.
8,n fEG(M) n'V4 8 fEG(M

Section 4. Proof of Theorem.

Proof.

The lemma immediately yields

(13) E?,fIn(Tnf,8n(X (t))) = E 1in(Tnf8n[ (X, t)

since ( =n [ 3 (13) is equal to
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(14)~~~~~~Eln Tnfl, a .

By assumption A

I [Tnfrn n (X (t)) = g (cXn) 1 (f, ;n (X (t)))

Hence (14) is equal to

(15) g (an) El'I (f, An) which is the same as (8).

This establishes (8). (9) follows immediately upon taking sup's. Likewise (10) fol-
lows on taking inf's.

Proof (Cor 1 and Cor 2).

Cor 1 is just a rewriting of (10) under the assumption TF = F. Cor 2 is just a

rewriting of (10) for n = 1.
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